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How does one value the right to back away from a commitment?
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I What determines the difference between put and call prices at a given
strike?

I How would the premiums change if these options were European rather
than American?

I It appears that, for a given strike, the October options are more
expensive than the June options. Is this necessarily true?

I Do call premiums always decrease as the strike price increases? Do put
premiums always increase as the strike price increases?

I Both call and put premiums change by less than the change in the
strike price. Does this always happen?
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European options

C(K ,T )− P(K ,T ) = PV0,T (F0,T − K )

= e−rT (F0,T − K )

Buying a call and selling a put
with the strike both equal to the forward price (i.e., K = F0,T )

creates a synthetic forward contract
and hence must have a zero price.

Parity generally fails for American options!
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Parity for stocks

C(K ,T ) = P(K ,T ) + (S0 − PV0,T (Div))− e−rT K
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Example 9.1-1 Suppose that the price of a non-dividend-paying stock is $40, the
continuously compounded interest rate is 8%, and options have 3 months to
expiration. If a 40-strike European call sells for $2.78, find the price for a 40-strike
European put sells.

Solution. Let the price for put be y . Then

$2.78 = y + $40− $40e−0.08×0.25

Hence,

y = $1.99.

�
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Why is a call more expensive than a put?

When S0 = K and Div = 0, then

C(K ,T )− P(K ,T ) = K
(
1− e−rT

)

The difference of a call and put is
the time value of money.
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Example 9.1-2 Make the same assumptions as in Example 9.1-1, except suppose
that the stock pays a $5 dividend just before expiration. If the price of the European
call is $0.74, what would be the price of the European put?

Solution. Let the price for put be y . Then

$0.74 = y +
(
$40− $5e−0.08×0.25)− $40e−0.08×0.25

Hence,

y = $4.85.

�
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Synthetic securities

C(K ,T ) = P(K ,T ) + (S0 − PV0,T (Div))− e−rT K

I Synthetic stock

S0 = C(K ,T )− P(K ,T ) + PV0,T (Div) + e−rT K
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I Synthetic Treasury bill (T-bill)

S0 − C(K ,T ) + P(K ,T )︸ ︷︷ ︸
a conversion

= PV0,T (Div) + e−rT K

Motivation:
A hedged position that has no risk but requires investment.
T-bills are taxed differently than stocks.
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Synthetic securities

C(K ,T ) = P(K ,T ) + (S0 − PV0,T (Div))− e−rT K
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