Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on

September 22, 2021

Auburn University

Auburn \overline{AL}

¹Based on Robert L. McDonald's *Derivatives Markets*, 3rd Ed, Pearson, 2013.

Chapter 9. Parity and other option relationships

Chapter 9. Parity and other option relationships

§ 9.1 Put-call parity

§ 9.2 Generalized parity and exchange options

- $\$ 9.3 Comparing options with respect to style, maturity, and strike
- § 9.4 Problems

Chapter 9. Parity and other option relationships

§ 9.1 Put-call parity

§ 9.2 Generalized parity and exchange options

 $\$ 9.3 Comparing options with respect to style, maturity, and strike

§ 9.4 Problems

European versus American options

 $C_{Amer}(S, K, T) \ge C_{Eur}(S, K, T)$ $P_{Amer}(S, K, T) \ge P_{Eur}(S, K, T)$

Maximum and minimum option prices

 $S \geq C_{Amer}(S, K, T) \geq C_{Eur}(S, K, T) \geq \max(0, PV_{0,T}(F_{0,T}) - PV_{0,T}(K))$

$$K \ge P_{\text{Amer}}(S, K, T) \ge P_{\text{Eur}}(S, K, T) \ge \max(0, \text{PV}(K) - \text{PV}_{0,T}(F_{0,T}))$$

Early exercise for American options

Calls on stocks with no dividend

No early exercise!

 $C_{\text{Ame}}(S_t, K, T-t) \ge C_{\text{Eur}}(S_t, K, T-t)$ $= \underbrace{S_t - K}_{\text{Exercise value}} + \underbrace{P_{\text{Eur}}(S_t, K, T-t)}_{\text{Insurance against } S_T < K} + \underbrace{K\left(1 - e^{-r(T-t)}\right)}_{\text{Time value of money on } K}$ $> S_t - K$

Instead of $C(S_t, K, T - t) \ge S_t - K$ one can prove a stronger version:

 $C(S_t, K, T-t) \geq S_t - Ke^{-r(T-t)}$

		Expiration or Exercise, Time T	
Transaction	Time t	$S_T < K$	$\mathbf{S}_{\mathbf{T}} > \mathbf{K}$
Buy call	-C	0	$S_T - K$
Short stock	S_t	$-S_T$	$-S_T$
Lend $Ke^{-r(T-t)}$	$-Ke^{-r(T-t)}$	Κ	Κ
Total	$\overline{S_t - Ke^{-r(T-t)} - C}$	$K - S_T$	0

Early exercise for American options

Calls on stock with dividends

Interest beats dividends?	Early exercise?
$K - PV_{t,T}(K) > PV_{t,T}(Div)$	
✓	×
×	possibly

When dividends do make early exercise rational, one should exercise at the last moment before the ex-dividend date. Early exercise for puts (no dividend case)

In order to receive interest, one may exercise early (think about the case when $S_T = 0$)

No early exercise	Early exercise
$PV_{t,T}(K)$	K

Early exercise for puts (no dividend case)

No-exercise condition:

$$P(S_t, K, T-t) = C(S_t, K, T-t) - S_t + PV_{t,T}(K)$$

	calls	puts
Receive	stock	cash
Motivation for early exercise	sufficient dividends	sufficient interest

One can view interest as the dividend on cash.

Dividends are the sole reason to early-exercise an option.

The longer the more expensive

▶ American call/put options

European call option on stock with no dividend

 $C_{Eur} = C_{Ame}$

- European call option on stock with dividend
- European put option

The longer the more expensive

► American call/put options

European call option on stock with no dividend

 $C_{Eur} = C_{Ame}$

- European call option on stock with dividend
- European put option

The longer the more expensive

- ► American call/put options
- ▶ European call option on stock with no dividend

$$C_{Eur} = C_{Ame}$$

- European call option on stock with dividend
- European put option

The longer the more expensive

- ► American call/put options
- ▶ European call option on stock with no dividend

$$C_{Eur} = C_{Ame}$$

- European call option on stock with dividend
- European put option

The longer the more expensive

- ► American call/put options
- ▶ European call option on stock with no dividend

$$C_{Eur} = C_{Ame}$$

The longer, might be cheaper

European call option on stock with dividend
European put option

The longer the more expensive

- ► American call/put options
- ▶ European call option on stock with no dividend

$$C_{Eur} = C_{Ame}$$

The longer, might be cheaper

European call option on stock with dividend

The longer the more expensive

- ► American call/put options
- ▶ European call option on stock with no dividend

$$C_{Eur} = C_{Ame}$$

- ▶ European call option on stock with dividend
- ► European put option

Time to expiration $-K_t = ke^{rt}$

Theorem 9.3-1 When $K_t = e^{rt} K$, i.e., the strike grows at the interest rate, the premiums on European calls and puts on a non-dividend-paying stock increases with time to maturity.

Proof. We only prove the case for puts and leave the calls as exercise. Let T > t. In order to show that

 $P_{\text{Euro}}(S_T, K_T, T) > P_{\text{Euro}}(S_t, K_t, t),$

it suffices to find an arbitrage when

 $P_{\text{Euro}}(S_T, K_T, T) \leq P_{\text{Euro}}(S_t, K_t, t).$

Time to expiration $-K_t = ke^{rt}$

Theorem 9.3-1 When $K_t = e^{rt}K$, i.e., the strike grows at the interest rate, the premiums on European calls and puts on a non-dividend-paying stock increases with time to maturity.

Proof. We only prove the case for puts and leave the calls as exercise. Let T > t. In order to show that

 $P_{\text{Euro}}(S_T, K_T, T) > P_{\text{Euro}}(S_t, K_t, t),$

it suffices to find an arbitrage when

$$P_{\text{Euro}}(S_T, K_T, T) \leq P_{\text{Euro}}(S_t, K_t, t).$$

Proof (continued).

			Payoff at Time T		
		$S_T <$	$S_T < K_T$ $S_T > K_T$		
			Payoff at Time t		
Transaction	Time 0	$S_t < K_t$	$S_t > K_t$	$S_t < K_t$	$S_t > K_t$
Sell $P(t)$	P(t)	$S_T - K_T$	0	$S_T - K_T$	0
Buy $P(T)$	-P(T)	$K_T - S_T$	$K_T - S_T$	0	0
Total	$\overline{P(t) - P(T)}$	0	$K_T - S_T$	$S_T - K_T$	0

For example, at time t, if $S_t < K_t$, one has to buy the stock. The payoff at time t is

$$S_t - K_t = S_t - Ke^{rt}$$

One keeps this stock to time *T*, the stock price becomes S_T , and the future value of Ke^{rt} that one spent at time *t* becomes $Ke^{rt+r(T-t)} = Ke^{rT}$. Hence, the payoff of this strategy at time *T* is

$$S_T - Ke^{rT} = S_T - K_T.$$

Different strike prices

 $K_1 \leq K_2 \leq K_3$

Relation	Ideas in proof, arbitrage in
$\mathcal{C}(\mathcal{K}_1) \geq \mathcal{C}(\mathcal{K}_2)$	a call bull spread
${m P}({m K_1}) \leq {m P}({m K_2})$	a put bear spread
$\mathcal{C}(\mathcal{K}_1) - \mathcal{C}(\mathcal{K}_2) \leq \mathcal{K}_2 - \mathcal{K}_1$	a call bear spread
$oldsymbol{P}(oldsymbol{K}_2) - oldsymbol{P}(oldsymbol{K}_1) \leq oldsymbol{K}_2 - oldsymbol{K}_1$	a put bull spread
$egin{aligned} rac{\mathcal{C}(\mathcal{K}_1) - \mathcal{C}(\mathcal{K}_2)}{\mathcal{K}_2 - \mathcal{K}_1} \geq rac{\mathcal{C}(\mathcal{K}_2) - \mathcal{C}(\mathcal{K}_3)}{\mathcal{K}_3 - \mathcal{K}_2} \end{aligned}$	an asymmetric butterfly spread
$\frac{\boldsymbol{P}(\boldsymbol{K}_2) - \boldsymbol{P}(\boldsymbol{K}_1)}{\boldsymbol{K}_2 - \boldsymbol{K}_1} \leq \frac{\boldsymbol{P}(\boldsymbol{K}_3) - \boldsymbol{P}(\boldsymbol{K}_2)}{\boldsymbol{K}_3 - \boldsymbol{K}_2}$	an asymmetric butterfly spread

Convexity revisited

with

$$\lambda = \frac{K_3 - K_2}{K_3 - K_1}$$

Strike	50	55
Call Premium	18	12

1. What no-arbitrage property is violated?

- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Strike	50	55
Call Premium	18	12

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Strike	50	55
Call Premium	18	12

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Strike	50	55
Call Premium	18	12

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Strike	50	55
Call Premium	18	12

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Solution. Check Example 9.4 on p. 283.

Strike	50	59	65
Call premium	14	8.9	5

1. What no-arbitrage property is violated?

- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Strike	50	59	65
Call premium	14	8.9	5

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Strike	50	59	65
Call premium	14	8.9	5

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Strike	50	59	65
Call premium	14	8.9	5

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Strike	50	59	65
Call premium	14	8.9	5

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Solution. Check Example 9.5 on p. 284.

Strike	50	55	70
Put premium	4	8	16

1. What no-arbitrage property is violated?

- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Strike	50	55	70
Put premium	4	8	16

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Strike	50	55	70
Put premium	4	8	16

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Strike	50	55	70
Put premium	4	8	16

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Strike	50	55	70
Put premium	4	8	16

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Solution. Check Example 9.6 on p. 284.