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6 Systems of Linear Equations

1.1 Solutions and Elementary Operations

Practical problems in many fields of study—such as biology, business, chemistry, computer science,
economics, electronics, engineering, physics and the social sciences—can often be reduced to solving
a system of linear equations. Linear algebra arose from attempts to find systematic methods for
solving these systems, so it is natural to begin this book by studying linear equations.

If a, b, and c are real numbers, the graph of an equation of the form

ax+by = c

is a straight line (if a and b are not both zero), so such an equation is called a linear equation
in the variables x and y. However, it is often convenient to write the variables as x1, x2, . . . , xn,
particularly when more than two variables are involved. An equation of the form

a1x1 +a2x2 + · · ·+anxn = b

is called a linear equation in the n variables x1, x2, . . . , xn. Here a1, a2, . . . , an denote real numbers
(called the coefficients of x1, x2, . . . , xn, respectively) and b is also a number (called the constant
term of the equation). A finite collection of linear equations in the variables x1, x2, . . . , xn is called
a system of linear equations in these variables. Hence,

2x1 −3x2 +5x3 = 7

is a linear equation; the coefficients of x1, x2, and x3 are 2, −3, and 5, and the constant term is 7.
Note that each variable in a linear equation occurs to the first power only.

Given a linear equation a1x1 + a2x2 + · · ·+ anxn = b, a sequence s1, s2, . . . , sn of n numbers is
called a solution to the equation if

a1s1 +a2s2 + · · ·+ansn = b

that is, if the equation is satisfied when the substitutions x1 = s1, x2 = s2, . . . , xn = sn are made.
A sequence of numbers is called a solution to a system of equations if it is a solution to every
equation in the system.

For example, x =−2, y = 5, z = 0 and x = 0, y = 4, z =−1 are both solutions to the system

x+ y+ z= 3
2x+ y+ 3z= 1

A system may have no solution at all, or it may have a unique solution, or it may have an infinite
family of solutions. For instance, the system x + y = 2, x + y = 3 has no solution because the
sum of two numbers cannot be 2 and 3 simultaneously. A system that has no solution is called
inconsistent; a system with at least one solution is called consistent. The system in the following
example has infinitely many solutions.
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Example 1.1.1

Show that, for arbitrary values of s and t,

x1 = t − s+1
x2 = t + s+2
x3 = s
x4 = t

is a solution to the system
x1 − 2x2 +3x3 +x4 =−3

2x1 − x2 +3x3 −x4 = 0

Solution. Simply substitute these values of x1, x2, x3, and x4 in each equation.

x1 −2x2 +3x3 + x4 = (t − s+1)−2(t + s+2)+3s+ t =−3
2x1 − x2 +3x3 − x4 = 2(t − s+1)− (t + s+2)+3s− t = 0

Because both equations are satisfied, it is a solution for all choices of s and t.

The quantities s and t in Example 1.1.1 are called parameters, and the set of solutions, de-
scribed in this way, is said to be given in parametric form and is called the general solution to
the system. It turns out that the solutions to every system of equations (if there are solutions) can
be given in parametric form (that is, the variables x1, x2, . . . are given in terms of new independent
variables s, t, etc.). The following example shows how this happens in the simplest systems where
only one equation is present.

Example 1.1.2

Describe all solutions to 3x− y+2z = 6 in parametric form.

Solution. Solving the equation for y in terms of x and z, we get y = 3x+2z−6. If s and t
are arbitrary then, setting x = s, z = t, we get solutions

x = s
y = 3s+2t −6 s and t arbitrary
z = t

Of course we could have solved for x: x = 1
3(y−2z+6). Then, if we take y = p, z = q, the

solutions are represented as follows:

x = 1
3(p−2q+6)

y = p p and q arbitrary
z = q

The same family of solutions can “look” quite different!
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x
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x− y = 1
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(a) Unique Solution
(x = 2, y = 1)
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(b) No Solution
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y

3x− y = 4

−6x+2y =−8

(c) Infinitely many solutions
(x = t, y = 3t −4)

Figure 1.1.1

When only two variables are involved, the solutions to systems of
linear equations can be described geometrically because the graph of
a linear equation ax+by = c is a straight line if a and b are not both
zero. Moreover, a point P(s, t) with coordinates s and t lies on the
line if and only if as+bt = c—that is when x = s, y = t is a solution
to the equation. Hence the solutions to a system of linear equations
correspond to the points P(s, t) that lie on all the lines in question.

In particular, if the system consists of just one equation, there
must be infinitely many solutions because there are infinitely many
points on a line. If the system has two equations, there are three
possibilities for the corresponding straight lines:

1. The lines intersect at a single point. Then the system has a
unique solution corresponding to that point.

2. The lines are parallel (and distinct) and so do not intersect.
Then the system has no solution.

3. The lines are identical. Then the system has infinitely many
solutions—one for each point on the (common) line.

These three situations are illustrated in Figure 1.1.1. In each case
the graphs of two specific lines are plotted and the corresponding
equations are indicated. In the last case, the equations are 3x−y = 4
and −6x+2y =−8, which have identical graphs.

With three variables, the graph of an equation ax+ by+ cz = d
can be shown to be a plane (see Section 4.2) and so again provides
a “picture” of the set of solutions. However, this graphical method
has its limitations: When more than three variables are involved, no
physical image of the graphs (called hyperplanes) is possible. It is
necessary to turn to a more “algebraic” method of solution.

Before describing the method, we introduce a concept that sim-
plifies the computations involved. Consider the following system

3x1 + 2x2 − x3 + x4 =−1
2x1 − x3 + 2x4 = 0
3x1 + x2 + 2x3 + 5x4 = 2

of three equations in four variables. The array of numbers1 3 2 −1 1 −1
2 0 −1 2 0
3 1 2 5 2


occurring in the system is called the augmented matrix of the system. Each row of the matrix
consists of the coefficients of the variables (in order) from the corresponding equation, together

1A rectangular array of numbers is called a matrix. Matrices will be discussed in more detail in Chapter 2.
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with the constant term. For clarity, the constants are separated by a vertical line. The augmented
matrix is just a different way of describing the system of equations. The array of coefficients of the
variables  3 2 −1 1

2 0 −1 2
3 1 2 5


is called the coefficient matrix of the system and

 −1
0
2

 is called the constant matrix of the

system.

Elementary Operations

The algebraic method for solving systems of linear equations is described as follows. Two such
systems are said to be equivalent if they have the same set of solutions. A system is solved by
writing a series of systems, one after the other, each equivalent to the previous system. Each of
these systems has the same set of solutions as the original one; the aim is to end up with a system
that is easy to solve. Each system in the series is obtained from the preceding system by a simple
manipulation chosen so that it does not change the set of solutions.

As an illustration, we solve the system x+ 2y = −2, 2x+ y = 7 in this manner. At each stage,
the corresponding augmented matrix is displayed. The original system is

x+ 2y=−2
2x+ y= 7

[
1 2 −2
2 1 7

]
First, subtract twice the first equation from the second. The resulting system is

x+ 2y=−2
− 3y= 11

[
1 2 −2
0 −3 11

]
which is equivalent to the original (see Theorem 1.1.1). At this stage we obtain y =−11

3 by multi-
plying the second equation by −1

3 . The result is the equivalent system

x+2y= −2
y=−11

3

[
1 2 −2
0 1 −11

3

]
Finally, we subtract twice the second equation from the first to get another equivalent system.

x= 16
3

y=−11
3

 1 0 16
3

0 1 −11
3


Now this system is easy to solve! And because it is equivalent to the original system, it provides
the solution to that system.

Observe that, at each stage, a certain operation is performed on the system (and thus on the
augmented matrix) to produce an equivalent system.
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Definition 1.1 Elementary Operations

The following operations, called elementary operations, can routinely be performed on
systems of linear equations to produce equivalent systems.

I. Interchange two equations.

II. Multiply one equation by a nonzero number.

III. Add a multiple of one equation to a different equation.

Theorem 1.1.1
Suppose that a sequence of elementary operations is performed on a system of linear
equations. Then the resulting system has the same set of solutions as the original, so the
two systems are equivalent.

The proof is given at the end of this section.
Elementary operations performed on a system of equations produce corresponding manipulations

of the rows of the augmented matrix. Thus, multiplying a row of a matrix by a number k means
multiplying every entry of the row by k. Adding one row to another row means adding each entry
of that row to the corresponding entry of the other row. Subtracting two rows is done similarly.
Note that we regard two rows as equal when corresponding entries are the same.

In hand calculations (and in computer programs) we manipulate the rows of the augmented ma-
trix rather than the equations. For this reason we restate these elementary operations for matrices.

Definition 1.2 Elementary Row Operations

The following are called elementary row operations on a matrix.

I. Interchange two rows.

II. Multiply one row by a nonzero number.

III. Add a multiple of one row to a different row.

In the illustration above, a series of such operations led to a matrix of the form[
1 0 ∗
0 1 ∗

]
where the asterisks represent arbitrary numbers. In the case of three equations in three variables,
the goal is to produce a matrix of the form 1 0 0 ∗

0 1 0 ∗
0 0 1 ∗


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This does not always happen, as we will see in the next section. Here is an example in which it
does happen.

Example 1.1.3

Find all solutions to the following system of equations.
3x+ 4y+ z= 1
2x+ 3y = 0
4x+ 3y− z=−2

Solution. The augmented matrix of the original system is 3 4 1 1
2 3 0 0
4 3 −1 −2


To create a 1 in the upper left corner we could multiply row 1 through by 1

3 . However, the 1
can be obtained without introducing fractions by subtracting row 2 from row 1. The result is 1 1 1 1

2 3 0 0
4 3 −1 −2


The upper left 1 is now used to “clean up” the first column, that is create zeros in the other
positions in that column. First subtract 2 times row 1 from row 2 to obtain 1 1 1 1

0 1 −2 −2
4 3 −1 −2


Next subtract 4 times row 1 from row 3. The result is 1 1 1 1

0 1 −2 −2
0 −1 −5 −6


This completes the work on column 1. We now use the 1 in the second position of the
second row to clean up the second column by subtracting row 2 from row 1 and then adding
row 2 to row 3. For convenience, both row operations are done in one step. The result is 1 0 3 3

0 1 −2 −2
0 0 −7 −8


Note that the last two manipulations did not affect the first column (the second row has a
zero there), so our previous effort there has not been undermined. Finally we clean up the
third column. Begin by multiplying row 3 by −1

7 to obtain 1 0 3 3
0 1 −2 −2
0 0 1 8

7


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Now subtract 3 times row 3 from row 1, and then add 2 times row 3 to row 2 to get
1 0 0 −3

7

0 1 0 2
7

0 0 1 8
7


The corresponding equations are x =−3

7 , y = 2
7 , and z = 8

7 , which give the (unique) solution.

Every elementary row operation can be reversed by another elementary row operation of the
same type (called its inverse). To see how, we look at types I, II, and III separately:

Type I Interchanging two rows is reversed by interchanging them again.

Type II Multiplying a row by a nonzero number k is reversed by multiplying by 1/k.

Type III Adding k times row p to a different row q is reversed by adding −k times row p to
row q (in the new matrix). Note that p 6= q is essential here.

To illustrate the Type III situation, suppose there are four rows in the original matrix, denoted
R1, R2, R3, and R4, and that k times R2 is added to R3. Then the reverse operation adds −k times
R2, to R3. The following diagram illustrates the effect of doing the operation first and then the
reverse: 

R1
R2
R3
R4

→


R1
R2

R3 + kR2
R4

→


R1
R2

(R3 + kR2)− kR2
R4

=


R1
R2
R3
R4


The existence of inverses for elementary row operations and hence for elementary operations on a
system of equations, gives:
Proof of Theorem 1.1.1. Suppose that a system of linear equations is transformed into a new
system by a sequence of elementary operations. Then every solution of the original system is
automatically a solution of the new system because adding equations, or multiplying an equation
by a nonzero number, always results in a valid equation. In the same way, each solution of the new
system must be a solution to the original system because the original system can be obtained from
the new one by another series of elementary operations (the inverses of the originals). It follows
that the original and new systems have the same solutions. This proves Theorem 1.1.1.
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Exercises for 1.1

Exercise 1.1.1 In each case verify that the follow-
ing are solutions for all values of s and t.

a. x= 19t −35
y= 25−13t
z= t

is a solution of 2x+ 3y+ z= 5
5x+ 7y− 4z= 0

b. x1 = 2s+12t +13
x2 = s
x3 =−s−3t −3
x4 = t

is a solution of

2x1 + 5x2 + 9x3 + 3x4 =−1
x1 + 2x2 + 4x3 = 1

b. 2(2s+12t +13)+5s+9(−s−3t −3)+3t =−1;
(2s+12t +13)+2s+4(−s−3t −3) = 1

Exercise 1.1.2 Find all solutions to the following
in parametric form in two ways.

3x+ y = 2a) 2x+3y = 1b)
3x− y+2z = 5c) x−2y+5z = 1d)

b. x = t, y = 1
3(1−2t) or x = 1

2(1−3s), y = s

d. x = 1+2s−5t, y = s, z = t or x = s, y = t,
z = 1

5(1− s+2t)

Exercise 1.1.3 Regarding 2x = 5 as the equation
2x+0y= 5 in two variables, find all solutions in para-
metric form.

Exercise 1.1.4 Regarding 4x−2y = 3 as the equa-
tion 4x−2y+0z = 3 in three variables, find all solu-
tions in parametric form.
x = 1

4(3+2s), y = s, z = t

Exercise 1.1.5 Find all solutions to the gen-
eral system ax = b of one equation in one vari-
able (a) when a = 0 and (b) when a 6= 0.

a. No solution if b 6= 0. If b = 0, any x is a solu-
tion.

b. x = b
a

Exercise 1.1.6 Show that a system consisting of
exactly one linear equation can have no solution, one
solution, or infinitely many solutions. Give exam-
ples.

Exercise 1.1.7 Write the augmented matrix for
each of the following systems of linear equations.

x− 3y= 5
2x+ y= 1

a) x+ 2y= 0
y= 1

b)

x− y+ z= 2
x− z= 1
y+ 2x= 0

c) x+ y= 1
y+ z= 0
z− x= 2

d)

b.
[

1 2 0
0 1 1

]

d.

 1 1 0 1
0 1 1 0

−1 0 1 2


Exercise 1.1.8 Write a system of linear equations
that has each of the following augmented matrices. 1 −1 6 0

0 1 0 3
2 −1 0 1

a)

 2 −1 0 −1
−3 2 1 0

0 1 1 3

b)

b.
2x− y =−1

−3x+ 2y+ z= 0
y+ z= 3

or
2x1 − x2 =−1

−3x1 + 2x2 + x3 = 0
x2 + x3 = 3

Exercise 1.1.9 Find the solution of each of the fol-
lowing systems of linear equations using augmented
matrices.
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x− 3y= 1
2x− 7y= 3

a) x+ 2y= 1
3x+ 4y=−1

b)

2x+ 3y=−1
3x+ 4y= 2

c) 3x+ 4y= 1
4x+ 5y=−3

d)

b. x =−3, y = 2

d. x =−17, y = 13

Exercise 1.1.10 Find the solution of each of
the following systems of linear equations using aug-
mented matrices.

x+ y+ 2z=−1
2x+ y+ 3z= 0

− 2y+ z= 2

a) 2x+ y+ z=−1
x+ 2y+ z= 0

3x − 2z= 5

b)

b. x = 1
9 , y = 10

9 , z =−7
3

Exercise 1.1.11 Find all solutions (if any) of the
following systems of linear equations.

3x−2y= 5
−12x+8y=−20

a) 3x−2y= 5
−12x+8y= 16

b)

b. No solution

Exercise 1.1.12 Show that the system
x + 2y − z = a

2x + y + 3z = b
x − 4y + 9z = c

is inconsistent unless c = 2b−3a.

Exercise 1.1.13 By examining the possible posi-
tions of lines in the plane, show that two equations in
two variables can have zero, one, or infinitely many
solutions.

Exercise 1.1.14 In each case either show that the
statement is true, or give an example2 showing it is
false.

a. If a linear system has n variables and m equa-
tions, then the augmented matrix has n rows.

b. A consistent linear system must have infinitely
many solutions.

c. If a row operation is done to a consistent linear
system, the resulting system must be consis-
tent.

d. If a series of row operations on a linear system
results in an inconsistent system, the original
system is inconsistent.

b. F. x+ y = 0, x− y = 0 has a unique solution.

d. T. Theorem 1.1.1.

Exercise 1.1.15 Find a quadratic a+bx+cx2 such
that the graph of y= a+bx+cx2 contains each of the
points (−1, 6), (2, 0), and (3, 2).

Exercise 1.1.16 Solve the system
{

3x+ 2y= 5
7x+ 5y= 1

by changing variables
{

x= 5x′ − 2y′

y=−7x′ + 3y′
and solv-

ing the resulting equations for x′ and y′.

x′ = 5, y′ = 1, so x = 23, y =−32

Exercise 1.1.17 Find a, b, and c such that

x2−x+3
(x2+2)(2x−1) =

ax+b
x2+2 +

c
2x−1

[Hint: Multiply through by (x2 + 2)(2x −
1) and equate coefficients of powers of x.]

a =−1
9 , b =−5

9 , c = 11
9

Exercise 1.1.18 A zookeeper wants to give an an-
imal 42 mg of vitamin A and 65 mg of vitamin D
per day. He has two supplements: the first contains
10% vitamin A and 25% vitamin D; the second con-
tains 20% vitamin A and 25% vitamin D. How much

2Such an example is called a counterexample. For example, if the statement is that “all philosophers have
beards”, the existence of a non-bearded philosopher would be a counterexample proving that the statement is false.
This is discussed again in Appendix ??.
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of each supplement should he give the animal each
day?

Exercise 1.1.19 Workmen John and Joe earn a
total of $24.60 when John works 2 hours and Joe
works 3 hours. If John works 3 hours and Joe works
2 hours, they get $23.90. Find their hourly rates.

$4.50, $5.20

Exercise 1.1.20 A biologist wants to create a diet
from fish and meal containing 183 grams of protein
and 93 grams of carbohydrate per day. If fish con-
tains 70% protein and 10% carbohydrate, and meal
contains 30% protein and 60% carbohydrate, how
much of each food is required each day?
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1.2 Gaussian Elimination

The algebraic method introduced in the preceding section can be summarized as follows: Given a
system of linear equations, use a sequence of elementary row operations to carry the augmented
matrix to a “nice” matrix (meaning that the corresponding equations are easy to solve). In Example
1.1.3, this nice matrix took the form  1 0 0 ∗

0 1 0 ∗
0 0 1 ∗


The following definitions identify the nice matrices that arise in this process.

Definition 1.3 Row-Echelon Form (Reduced)

A matrix is said to be in row-echelon form (and will be called a row-echelon matrix)
if it satisfies the following three conditions:

1. All zero rows (consisting entirely of zeros) are at the bottom.

2. The first nonzero entry from the left in each nonzero row is a 1, called the leading 1
for that row.

3. Each leading 1 is to the right of all leading 1s in the rows above it.

A row-echelon matrix is said to be in reduced row-echelon form (and will be called a
reduced row-echelon matrix) if, in addition, it satisfies the following condition:

4. Each leading 1 is the only nonzero entry in its column.

The row-echelon matrices have a “staircase” form, as indicated by the following example (the
asterisks indicate arbitrary numbers).

0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗
0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 1
0 0 0 0 0 0 0


The leading 1s proceed “down and to the right” through the matrix. Entries above and to the right
of the leading 1s are arbitrary, but all entries below and to the left of them are zero. Hence, a
matrix in row-echelon form is in reduced form if, in addition, the entries directly above each leading
1 are all zero. Note that a matrix in row-echelon form can, with a few more row operations, be
carried to reduced form (use row operations to create zeros above each leading one in succession,
beginning from the right).
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Example 1.2.1

The following matrices are in row-echelon form (for any choice of numbers in ∗-positions).

[
1 ∗ ∗
0 0 1

] 0 1 ∗ ∗
0 0 1 ∗
0 0 0 0

 1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 1

 1 ∗ ∗
0 1 ∗
0 0 1


The following, on the other hand, are in reduced row-echelon form.

[
1 ∗ 0
0 0 1

] 0 1 0 ∗
0 0 1 ∗
0 0 0 0

 1 0 ∗ 0
0 1 ∗ 0
0 0 0 1

 1 0 0
0 1 0
0 0 1


The choice of the positions for the leading 1s determines the (reduced) row-echelon form
(apart from the numbers in ∗-positions).

The importance of row-echelon matrices comes from the following theorem.

Theorem 1.2.1
Every matrix can be brought to (reduced) row-echelon form by a sequence of elementary
row operations.

In fact we can give a step-by-step procedure for actually finding a row-echelon matrix. Observe
that while there are many sequences of row operations that will bring a matrix to row-echelon form,
the one we use is systematic and is easy to program on a computer. Note that the algorithm deals
with matrices in general, possibly with columns of zeros.

Gaussian3Algorithm4

Step 1. If the matrix consists entirely of zeros, stop—it is already in row-echelon form.

Step 2. Otherwise, find the first column from the left containing a nonzero entry (call
it a), and move the row containing that entry to the top position.

Step 3. Now multiply the new top row by 1/a to create a leading 1.

Step 4. By subtracting multiples of that row from rows below it, make each entry
below the leading 1 zero.

This completes the first row, and all further row operations are carried out on the remaining
rows.

Step 5. Repeat steps 1–4 on the matrix consisting of the remaining rows.

The process stops when either no rows remain at step 5 or the remaining rows consist
entirely of zeros.
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Observe that the gaussian algorithm is recursive: When the first leading 1 has been obtained,
the procedure is repeated on the remaining rows of the matrix. This makes the algorithm easy to
use on a computer. Note that the solution to Example 1.1.3 did not use the gaussian algorithm as
written because the first leading 1 was not created by dividing row 1 by 3. The reason for this is
that it avoids fractions. However, the general pattern is clear: Create the leading 1s from left to
right, using each of them in turn to create zeros below it. Here are two more examples.

Example 1.2.2

Solve the following system of equations.
3x+ y− 4z=−1
x + 10z= 5

4x+ y+ 6z= 1

Solution. The corresponding augmented matrix is 3 1 −4 −1
1 0 10 5
4 1 6 1


Create the first leading one by interchanging rows 1 and 2 1 0 10 5

3 1 −4 −1
4 1 6 1


Now subtract 3 times row 1 from row 2, and subtract 4 times row 1 from row 3. The result is 1 0 10 5

0 1 −34 −16
0 1 −34 −19


Now subtract row 2 from row 3 to obtain 1 0 10 5

0 1 −34 −16
0 0 0 −3


This means that the following reduced system of equations

x + 10z= 5
y− 34z=−16

0= −3

is equivalent to the original system. In other words, the two have the same solutions. But
this last system clearly has no solution (the last equation requires that x, y and z satisfy
0x+0y+0z =−3, and no such numbers exist). Hence the original system has no solution.

3Carl Friedrich Gauss (1777–1855) ranks with Archimedes and Newton as one of the three greatest mathematicians
of all time. He was a child prodigy and, at the age of 21, he gave the first proof that every polynomial has a complex
root. In 1801 he published a timeless masterpiece, Disquisitiones Arithmeticae, in which he founded modern number
theory. He went on to make ground-breaking contributions to nearly every branch of mathematics, often well before
others rediscovered and published the results.

4The algorithm was known to the ancient Chinese.
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Example 1.2.3

Solve the following system of equations.
x1 − 2x2 − x3 + 3x4 = 1

2x1 − 4x2 + x3 = 5
x1 − 2x2 + 2x3 − 3x4 = 4

Solution. The augmented matrix is 1 −2 −1 3 1
2 −4 1 0 5
1 −2 2 −3 4


Subtracting twice row 1 from row 2 and subtracting row 1 from row 3 gives 1 −2 −1 3 1

0 0 3 −6 3
0 0 3 −6 3


Now subtract row 2 from row 3 and multiply row 2 by 1

3 to get 1 −2 −1 3 1
0 0 1 −2 1
0 0 0 0 0


This is in row-echelon form, and we take it to reduced form by adding row 2 to row 1: 1 −2 0 1 2

0 0 1 −2 1
0 0 0 0 0


The corresponding reduced system of equations is

x1 − 2x2 + x4 = 2
x3 − 2x4 = 1

0= 0

The leading ones are in columns 1 and 3 here, so the corresponding variables x1 and x3 are
called leading variables. Because the matrix is in reduced row-echelon form, these equations
can be used to solve for the leading variables in terms of the nonleading variables x2 and x4.
More precisely, in the present example we set x2 = s and x4 = t where s and t are arbitrary,
so these equations become

x1 −2s+ t = 2 and x3 −2t = 1

Finally the solutions are given by
x1 = 2+2s− t
x2 = s
x3 = 1+2t
x4 = t

where s and t are arbitrary.
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The solution of Example 1.2.3 is typical of the general case. To solve a linear system, the
augmented matrix is carried to reduced row-echelon form, and the variables corresponding to the
leading ones are called leading variables. Because the matrix is in reduced form, each leading
variable occurs in exactly one equation, so that equation can be solved to give a formula for the
leading variable in terms of the nonleading variables. It is customary to call the nonleading variables
“free” variables, and to label them by new variables s, t, . . . , called parameters. Hence, as in
Example 1.2.3, every variable xi is given by a formula in terms of the parameters s and t. Moreover,
every choice of these parameters leads to a solution to the system, and every solution arises in this
way. This procedure works in general, and has come to be called

Gaussian Elimination
To solve a system of linear equations proceed as follows:

1. Carry the augmented matrix to a reduced row-echelon matrix using elementary row
operations.

2. If a row
[

0 0 0 · · · 0 1
]

occurs, the system is inconsistent.

3. Otherwise, assign the nonleading variables (if any) as parameters, and use the
equations corresponding to the reduced row-echelon matrix to solve for the leading
variables in terms of the parameters.

There is a variant of this procedure, wherein the augmented matrix is carried only to row-echelon
form. The nonleading variables are assigned as parameters as before. Then the last equation
(corresponding to the row-echelon form) is used to solve for the last leading variable in terms of the
parameters. This last leading variable is then substituted into all the preceding equations. Then,
the second last equation yields the second last leading variable, which is also substituted back. The
process continues to give the general solution. This procedure is called back-substitution. This
procedure can be shown to be numerically more efficient and so is important when solving very
large systems.5

Example 1.2.4

Find a condition on the numbers a, b, and c such that the following system of equations is
consistent. When that condition is satisfied, find all solutions (in terms of a, b, and c).

x1 + 3x2 + x3 = a
−x1 − 2x2 + x3 = b
3x1 + 7x2 − x3 = c

Solution. We use gaussian elimination except that now the augmented matrix 1 3 1 a
−1 −2 1 b

3 7 −1 c


5With n equations where n is large, gaussian elimination requires roughly n3/2 multiplications and divisions,

whereas this number is roughly n3/3 if back substitution is used.
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has entries a, b, and c as well as known numbers. The first leading one is in place, so we
create zeros below it in column 1:  1 3 1 a

0 1 2 a+b
0 −2 −4 c−3a


The second leading 1 has appeared, so use it to create zeros in the rest of column 2: 1 0 −5 −2a−3b

0 1 2 a+b
0 0 0 c−a+2b


Now the whole solution depends on the number c−a+2b = c− (a−2b). The last row
corresponds to an equation 0 = c− (a−2b). If c 6= a−2b, there is no solution (just as in
Example 1.2.2). Hence:

The system is consistent if and only if c = a−2b.

In this case the last matrix becomes 1 0 −5 −2a−3b
0 1 2 a+b
0 0 0 0


Thus, if c = a−2b, taking x3 = t where t is a parameter gives the solutions

x1 = 5t − (2a+3b) x2 = (a+b)−2t x3 = t.

Rank

It can be proven that the reduced row-echelon form of a matrix A is uniquely determined by A. That
is, no matter which series of row operations is used to carry A to a reduced row-echelon matrix, the
result will always be the same matrix. (A proof is given at the end of Section 2.5.) By contrast, this
is not true for row-echelon matrices: Different series of row operations can carry the same matrix A

to different row-echelon matrices. Indeed, the matrix A =

[
1 −1 4
2 −1 2

]
can be carried (by one row

operation) to the row-echelon matrix
[

1 −1 4
0 1 −6

]
, and then by another row operation to the

(reduced) row-echelon matrix
[

1 0 −2
0 1 −6

]
. However, it is true that the number r of leading 1s

must be the same in each of these row-echelon matrices (this will be proved in Chapter 5). Hence,
the number r depends only on A and not on the way in which A is carried to row-echelon form.
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Definition 1.4 Rank of a Matrix
The rank of matrix A is the number of leading 1s in any row-echelon matrix to which A can
be carried by row operations.

Example 1.2.5

Compute the rank of A =

 1 1 −1 4
2 1 3 0
0 1 −5 8

.

Solution. The reduction of A to row-echelon form is

A =

 1 1 −1 4
2 1 3 0
0 1 −5 8

→

 1 1 −1 4
0 −1 5 −8
0 1 −5 8

→

 1 1 −1 4
0 1 −5 8
0 0 0 0


Because this row-echelon matrix has two leading 1s, rank A = 2.

Suppose that rank A= r, where A is a matrix with m rows and n columns. Then r ≤m because the
leading 1s lie in different rows, and r ≤ n because the leading 1s lie in different columns. Moreover,
the rank has a useful application to equations. Recall that a system of linear equations is called
consistent if it has at least one solution.

Theorem 1.2.2
Suppose a system of m equations in n variables is consistent, and that the rank of the
augmented matrix is r.

1. The set of solutions involves exactly n− r parameters.

2. If r < n, the system has infinitely many solutions.

3. If r = n, the system has a unique solution.

Proof. The fact that the rank of the augmented matrix is r means there are exactly r leading
variables, and hence exactly n− r nonleading variables. These nonleading variables are all assigned
as parameters in the gaussian algorithm, so the set of solutions involves exactly n− r parameters.
Hence if r < n, there is at least one parameter, and so infinitely many solutions. If r = n, there are
no parameters and so a unique solution.

Theorem 1.2.2 shows that, for any system of linear equations, exactly three possibilities exist:

1. No solution. This occurs when a row
[

0 0 · · · 0 1
]

occurs in the row-echelon form.
This is the case where the system is inconsistent.

2. Unique solution. This occurs when every variable is a leading variable.
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3. Infinitely many solutions. This occurs when the system is consistent and there is at least one
nonleading variable, so at least one parameter is involved.

Example 1.2.6

Suppose the matrix A in Example 1.2.5 is the augmented matrix of a system of m = 3 linear
equations in n = 3 variables. As rank A = r = 2, the set of solutions will have n− r = 1
parameter. The reader can verify this fact directly.

Many important problems involve linear inequalities rather than linear equations. For
example, a condition on the variables x and y might take the form of an inequality 2x− 5y ≤ 4
rather than an equality 2x− 5y = 4. There is a technique (called the simplex algorithm) for
finding solutions to a system of such inequalities that maximizes a function of the form p = ax+by
where a and b are fixed constants.

Exercises for 1.2

Exercise 1.2.1 Which of the following matrices
are in reduced row-echelon form? Which are in row-
echelon form? 1 −1 2

0 0 0
0 0 1

a)
[

2 1 −1 3
0 0 0 0

]
b)

[
1 −2 3 5
0 0 0 1

]
c)

 1 0 0 3 1
0 0 0 1 1
0 0 0 0 1

d)

[
1 1
0 1

]
e)

 0 0 1
0 0 1
0 0 1

f)

b. No, no

d. No, yes

f. No, no

Exercise 1.2.2 Carry each of the following matri-
ces to reduced row-echelon form.

a.


0 −1 2 1 2 1 −1
0 1 −2 2 7 2 4
0 −2 4 3 7 1 0
0 3 −6 1 6 4 1



b.


0 −1 3 1 3 2 1
0 −2 6 1 −5 0 −1
0 3 −9 2 4 1 −1
0 1 −3 −1 3 0 1



b.


0 1 −3 0 0 0 0
0 0 0 1 0 0 −1
0 0 0 0 1 0 0
0 0 0 0 0 1 1



Exercise 1.2.3 The augmented matrix of a system
of linear equations has been carried to the following
by row operations. In each case solve the system.

a.


1 2 0 3 1 0 −1
0 0 1 −1 1 0 2
0 0 0 0 0 1 3
0 0 0 0 0 0 0



b.


1 −2 0 2 0 1 1
0 0 1 5 0 −3 −1
0 0 0 0 1 6 1
0 0 0 0 0 0 0


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c.


1 2 1 3 1 1
0 1 −1 0 1 1
0 0 0 1 −1 0
0 0 0 0 0 0



d.


1 −1 2 4 6 2
0 1 2 1 −1 −1
0 0 0 1 0 1
0 0 0 0 0 0



b. x1 = 2r − 2s− t + 1, x2 = r, x3 = −5s+ 3t − 1,
x4 = s, x5 =−6t +1, x6 = t

d. x1 =−4s−5t−4, x2 =−2s+t−2, x3 = s, x4 = 1,
x5 = t

Exercise 1.2.4 Find all solutions (if any) to each
of the following systems of linear equations.

x− 2y= 1
4y− x=−2

a) 3x− y= 0
2x− 3y= 1

b)

2x+ y= 5
3x+ 2y= 6

c) 3x− y= 2
2y− 6x=−4

d)

3x− y= 4
2y− 6x= 1

e) 2x− 3y= 5
3y− 2x= 2

f)

b. x =−1
7 , y =−3

7

d. x = 1
3(t +2), y = t

f. No solution

Exercise 1.2.5 Find all solutions (if any) to each
of the following systems of linear equations.

x+ y+ 2z= 8
3x− y+ z= 0
−x+ 3y+ 4z=−4

a) −2x+ 3y+ 3z= −9
3x− 4y+ z= 5

−5x+ 7y+ 2z=−14

b)

x+ y− z= 10
−x+ 4y+ 5z=−5

x+ 6y+ 3z= 15

c) x+ 2y− z= 2
2x+ 5y− 3z= 1
x+ 4y− 3z= 3

d)

5x+ y = 2
3x− y+ 2z= 1
x+ y− z= 5

e) 3x− 2y+ z=−2
x− y+ 3z= 5

−x+ y+ z=−1

f)

x+ y+ z= 2
x + z= 1

2x+ 5y+ 2z= 7

g) x+ 2y− 4z= 10
2x− y+ 2z= 5
x+ y− 2z= 7

h)

b. x =−15t −21, y =−11t −17, z = t

d. No solution

f. x =−7, y =−9, z = 1

h. x = 4, y = 3+2t, z = t

Exercise 1.2.6 Express the last equation of each
system as a sum of multiples of the first two equa-
tions. [Hint: Label the equations, use the gaussian
algorithm.]

x1 + x2 + x3 = 1
2x1 − x2 + 3x3 = 3
x1 − 2x2 + 2x3 = 2

a) x1 + 2x2 − 3x3 = −3
x1 + 3x2 − 5x3 = 5
x1 − 2x2 + 5x3 =−35

b)

b. Denote the equations as E1, E2, and E3. Ap-
ply gaussian elimination to column 1 of the
augmented matrix, and observe that E3−E1 =
−4(E2 −E1). Hence E3 = 5E1 −4E2.

Exercise 1.2.7 Find all solutions to the following
systems.

a. 3x1 + 8x2 − 3x3 − 14x4 = 2
2x1 + 3x2 − x3 − 2x4 = 1
x1 − 2x2 + x3 + 10x4 = 0
x1 + 5x2 − 2x3 − 12x4 = 1

b. x1 − x2 + x3 − x4 = 0
−x1 + x2 + x3 + x4 = 0

x1 + x2 − x3 + x4 = 0
x1 + x2 + x3 + x4 = 0

c. x1 − x2 + x3 − 2x4 = 1
−x1 + x2 + x3 + x4 =−1
−x1 + 2x2 + 3x3 − x4 = 2

x1 − x2 + 2x3 + x4 = 1

d. x1 + x2 + 2x3 − x4 = 4
3x2 − x3 + 4x4 = 2

x1 + 2x2 − 3x3 + 5x4 = 0
x1 + x2 − 5x3 + 6x4 =−3



1.2. Gaussian Elimination 25

b. x1 = 0, x2 =−t, x3 = 0, x4 = t

d. x1 = 1, x2 = 1− t, x3 = 1+ t, x4 = t

Exercise 1.2.8 In each of the following, find (if
possible) conditions on a and b such that the system
has no solution, one solution, and infinitely many
solutions.

x− 2y= 1
ax+ by= 5

a) x+ by=−1
ax+ 2y= 5

b)

x− by=−1
x+ ay= 3

c) ax+ y= 1
2x+ y= b

d)

b. If ab 6= 2, unique solution x = −2−5b
2−ab , y = a+5

2−ab .
If ab = 2: no solution if a 6=−5; if a =−5, the
solutions are x =−1+ 2

5 t, y = t.

d. If a 6= 2, unique solution x = 1−b
a−2 , y = ab−2

a−2 . If
a = 2, no solution if b 6= 1; if b = 1, the solu-
tions are x = 1

2(1− t), y = t.

Exercise 1.2.9 In each of the following, find (if
possible) conditions on a, b, and c such that the sys-
tem has no solution, one solution, or infinitely many
solutions.

3x+ y− z= a
x− y+ 2z= b

5x+ 3y− 4z= c

a) 2x+ y− z= a
2y+ 3z= b

x − z= c

b)

−x+ 3y+ 2z=−8
x + z= 2

3x+ 3y+ az= b

c) x+ay= 0
y+bz= 0
z+ cx= 0

d)

3x− y+ 2z= 3
x+ y− z= 2

2x− 2y+ 3z= b

e)

x+ ay− z= 1
−x+ (a−2)y+ z=−1
2x+ 2y+ (a−2)z= 1

f)

b. Unique solution x =−2a+b+5c,
y = 3a−b−6c, z =−2a+b+c, for any a, b, c.

d. If abc 6= −1, unique solution x = y = z = 0; if
abc = −1 the solutions are x = abt, y = −bt,
z = t.

f. If a = 1, solutions x = −t, y = t, z = −1. If
a = 0, there is no solution. If a 6= 1 and a 6= 0,
unique solution x = a−1

a , y = 0, z = −1
a .

Exercise 1.2.10 Find the rank of each of the ma-
trices in Exercise 1.2.1.

b. 1

d. 3

f. 1

Exercise 1.2.11 Find the rank of each of the fol-
lowing matrices. 1 1 2

3 −1 1
−1 3 4

a)

 −2 3 3
3 −4 1

−5 7 2

b)

 1 1 −1 3
−1 4 5 −2

1 6 3 4

c)

 3 −2 1 −2
1 −1 3 5

−1 1 1 −1

d)

 1 2 −1 0
0 a 1−a a2 +1
1 2−a −1 −2a2

e)

 1 1 2 a2

1 1−a 2 0
2 2−a 6−a 4

f)

b. 2

d. 3

f. 2 if a = 0 or a = 2; 3, otherwise.

Exercise 1.2.12 Consider a system of linear equa-
tions with augmented matrix A and coefficient ma-
trix C. In each case either prove the statement or
give an example showing that it is false.

a. If there is more than one solution, A has a row
of zeros.
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b. If A has a row of zeros, there is more than one
solution.

c. If there is no solution, the reduced row-echelon
form of C has a row of zeros.

d. If the row-echelon form of C has a row of zeros,
there is no solution.

e. There is no system that is inconsistent for ev-
ery choice of constants.

f. If the system is consistent for some choice of
constants, it is consistent for every choice of
constants.

Now assume that the augmented matrix A has 3 rows
and 5 columns.

g. If the system is consistent, there is more than
one solution.

h. The rank of A is at most 3.

i. If rank A = 3, the system is consistent.

j. If rank C = 3, the system is consistent.

b. False. A =

 1 0 1
0 1 1
0 0 0



d. False. A =

 1 0 1
0 1 0
0 0 0


f. False. 2x− y= 0

−4x+2y= 0
is consistent but

2x− y= 1
−4x+2y= 1

is not.

h. True, A has 3 rows, so there are at most 3
leading 1s.

Exercise 1.2.13 Find a sequence of row operations
carrying b1 + c1 b2 + c2 b3 + c3

c1 +a1 c2 +a2 c3 +a3
a1 +b1 a2 +b2 a3 +b3

to

 a1 a2 a3
b1 b2 b3
c1 c2 c3


Exercise 1.2.14 In each case, show that the re-
duced row-echelon form is as given.

a.

 p 0 a
b 0 0
q c r

 with abc 6= 0;

 1 0 0
0 1 0
0 0 1



b.

 1 a b+ c
1 b c+a
1 c a+b

 where c 6= a or b 6= a; 1 0 ∗
0 1 ∗
0 0 0



b. Since one of b− a and c− a is nonzero, then 1 a b+ c
1 b c+a
1 b c+a

 →

 1 a b+ c
0 b−a a−b
0 c−a a− c

 → 1 a b+ c
0 1 −1
0 0 0

→

 1 0 b+ c+a
0 1 −1
0 0 0



Exercise 1.2.15 Show that
{

az+ by+ cz= 0
a1x+ b1y+ c1z= 0

always has a solution other than x = 0, y = 0, z = 0.

Exercise 1.2.16 Find the circle x2 +y2 +ax+by+
c = 0 passing through the following points.

a. (−2, 1), (5, 0), and (4, 1)

b. (1, 1), (5, −3), and (−3, −3)

b. x2 + y2 −2x+6y−6 = 0

Exercise 1.2.17 Three Nissans, two Fords, and
four Chevrolets can be rented for $106 per day. At
the same rates two Nissans, four Fords, and three
Chevrolets cost $107 per day, whereas four Nissans,
three Fords, and two Chevrolets cost $102 per day.
Find the rental rates for all three kinds of cars.

Exercise 1.2.18 A school has three clubs and each
student is required to belong to exactly one club.
One year the students switched club membership as
follows: Club A. 4

10 remain in A, 1
10 switch to B, 5

10
switch to C. Club B. 7

10 remain in B, 2
10 switch to A,
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1
10 switch to C. Club C. 6

10 remain in C, 2
10 switch

to A, 2
10 switch to B. If the fraction of the student

population in each club is unchanged, find each of
these fractions.
5
20 in A, 7

20 in B, 8
20 in C.

Exercise 1.2.19 Given points (p1, q1), (p2, q2),
and (p3, q3) in the plane with p1, p2, and p3 dis-
tinct, show that they lie on some curve with equation
y = a+bx+ cx2. [Hint: Solve for a, b, and c.]
Exercise 1.2.20 The scores of three players in a
tournament have been lost. The only information
available is the total of the scores for players 1 and
2, the total for players 2 and 3, and the total for
players 3 and 1.

a. Show that the individual scores can be redis-
covered.

b. Is this possible with four players (knowing the
totals for players 1 and 2, 2 and 3, 3 and 4,
and 4 and 1)?

Exercise 1.2.21 A boy finds $1.05 in dimes, nick-
els, and pennies. If there are 17 coins in all, how
many coins of each type can he have?

Exercise 1.2.22 If a consistent system has more
variables than equations, show that it has infinitely
many solutions. [Hint: Use Theorem 1.2.2.]
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1.3 Homogeneous Equations

A system of equations in the variables x1, x2, . . . , xn is called homogeneous if all the constant
terms are zero—that is, if each equation of the system has the form

a1x1 +a2x2 + · · ·+anxn = 0

Clearly x1 = 0, x2 = 0, . . . , xn = 0 is a solution to such a system; it is called the trivial solution.
Any solution in which at least one variable has a nonzero value is called a nontrivial solution. Our
chief goal in this section is to give a useful condition for a homogeneous system to have nontrivial
solutions. The following example is instructive.

Example 1.3.1

Show that the following homogeneous system has nontrivial solutions.

x1 − x2 + 2x3 − x4 = 0
2x1 + 2x2 + x4 = 0
3x1 + x2 + 2x3 − x4 = 0

Solution. The reduction of the augmented matrix to reduced row-echelon form is outlined
below.  1 −1 2 −1 0

2 2 0 1 0
3 1 2 −1 0

→

 1 −1 2 −1 0
0 4 −4 3 0
0 4 −4 2 0

→

 1 0 1 0 0
0 1 −1 0 0
0 0 0 1 0


The leading variables are x1, x2, and x4, so x3 is assigned as a parameter—say x3 = t. Then
the general solution is x1 =−t, x2 = t, x3 = t, x4 = 0. Hence, taking t = 1 (say), we get a
nontrivial solution: x1 =−1, x2 = 1, x3 = 1, x4 = 0.

The existence of a nontrivial solution in Example 1.3.1 is ensured by the presence of a parameter
in the solution. This is due to the fact that there is a nonleading variable (x3 in this case). But
there must be a nonleading variable here because there are four variables and only three equations
(and hence at most three leading variables). This discussion generalizes to a proof of the following
fundamental theorem.

Theorem 1.3.1
If a homogeneous system of linear equations has more variables than equations, then it has
a nontrivial solution (in fact, infinitely many).

Proof. Suppose there are m equations in n variables where n > m, and let R denote the reduced row-
echelon form of the augmented matrix. If there are r leading variables, there are n− r nonleading
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variables, and so n− r parameters. Hence, it suffices to show that r < n. But r ≤ m because R has
r leading 1s and m rows, and m < n by hypothesis. So r ≤ m < n, which gives r < n.

Note that the converse of Theorem 1.3.1 is not true: if a homogeneous system has nontrivial
solutions, it need not have more variables than equations (the system x1+x2 = 0, 2x1+2x2 = 0 has
nontrivial solutions but m = 2 = n.)

Theorem 1.3.1 is very useful in applications. The next example provides an illustration from
geometry.

Example 1.3.2

We call the graph of an equation ax2 +bxy+ cy2 +dx+ ey+ f = 0 a conic if the numbers a,
b, and c are not all zero. Show that there is at least one conic through any five points in the
plane that are not all on a line.

Solution. Let the coordinates of the five points be (p1, q1), (p2, q2), (p3, q3), (p4, q4), and
(p5, q5). The graph of ax2 +bxy+ cy2 +dx+ ey+ f = 0 passes through (pi, qi) if

ap2
i +bpiqi + cq2

i +d pi + eqi + f = 0

This gives five equations, one for each i, linear in the six variables a, b, c, d, e, and f . Hence,
there is a nontrivial solution by Theorem 1.3.1. If a = b = c = 0, the five points all lie on the
line with equation dx+ ey+ f = 0, contrary to assumption. Hence, one of a, b, c is nonzero.

Linear Combinations and Basic Solutions

As for rows, two columns are regarded as equal if they have the same number of entries and
corresponding entries are the same. Let x and y be columns with the same number of entries. As
for elementary row operations, their sum x+y is obtained by adding corresponding entries and,
if k is a number, the scalar product kx is defined by multiplying each entry of x by k. More
precisely:

If x =


x1
x2
...

xn

and y =


y1
y2
...

yn

then x+y =


x1 + y1
x2 + y2

...
xn + yn

and kx =


kx1
kx2
...

kxn

 .

A sum of scalar multiples of several columns is called a linear combination of these columns. For
example, sx+ ty is a linear combination of x and y for any choice of numbers s and t.

Example 1.3.3

If x =

[
3

−2

]
and

[
−1

1

]
then 2x+5y =

[
6

−4

]
+

[
−5

5

]
=

[
1
1

]
.
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Example 1.3.4

Let x =

 1
0
1

 , y =

 2
1
0

 and z =

 3
1
1

. If v =

 0
−1

2

 and w =

 1
1
1

, determine

whether v and w are linear combinations of x, y and z.

Solution. For v, we must determine whether numbers r, s, and t exist such that
v = rx+ sy+ tz, that is, whether 0

−1
2

= r

 1
0
1

+ s

 2
1
0

+ t

 3
1
1

=

 r+2s+3t
s+ t
r+ t


Equating corresponding entries gives a system of linear equations r+2s+3t = 0, s+ t =−1,
and r+ t = 2 for r, s, and t. By gaussian elimination, the solution is r = 2− k, s =−1− k,
and t = k where k is a parameter. Taking k = 0, we see that v = 2x−y is a linear
combination of x, y, and z.
Turning to w, we again look for r, s, and t such that w = rx+ sy+ tz; that is, 1

1
1

= r

 1
0
1

+ s

 2
1
0

+ t

 3
1
1

=

 r+2s+3t
s+ t
r+ t


leading to equations r+2s+3t = 1, s+ t = 1, and r+ t = 1 for real numbers r, s, and t. But
this time there is no solution as the reader can verify, so w is not a linear combination of x,
y, and z.

Our interest in linear combinations comes from the fact that they provide one of the best ways
to describe the general solution of a homogeneous system of linear equations. When solving such a

system with n variables x1, x2, . . . , xn, write the variables as a column6 matrix: x =


x1
x2
...

xn

. The

trivial solution is denoted 0 =


0
0
...
0

. As an illustration, the general solution in Example 1.3.1 is

x1 =−t, x2 = t, x3 = t, and x4 = 0, where t is a parameter, and we would now express this by saying

that the general solution is x =


−t

t
t
0

, where t is arbitrary.

Now let x and y be two solutions to a homogeneous system with n variables. Then any linear

6The reason for using columns will be apparent later.



1.3. Homogeneous Equations 31

combination sx+ty of these solutions turns out to be again a solution to the system. More generally:

Any linear combination of solutions to a homogeneous system is again a solution. (1.1)

In fact, suppose that a typical equation in the system is a1x1+a2x2+ · · ·+anxn = 0, and suppose

that x =


x1
x2
...

xn

, y =


y1
y2
...

yn

 are solutions. Then a1x1+a2x2+ · · ·+anxn = 0 and a1y1+a2y2+ · · ·+

anyn = 0. Hence sx+ ty =


sx1 + ty1
sx2 + ty2

...
sxn + tyn

 is also a solution because

a1(sx1 + ty1)+a2(sx2 + ty2)+ · · ·+an(sxn + tyn)

= [a1(sx1)+a2(sx2)+ · · ·+an(sxn)]+ [a1(ty1)+a2(ty2)+ · · ·+an(tyn)]

= s(a1x1 +a2x2 + · · ·+anxn)+ t(a1y1 +a2y2 + · · ·+anyn)

= s(0)+ t(0)
= 0

A similar argument shows that Statement 1.1 is true for linear combinations of more than two
solutions.

The remarkable thing is that every solution to a homogeneous system is a linear combination
of certain particular solutions and, in fact, these solutions are easily computed using the gaussian
algorithm. Here is an example.

Example 1.3.5

Solve the homogeneous system with coefficient matrix

A =

 1 −2 3 −2
−3 6 1 0
−2 4 4 −2



Solution. The reduction of the augmented matrix to reduced form is

 1 −2 3 −2 0
−3 6 1 0 0
−2 4 4 −2 0

→


1 −2 0 −1

5 0

0 0 1 −3
5 0

0 0 0 0 0


so the solutions are x1 = 2s+ 1

5t, x2 = s, x3 =
3
5 , and x4 = t by gaussian elimination. Hence
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we can write the general solution x in the matrix form

x =


x1
x2
x3
x4

=


2s+ 1

5t
s
3
5t
t

= s


2
1
0
0

+ t


1
5
0
3
5
1

= sx1 + tx2.

Here x1 =


2
1
0
0

 and x2 =


1
5
0
3
5
1

 are particular solutions determined by the gaussian

algorithm.

The solutions x1 and x2 in Example 1.3.5 are denoted as follows:

Definition 1.5 Basic Solutions
The gaussian algorithm systematically produces solutions to any homogeneous linear
system, called basic solutions, one for every parameter.

Moreover, the algorithm gives a routine way to express every solution as a linear combination of
basic solutions as in Example 1.3.5, where the general solution x becomes

x = s


2
1
0
0

+ t


1
5
0
3
5
1

= s


2
1
0
0

+ 1
5t


1
0
3
5


Hence by introducing a new parameter r = t/5 we can multiply the original basic solution x2 by 5
and so eliminate fractions. For this reason:

Convention:
Any nonzero scalar multiple of a basic solution will still be called a basic solution.

In the same way, the gaussian algorithm produces basic solutions to every homogeneous system,
one for each parameter (there are no basic solutions if the system has only the trivial solution).
Moreover every solution is given by the algorithm as a linear combination of these basic solutions
(as in Example 1.3.5). If A has rank r, Theorem 1.2.2 shows that there are exactly n−r parameters,
and so n− r basic solutions. This proves:

Theorem 1.3.2
Let A be an m×n matrix of rank r, and consider the homogeneous system in n variables
with A as coefficient matrix. Then:

1. The system has exactly n− r basic solutions, one for each parameter.
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2. Every solution is a linear combination of these basic solutions.

Example 1.3.6

Find basic solutions of the homogeneous system with coefficient matrix A, and express every
solution as a linear combination of the basic solutions, where

A =


1 −3 0 2 2

−2 6 1 2 −5
3 −9 −1 0 7

−3 9 2 6 −8



Solution. The reduction of the augmented matrix to reduced row-echelon form is
1 −3 0 2 2 0

−2 6 1 2 −5 0
3 −9 −1 0 7 0

−3 9 2 6 −8 0

→


1 −3 0 2 2 0
0 0 1 6 −1 0
0 0 0 0 0 0
0 0 0 0 0 0


so the general solution is x1 = 3r−2s−2t, x2 = r, x3 =−6s+ t, x4 = s, and x5 = t where r, s,
and t are parameters. In matrix form this is

x =


x1
x2
x3
x4
x5

=


3r−2s−2t

r
−6s+ t

s
t

= r


3
1
0
0
0

+ s


−2

0
−6

1
0

+ t


−2

0
1
0
1


Hence basic solutions are

x1 =


3
1
0
0
0

 , x2 =


−2

0
−6

1
0

 , x3 =


−2

0
1
0
1


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Exercises for 1.3

Exercise 1.3.1 Consider the following statements
about a system of linear equations with augmented
matrix A. In each case either prove the statement or
give an example for which it is false.

a. If the system is homogeneous, every solution
is trivial.

b. If the system has a nontrivial solution, it can-
not be homogeneous.

c. If there exists a trivial solution, the system is
homogeneous.

d. If the system is consistent, it must be homo-
geneous.

Now assume that the system is homogeneous.

e. If there exists a nontrivial solution, there is no
trivial solution.

f. If there exists a solution, there are infinitely
many solutions.

g. If there exist nontrivial solutions, the row-
echelon form of A has a row of zeros.

h. If the row-echelon form of A has a row of zeros,
there exist nontrivial solutions.

i. If a row operation is applied to the system,
the new system is also homogeneous.

b. False. A =

[
1 0 1 0
0 1 1 0

]

d. False. A =

[
1 0 1 1
0 1 1 0

]

f. False. A =

[
1 0 0
0 1 0

]

h. False. A =

 1 0 0
0 1 0
0 0 0



Exercise 1.3.2 In each of the following, find all
values of a for which the system has nontrivial solu-
tions, and determine all solutions in each case.

x− 2y+ z= 0
x+ ay− 3z= 0

−x+ 6y− 5z= 0

a) x+ 2y+ z= 0
x+ 3y+ 6z= 0

2x+ 3y+ az= 0

b)

x+ y− z= 0
ay− z= 0

x+ y+ az= 0

c) ax+ y+ z= 0
x+ y− z= 0
x+ y+ az= 0

d)

b. a =−3, x = 9t, y =−5t, z = t

d. a = 1, x = −t, y = t, z = 0; or a = −1, x = t,
y = 0, z = t

Exercise 1.3.3 Let x =

 2
1

−1

, y =

 1
0
1

, and

z =

 1
1

−2

. In each case, either write v as a linear

combination of x, y, and z, or show that it is not
such a linear combination.

v =

 0
1

−3

a) v =

 4
3

−4

b)

v =

 3
1
0

c) v =

 3
0
3

d)

b. Not a linear combination.

d. v = x+2y−z

Exercise 1.3.4 In each case, either express y as a
linear combination of a1, a2, and a3, or show that it
is not such a linear combination. Here:

a1 =


−1

3
0
1

 , a2 =


3
1
2
0

 , and a3 =


1
1
1
1


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y =


1
2
4
0

a) y =


−1

9
2
6

b)

b. y = 2a1 −a2 +4a3.

Exercise 1.3.5 For each of the following homo-
geneous systems, find a set of basic solutions and
express the general solution as a linear combination
of these basic solutions.

a. x1 + 2x2 − x3 + 2x4 + x5 = 0
x1 + 2x2 + 2x3 + x5 = 0

2x1 + 4x2 − 2x3 + 3x4 + x5 = 0

b. x1 + 2x2 − x3 + x4 + x5 = 0
−x1 − 2x2 + 2x3 + x5 = 0
−x1 − 2x2 + 3x3 + x4 + 3x5 = 0

c. x1 + x2 − x3 + 2x4 + x5 = 0
x1 + 2x2 − x3 + x4 + x5 = 0

2x1 + 3x2 − x3 + 2x4 + x5 = 0
4x1 + 5x2 − 2x3 + 5x4 + 2x5 = 0

d. x1 + x2 − 2x3 − 2x4 + 2x5 = 0
2x1 + 2x2 − 4x3 − 4x4 + x5 = 0
x1 − x2 + 2x3 + 4x4 + x5 = 0

−2x1 − 4x2 + 8x3 + 10x4 + x5 = 0

b. r


−2

1
0
0
0

+ s


−2

0
−1

1
0

+ t


−3

0
−2

0
1



d. s


0
2
1
0
0

+ t


−1

3
0
1
0


Exercise 1.3.6

a. Does Theorem 1.3.1 imply that the system{
−z+3y= 0
2x−6y= 0

has nontrivial solutions? Ex-

plain.

b. Show that the converse to Theorem 1.3.1 is
not true. That is, show that the existence of
nontrivial solutions does not imply that there
are more variables than equations.

b. The system in (a) has nontrivial solutions.

Exercise 1.3.7 In each case determine how many
solutions (and how many parameters) are possible
for a homogeneous system of four linear equations
in six variables with augmented matrix A. Assume
that A has nonzero entries. Give all possibilities.

Rank A = 2.a) Rank A = 1.b)
A has a row of zeros.c)
The row-echelon form of A has a row of zeros.d)

b. By Theorem 1.2.2, there are n− r = 6−1 = 5
parameters and thus infinitely many solutions.

d. If R is the row-echelon form of A, then R has
a row of zeros and 4 rows in all. Hence R
has r = rank A = 1, 2, or 3. Thus there are
n− r = 6− r = 5, 4, or 3 parameters and thus
infinitely many solutions.

Exercise 1.3.8 The graph of an equation ax+by+
cz = 0 is a plane through the origin (provided that
not all of a, b, and c are zero). Use Theorem 1.3.1
to show that two planes through the origin have a
point in common other than the origin (0, 0, 0).

Exercise 1.3.9

a. Show that there is a line through any pair of
points in the plane. [Hint: Every line has
equation ax+by+c = 0, where a, b, and c are
not all zero.]

b. Generalize and show that there is a plane
ax+ by+ cz+ d = 0 through any three points
in space.
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b. That the graph of ax + by + cz = d contains
three points leads to 3 linear equations homo-
geneous in variables a, b, c, and d. Apply
Theorem 1.3.1.

Exercise 1.3.10 The graph of

a(x2 + y2)+bx+ cy+d = 0

is a circle if a 6= 0. Show that there is a circle through
any three points in the plane that are not all on a
line.

Exercise 1.3.11 Consider a homogeneous system
of linear equations in n variables, and suppose that
the augmented matrix has rank r. Show that the
system has nontrivial solutions if and only if n > r.

There are n−r parameters (Theorem 1.2.2), so there
are nontrivial solutions if and only if n− r > 0.

Exercise 1.3.12 If a consistent (possibly non-
homogeneous) system of linear equations has more
variables than equations, prove that it has more than
one solution.
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Supplementary Exercises for Chapter 1

Exercise 1.1 We show in Chapter 4 that the graph
of an equation ax+ by+ cz = d is a plane in space
when not all of a, b, and c are zero.

a. By examining the possible positions of planes
in space, show that three equations in three
variables can have zero, one, or infinitely many
solutions.

b. Can two equations in three variables have a
unique solution? Give reasons for your an-
swer.

b. No. If the corresponding planes are parallel
and distinct, there is no solution. Otherwise
they either coincide or have a whole common
line of solutions, that is, at least one parame-
ter.

Exercise 1.2 Find all solutions to the following
systems of linear equations.

a. x1 + x2 + x3 − x4 = 3
3x1 + 5x2 − 2x3 + x4 = 1

−3x1 − 7x2 + 7x3 − 5x4 = 7
x1 + 3x2 − 4x3 + 3x4 =−5

b. x1 + 4x2 − x3 + x4 = 2
3x1 + 2x2 + x3 + 2x4 = 5
x1 − 6x2 + 3x3 = 1
x1 + 14x2 − 5x3 + 2x4 = 3

b.
x1 =

1
10(−6s−6t +16), x2 =

1
10(4s− t +1), x3 =

s, x4 = t

Exercise 1.3 In each case find (if possible) condi-
tions on a, b, and c such that the system has zero,
one, or infinitely many solutions.

x+ 2y− 4z= 4
3x− y+ 13z= 2
4x+ y+ a2z= a+3

a) x+ y+ 3z= a
ax+ y+ 5z= 4
x+ ay+ 4z= a

b)

b. If a= 1, no solution. If a= 2, x= 2−2t, y=−t,
z = t. If a 6= 1 and a 6= 2, the unique solution
is x = 8−5a

3(a−1) , y = −2−a
3(a−1) , z = a+2

3

Exercise 1.4 Show that any two rows of
a matrix can be interchanged by elementary
row transformations of the other two types.[

R1
R2

]
→[

R1 +R2
R2

]
→
[

R1 +R2
−R1

]
→
[

R2
−R1

]
→
[

R2
R1

]
Exercise 1.5 If ad 6= bc, show that

[
a b
c d

]
has

reduced row-echelon form
[

1 0
0 1

]
.

Exercise 1.6 Find a, b, and c so that the system

x+ ay+ cz= 0
bx+ cy− 3z= 1
ax+ 2y+ bz= 5

has the solution x = 3, y = −1, z = 2.

a = 1, b = 2, c =−1

Exercise 1.7 Solve the system

x+ 2y+ 2z=−3
2x+ y+ z=−4

x− y+ iz= i

where i2 =−1. [See Appendix ??.]

Exercise 1.8 Show that the real system
x+ y+ z= 5

2x− y− z= 1
−3x+ 2y+ 2z= 0

has a complex solution: x = 2, y = i, z = 3 −
i where i2 = −1. Explain. What happens
when such a real system has a unique solution?
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The (real) solution is x = 2, y = 3− t, z = t where t
is a parameter. The given complex solution occurs
when t = 3− i is complex. If the real system has
a unique solution, that solution is real because the
coefficients and constants are all real.

Exercise 1.9 A man is ordered by his doctor to
take 5 units of vitamin A, 13 units of vitamin B, and
23 units of vitamin C each day. Three brands of vi-
tamin pills are available, and the number of units of
each vitamin per pill are shown in the accompanying
table.

Vitamin
Brand A B C

1 1 2 4
2 1 1 3
3 0 1 1

a. Find all combinations of pills that provide ex-
actly the required amount of vitamins (no par-
tial pills allowed).

b. If brands 1, 2, and 3 cost 3¢, 2¢, and 5¢
per pill, respectively, find the least expensive
treatment.

b. 5 of brand 1, 0 of brand 2, 3 of brand 3

Exercise 1.10 A restaurant owner plans to use
x tables seating 4, y tables seating 6, and z tables
seating 8, for a total of 20 tables. When fully occu-
pied, the tables seat 108 customers. If only half of
the x tables, half of the y tables, and one-fourth of

the z tables are used, each fully occupied, then 46
customers will be seated. Find x, y, and z.

Exercise 1.11

a. Show that a matrix with two rows and two
columns that is in reduced row-echelon form
must have one of the following forms:[

1 0
0 1

][
0 1
0 0

][
0 0
0 0

][
1 ∗
0 0

]
[Hint: The leading 1 in the first row must be
in column 1 or 2 or not exist.]

b. List the seven reduced row-echelon forms for
matrices with two rows and three columns.

c. List the four reduced row-echelon forms for
matrices with three rows and two columns.

Exercise 1.12 An amusement park charges $7 for
adults, $2 for youths, and $0.50 for children. If 150
people enter and pay a total of $100, find the num-
bers of adults, youths, and children. [Hint: These
numbers are nonnegative integers.]

Exercise 1.13 Solve the following system of equa-
tions for x and y.

x2 + xy− y2 = 1
2x2 − xy+ 3y2 = 13
x2 + 3xy+ 2y2 = 0

[Hint: These equations are linear in the new vari-
ables x1 = x2, x2 = xy, and x3 = y2.]
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In the study of systems of linear equations in Chapter 1, we found it convenient to manipulate the
augmented matrix of the system. Our aim was to reduce it to row-echelon form (using elementary
row operations) and hence to write down all solutions to the system. In the present chapter we
consider matrices for their own sake. While some of the motivation comes from linear equations,
it turns out that matrices can be multiplied and added and so form an algebraic system somewhat
analogous to the real numbers. This “matrix algebra” is useful in ways that are quite different from
the study of linear equations. For example, the geometrical transformations obtained by rotating the
euclidean plane about the origin can be viewed as multiplications by certain 2×2 matrices. These
“matrix transformations” are an important tool in geometry and, in turn, the geometry provides a
“picture” of the matrices. Furthermore, matrix algebra has many other applications, some of which
will be explored in this chapter. This subject is quite old and was first studied systematically in
1858 by Arthur Cayley.1

1Arthur Cayley (1821-1895) showed his mathematical talent early and graduated from Cambridge in 1842 as
senior wrangler. With no employment in mathematics in view, he took legal training and worked as a lawyer while
continuing to do mathematics, publishing nearly 300 papers in fourteen years. Finally, in 1863, he accepted the
Sadlerian professorship in Cambridge and remained there for the rest of his life, valued for his administrative and
teaching skills as well as for his scholarship. His mathematical achievements were of the first rank. In addition
to originating matrix theory and the theory of determinants, he did fundamental work in group theory, in higher-
dimensional geometry, and in the theory of invariants. He was one of the most prolific mathematicians of all time
and produced 966 papers.

39
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2.1 Matrix Addition, Scalar Multiplication, and
Transposition

A rectangular array of numbers is called a matrix (the plural is matrices), and the numbers are
called the entries of the matrix. Matrices are usually denoted by uppercase letters: A, B, C, and
so on. Hence,

A =

[
1 2 −1
0 5 6

]
B =

[
1 −1
0 2

]
C =

 1
3
2


are matrices. Clearly matrices come in various shapes depending on the number of rows and
columns. For example, the matrix A shown has 2 rows and 3 columns. In general, a matrix with
m rows and n columns is referred to as an m× n matrix or as having size m× n. Thus matrices
A, B, and C above have sizes 2×3, 2×2, and 3×1, respectively. A matrix of size 1×n is called a
row matrix, whereas one of size m×1 is called a column matrix. Matrices of size n×n for some
n are called square matrices.

Each entry of a matrix is identified by the row and column in which it lies. The rows are
numbered from the top down, and the columns are numbered from left to right. Then the (i,,, j)-
entry of a matrix is the number lying simultaneously in row i and column j. For example,

The (1, 2)-entry of
[

1 −1
0 1

]
is −1.

The (2, 3)-entry of
[

1 2 −1
0 5 6

]
is 6.

A special notation is commonly used for the entries of a matrix. If A is an m×n matrix, and if
the (i, j)-entry of A is denoted as ai j, then A is displayed as follows:

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
... ... ... ...

am1 am2 am3 · · · amn


This is usually denoted simply as A =

[
ai j
]
. Thus ai j is the entry in row i and column j of A. For

example, a 3×4 matrix in this notation is written

A =

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34


It is worth pointing out a convention regarding rows and columns: Rows are mentioned before
columns. For example:

• If a matrix has size m×n, it has m rows and n columns.

• If we speak of the (i, j)-entry of a matrix, it lies in row i and column j.
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• If an entry is denoted ai j, the first subscript i refers to the row and the second subscript j to
the column in which ai j lies.

Two points (x1, y1) and (x2, y2) in the plane are equal if and only if2 they have the same
coordinates, that is x1 = x2 and y1 = y2. Similarly, two matrices A and B are called equal (written
A = B) if and only if:

1. They have the same size.

2. Corresponding entries are equal.

If the entries of A and B are written in the form A =
[
ai j
]
, B =

[
bi j
]
, described earlier, then the

second condition takes the following form:

A =
[
ai j
]
=
[
bi j
]

means ai j = bi j for all i and j

Example 2.1.1

Given A =

[
a b
c d

]
, B =

[
1 2 −1
3 0 1

]
and C =

[
1 0

−1 2

]
discuss the possibility that

A = B, B =C, A =C.

Solution. A = B is impossible because A and B are of different sizes: A is 2×2 whereas B is
2×3. Similarly, B =C is impossible. But A =C is possible provided that corresponding
entries are equal:

[
a b
c d

]
=

[
1 0

−1 2

]
means a = 1, b = 0, c =−1, and d = 2.

Matrix Addition

Definition 2.1 Matrix Addition
If A and B are matrices of the same size, their sum A+B is the matrix formed by adding
corresponding entries.

If A =
[
ai j
]

and B =
[
bi j
]
, this takes the form

A+B =
[
ai j +bi j

]
Note that addition is not defined for matrices of different sizes.

2If p and q are statements, we say that p implies q if q is true whenever p is true. Then “p if and only if q” means
that both p implies q and q implies p. See Appendix ?? for more on this.
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Example 2.1.2

If A =

[
2 1 3

−1 2 0

]
and B =

[
1 1 −1
2 0 6

]
, compute A+B.

Solution.

A+B =

[
2+1 1+1 3−1

−1+2 2+0 0+6

]
=

[
3 2 2
1 2 6

]

Example 2.1.3

Find a, b, and c if
[

a b c
]
+
[

c a b
]
=
[

3 2 −1
]
.

Solution. Add the matrices on the left side to obtain[
a+ c b+a c+b

]
=
[

3 2 −1
]

Because corresponding entries must be equal, this gives three equations: a+c = 3, b+a = 2,
and c+b =−1. Solving these yields a = 3, b =−1, c = 0.

If A, B, and C are any matrices of the same size, then
A+B = B+A (commutative law)

A+(B+C) = (A+B)+C (associative law)
In fact, if A =

[
ai j
]

and B =
[
bi j
]
, then the (i, j)-entries of A+B and B+A are, respectively, ai j +bi j

and bi j +ai j. Since these are equal for all i and j, we get
A+B =

[
ai j +bi j

]
=
[

bi j +ai j
]
= B+A

The associative law is verified similarly.
The m×n matrix in which every entry is zero is called the m×n zero matrix and is denoted

as 0 (or 0mn if it is important to emphasize the size). Hence,
0+X = X

holds for all m×n matrices X . The negative of an m×n matrix A (written −A) is defined to be the
m×n matrix obtained by multiplying each entry of A by −1. If A =

[
ai j
]
, this becomes −A =

[
−ai j

]
.

Hence,
A+(−A) = 0

holds for all matrices A where, of course, 0 is the zero matrix of the same size as A.
A closely related notion is that of subtracting matrices. If A and B are two m×n matrices, their

difference A−B is defined by
A−B = A+(−B)

Note that if A =
[
ai j
]

and B =
[
bi j
]
, then

A−B =
[
ai j
]
+
[
−bi j

]
=
[
ai j −bi j

]
is the m×n matrix formed by subtracting corresponding entries.
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Example 2.1.4

Let A =

[
3 −1 0
1 2 −4

]
, B =

[
1 −1 1

−2 0 6

]
, C =

[
1 0 −2
3 1 1

]
. Compute −A, A−B, and

A+B−C.

Solution.

−A =

[
−3 1 0
−1 −2 4

]
A−B =

[
3−1 −1− (−1) 0−1
1− (−2) 2−0 −4−6

]
=

[
2 0 −1
3 2 −10

]
A+B−C =

[
3+1−1 −1−1−0 0+1− (−2)
1−2−3 2+0−1 −4+6−1

]
=

[
3 −2 3

−4 1 1

]

Example 2.1.5

Solve
[

3 2
−1 1

]
+X =

[
1 0

−1 2

]
where X is a matrix.

Solution. We solve a numerical equation a+ x = b by subtracting the number a from both
sides to obtain x = b−a. This also works for matrices. To solve

[
3 2

−1 1

]
+X =

[
1 0

−1 2

]
simply subtract the matrix

[
3 2

−1 1

]
from both sides to get

X =

[
1 0

−1 2

]
−
[

3 2
−1 1

]
=

[
1−3 0−2

−1− (−1) 2−1

]
=

[
−2 −2

0 1

]
The reader should verify that this matrix X does indeed satisfy the original equation.

The solution in Example 2.1.5 solves the single matrix equation A+X = B directly via matrix
subtraction: X = B−A. This ability to work with matrices as entities lies at the heart of matrix
algebra.

It is important to note that the sizes of matrices involved in some calculations are often deter-
mined by the context. For example, if

A+C =

[
1 3 −1
2 0 1

]
then A and C must be the same size (so that A+C makes sense), and that size must be 2×3 (so
that the sum is 2×3). For simplicity we shall often omit reference to such facts when they are clear
from the context.
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Scalar Multiplication

In gaussian elimination, multiplying a row of a matrix by a number k means multiplying every entry
of that row by k.

Definition 2.2 Matrix Scalar Multiplication

More generally, if A is any matrix and k is any number, the scalar multiple kA is the
matrix obtained from A by multiplying each entry of A by k.

If A =
[
ai j
]
, this is

kA =
[
kai j
]

Thus 1A = A and (−1)A =−A for any matrix A.
The term scalar arises here because the set of numbers from which the entries are drawn is

usually referred to as the set of scalars. We have been using real numbers as scalars, but we could
equally well have been using complex numbers.

Example 2.1.6

If A =

[
3 −1 4
2 0 1

]
and B =

[
1 2 −1
0 3 2

]
compute 5A, 1

2B, and 3A−2B.

Solution.

5A =

[
15 −5 20
10 0 30

]
, 1

2B =

[ 1
2 1 −1

2
0 3

2 1

]
3A−2B =

[
9 −3 12
6 0 18

]
−
[

2 4 −2
0 6 4

]
=

[
7 −7 14
6 −6 14

]

If A is any matrix, note that kA is the same size as A for all scalars k. We also have

0A = 0 and k0 = 0

because the zero matrix has every entry zero. In other words, kA = 0 if either k = 0 or A = 0. The
converse of this statement is also true, as Example 2.1.7 shows.

Example 2.1.7

If kA = 0, show that either k = 0 or A = 0.

Solution. Write A =
[
ai j
]

so that kA = 0 means kai j = 0 for all i and j. If k = 0, there is
nothing to do. If k 6= 0, then kai j = 0 implies that ai j = 0 for all i and j; that is, A = 0.

For future reference, the basic properties of matrix addition and scalar multiplication are listed
in Theorem 2.1.1.
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Theorem 2.1.1
Let A, B, and C denote arbitrary m×n matrices where m and n are fixed. Let k and p
denote arbitrary real numbers. Then

1. A+B = B+A.

2. A+(B+C) = (A+B)+C.

3. There is an m×n matrix 0, such that 0+A = A for each A.

4. For each A there is an m×n matrix, −A, such that A+(−A) = 0.

5. k(A+B) = kA+ kB.

6. (k+ p)A = kA+ pA.

7. (kp)A = k(pA).

8. 1A = A.

Proof. Properties 1–4 were given previously. To check Property 5, let A=
[
ai j
]

and B=
[
bi j
]

denote
matrices of the same size. Then A+B =

[
ai j +bi j

]
, as before, so the (i, j)-entry of k(A+B) is

k(ai j +bi j) = kai j + kbi j

But this is just the (i, j)-entry of kA+ kB, and it follows that k(A+B) = kA+ kB. The other
Properties can be similarly verified; the details are left to the reader.

The Properties in Theorem 2.1.1 enable us to do calculations with matrices in much the same
way that numerical calculations are carried out. To begin, Property 2 implies that the sum

(A+B)+C = A+(B+C)

is the same no matter how it is formed and so is written as A+B+C. Similarly, the sum

A+B+C+D

is independent of how it is formed; for example, it equals both (A+B)+(C+D) and A+[B+(C+D)].
Furthermore, property 1 ensures that, for example,

B+D+A+C = A+B+C+D

In other words, the order in which the matrices are added does not matter. A similar remark applies
to sums of five (or more) matrices.

Properties 5 and 6 in Theorem 2.1.1 are called distributive laws for scalar multiplication, and
they extend to sums of more than two terms. For example,

k(A+B−C) = kA+ kB− kC

(k+ p−m)A = kA+ pA−mA
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Similar observations hold for more than three summands. These facts, together with properties 7
and 8, enable us to simplify expressions by collecting like terms, expanding, and taking common
factors in exactly the same way that algebraic expressions involving variables and real numbers are
manipulated. The following example illustrates these techniques.

Example 2.1.8

Simplify 2(A+3C)−3(2C−B)−3 [2(2A+B−4C)−4(A−2C)] where A, B, and C are all
matrices of the same size.

Solution. The reduction proceeds as though A, B, and C were variables.

2(A+3C)−3(2C−B)−3 [2(2A+B−4C)−4(A−2C)]

= 2A+6C−6C+3B−3 [4A+2B−8C−4A+8C]

= 2A+3B−3 [2B]
= 2A−3B

Transpose of a Matrix

Many results about a matrix A involve the rows of A, and the corresponding result for columns is
derived in an analogous way, essentially by replacing the word row by the word column throughout.
The following definition is made with such applications in mind.

Definition 2.3 Transpose of a Matrix

If A is an m×n matrix, the transpose of A, written AT , is the n×m matrix whose rows are
just the columns of A in the same order.

In other words, the first row of AT is the first column of A (that is it consists of the entries of column
1 in order). Similarly the second row of AT is the second column of A, and so on.

Example 2.1.9

Write down the transpose of each of the following matrices.

A =

 1
3
2

 B =
[

5 2 6
]

C =

 1 2
3 4
5 6

 D =

 3 1 −1
1 3 2

−1 2 1



Solution.

AT =
[

1 3 2
]

, BT =

 5
2
6

 , CT =

[
1 3 5
2 4 6

]
, and DT = D.
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If A =
[
ai j
]

is a matrix, write AT =
[
bi j
]
. Then bi j is the jth element of the ith row of AT and

so is the jth element of the ith column of A. This means bi j = a ji, so the definition of AT can be
stated as follows:

If A =
[
ai j
]
, then AT =

[
a ji
]

. (2.1)

This is useful in verifying the following properties of transposition.

Theorem 2.1.2
Let A and B denote matrices of the same size, and let k denote a scalar.

1. If A is an m×n matrix, then AT is an n×m matrix.

2. (AT )T = A.

3. (kA)T = kAT .

4. (A+B)T = AT +BT .

Proof. Property 1 is part of the definition of AT , and Property 2 follows from (2.1). As to Property
3: If A =

[
ai j
]
, then kA =

[
kai j
]
, so (2.1) gives

(kA)T =
[
ka ji
]
= k
[
a ji
]
= kAT

Finally, if B =
[
bi j
]
, then A+B =

[
ci j
]

where ci j = ai j +bi j Then (2.1) gives Property 4:

(A+B)T =
[
ci j
]T

=
[
c ji
]
=
[
a ji +b ji

]
=
[
a ji
]
+
[
b ji
]
= AT +BT

There is another useful way to think of transposition. If A =
[
ai j
]

is an m× n matrix, the
elements a11, a22, a33, . . . are called the main diagonal of A. Hence the main diagonal extends
down and to the right from the upper left corner of the matrix A; it is shaded in the following
examples:  a11 a12

a21 a22
a31 a32

[ a11 a12 a13
a21 a22 a23

] a11 a12 a13
a21 a22 a23
a31 a32 a33

[ a11
a21

]
Thus forming the transpose of a matrix A can be viewed as “flipping” A about its main diagonal,

or as “rotating” A through 180◦ about the line containing the main diagonal. This makes Property
2 in Theorem 2.1.2 transparent.

Example 2.1.10

Solve for A if
(

2AT −3
[

1 2
−1 1

])T

=

[
2 3

−1 2

]
.
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Solution. Using Theorem 2.1.2, the left side of the equation is(
2AT −3

[
1 2

−1 1

])T

= 2
(
AT)T −3

[
1 2

−1 1

]T

= 2A−3
[

1 −1
2 1

]
Hence the equation becomes

2A−3
[

1 −1
2 1

]
=

[
2 3

−1 2

]

Thus 2A =

[
2 3

−1 2

]
+3
[

1 −1
2 1

]
=

[
5 0
5 5

]
, so finally A = 1

2

[
5 0
5 5

]
= 5

2

[
1 0
1 1

]
.

Note that Example 2.1.10 can also be solved by first transposing both sides, then solving for AT ,
and so obtaining A = (AT )T . The reader should do this.

The matrix D =

[
1 2
2 5

]
in Example 2.1.9 has the property that D = DT . Such matrices are

important; a matrix A is called symmetric if A = AT . A symmetric matrix A is necessarily square
(if A is m×n, then AT is n×m, so A = AT forces n = m). The name comes from the fact that these
matrices exhibit a symmetry about the main diagonal. That is, entries that are directly across the
main diagonal from each other are equal.

For example,

 a b c
b′ d e
c′ e′ f

 is symmetric when b = b′, c = c′, and e = e′.

Example 2.1.11

If A and B are symmetric n×n matrices, show that A+B is symmetric.

Solution. We have AT = A and BT = B, so, by Theorem 2.1.2, we have
(A+B)T = AT +BT = A+B. Hence A+B is symmetric.

Example 2.1.12

Suppose a square matrix A satisfies A = 2AT . Show that necessarily A = 0.

Solution. If we iterate the given equation, Theorem 2.1.2 gives

A = 2AT = 2
[
2AT ]T = 2

[
2(AT )T ]= 4A

Subtracting A from both sides gives 3A = 0, so A = 1
3(0) = 0.
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Exercises for 2.1

Exercise 2.1.1 Find a, b, c, and d if

a.
[

a b
c d

]
=

[
c−3d −d
2a+d a+b

]

b.
[

a−b b− c
c−d d −a

]
= 2

[
1 1

−3 1

]

c. 3
[

a
b

]
+2
[

b
a

]
=

[
1
2

]

d.
[

a b
c d

]
=

[
b c
d a

]

b. (a b c d) = (−2, −4, −6, 0)+ t(1, 1, 1, 1),
t arbitrary

d. a = b = c = d = t, t arbitrary

Exercise 2.1.2 Compute the following:[
3 2 1
5 1 0

]
−5
[

3 0 −2
1 −1 2

]
a)

3
[

3
−1

]
−5
[

6
2

]
+7
[

1
−1

]
b) [

−2 1
3 2

]
−4
[

1 −2
0 −1

]
+3
[

2 −3
−1 −2

]
c) [

3 −1 2
]
−2
[

9 3 4
]
+
[

3 11 −6
]

d) [
1 −5 4 0
2 1 0 6

]T

e)

 0 −1 2
1 0 −4

−2 4 0

T

f)

[
3 −1
2 1

]
−2
[

1 −2
1 1

]T

g)

3
[

2 1
−1 0

]T

−2
[

1 −1
2 3

]
h)

b.
[
−14
−20

]
d. (−12, 4, −12)

f.

 0 1 −2
−1 0 4

2 −4 0


h.
[

4 −1
−1 −6

]

Exercise 2.1.3 Let A =

[
2 1
0 −1

]
,

B =

[
3 −1 2
0 1 4

]
, C =

[
3 −1
2 0

]
,

D=

 1 3
−1 0

1 4

, and E =

[
1 0 1
0 1 0

]
. Compute the

following (where possible).

3A−2Ba) 5Cb)
3ETc) B+Dd)
4AT −3Ce) (A+C)Tf)
2B−3Eg) A−Dh)
(B−2E)Ti)

b.
[

15 −5
10 0

]
d. Impossible

f.
[

5 2
0 −1

]
h. Impossible

Exercise 2.1.4 Find A if:

a. 5A−
[

1 0
2 3

]
= 3A−

[
5 2
6 1

]

b. 3A−
[

2
1

]
= 5A−2

[
3
0

]

b.
[

4
1
2

]
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Exercise 2.1.5 Find A in terms of B if:

A+B = 3A+2Ba) 2A−B = 5(A+2B)b)

b. A =−11
3 B

Exercise 2.1.6 If X , Y , A, and B are matrices of the
same size, solve the following systems of equations
to obtain X and Y in terms of A and B.

5X +3Y = A
2X +Y = B

a) 4X +3Y = A
5X +4Y = B

b)

b. X = 4A−3B, Y = 4B−5A

Exercise 2.1.7 Find all matrices X and Y such
that:

3X−2Y =
[

3 −1
]

a) 2X −5Y =
[

1 2
]

b)

b. Y = (s, t), X = 1
2(1+ 5s, 2+ 5t); s and t arbi-

trary

Exercise 2.1.8 Simplify the following expressions
where A, B, and C are matrices.

a. 2 [9(A−B)+7(2B−A)]
−2 [3(2B+A)−2(A+3B)−5(A+B)]

b. 5 [3(A−B+2C)−2(3C−B)−A]
+2 [3(3A−B+C)+2(B−2A)−2C]

b. 20A−7B+2C

Exercise 2.1.9 If A is any 2×2 matrix, show that:

a. A = a
[

1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+

d
[

0 0
0 1

]
for some numbers a, b, c, and d.

b. A = p
[

1 0
0 1

]
+ q

[
1 1
0 0

]
+ r

[
1 0
1 0

]
+

s
[

0 1
1 0

]
for some numbers p, q, r, and s.

b. If A =

[
a b
c d

]
, then (p, q, r, s) = 1

2(2d, a+

b− c−d, a−b+ c−d, −a+b+ c+d).

Exercise 2.1.10 Let A =
[

1 1 −1
]
,

B =
[

0 1 2
]
, and C =

[
3 0 1

]
. If

rA+ sB+ tC = 0 for some scalars r, s, and t, show
that necessarily r = s = t = 0.

Exercise 2.1.11

a. If Q+A = A holds for every m× n matrix A,
show that Q = 0mn.

b. If A is an m×n matrix and A+A′ = 0mn, show
that A′ =−A.

b. If A+A′ = 0 then −A = −A+ 0 = −A+(A+
A′) = (−A+A)+A′ = 0+A′ = A′

Exercise 2.1.12 If A denotes an m×n matrix, show
that A =−A if and only if A = 0.

Exercise 2.1.13 A square matrix is called a diag-
onal matrix if all the entries off the main diagonal
are zero. If A and B are diagonal matrices, show that
the following matrices are also diagonal.

A+Ba) A−Bb)
kA for any number kc)

b. Write A = diag (a1, . . . , an), where a1, . . . , an

are the main diagonal entries. If B =
diag (b1, . . . , bn) then kA = diag (ka1, . . . , kan).

Exercise 2.1.14 In each case determine all s and
t such that the given matrix is symmetric:
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[
1 s

−2 t

]
a)

[
s t
st 1

]
b) s 2s st

t −1 s
t s2 s

c)

 2 s t
2s 0 s+ t
3 3 t

d)

b. s = 1 or t = 0

d. s = 0, and t = 3

Exercise 2.1.15 In each case find the matrix A.

a.
(

A+3
[

1 −1 0
1 2 4

])T

=

 2 1
0 5
3 8


b.
(

3AT +2
[

1 0
0 2

])T

=

[
8 0
3 1

]
c.
(
2A−3

[
1 2 0

])T
= 3AT +

[
2 1 −1

]T
d.
(

2AT −5
[

1 0
−1 2

])T

= 4A−9
[

1 1
−1 0

]

b.
[

2 0
1 −1

]

d.
[

2 7
−9

2 −5

]
Exercise 2.1.16 Let A and B be symmetric (of
the same size). Show that each of the following is
symmetric.

(A−B)a) kA for any scalar kb)

b. A=AT , so using Theorem 2.1.2, (kA)T = kAT =
kA.

Exercise 2.1.17 Show that A+AT and AAT are
symmetric for any square matrix A.
Exercise 2.1.18 If A is a square matrix and
A = kAT where k 6=±1, show that A = 0.
Exercise 2.1.19 In each case either show that the
statement is true or give an example showing it is
false.

a. If A+B = A+C, then B and C have the same
size.

b. If A+B = 0, then B = 0.

c. If the (3, 1)-entry of A is 5, then the (1, 3)-
entry of AT is −5.

d. A and AT have the same main diagonal for ev-
ery matrix A.

e. If B is symmetric and AT = 3B, then A = 3B.

f. If A and B are symmetric, then kA+mB is sym-
metric for any scalars k and m.

b. False. Take B =−A for any A 6= 0.

d. True. Transposing fixes the main diagonal.

f. True. (kA + mB)T = (kA)T + (mB)T = kAT +
mBT = kA+mB

Exercise 2.1.20 A square matrix W is called
skew-symmetric if W T =−W . Let A be any square
matrix.

a. Show that A−AT is skew-symmetric.

b. Find a symmetric matrix S and a skew-
symmetric matrix W such that A = S+W .

c. Show that S and W in part (b) are uniquely
determined by A.

c. Suppose A = S +W , where S = ST and W =
−W T . Then AT = ST +W T = S−W , so A+AT =
2S and A−AT = 2W . Hence S = 1

2(A+AT ) and
W = 1

2(A−AT ) are uniquely determined by A.

Exercise 2.1.21 If W is skew-symmetric (Exer-
cise 2.1.20), show that the entries on the main diag-
onal are zero.

Exercise 2.1.22 Prove the following parts of The-
orem 2.1.1.
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(k+ p)A = kA+ pAa) (kp)A = k(pA)b)

b. If A = [ai j] then (kp)A = [(kp)ai j] = [k(pai j)] =
k [pai j] = k(pA).

Exercise 2.1.23 Let A, A1, A2, . . . , An denote ma-
trices of the same size. Use induction on n to verify
the following extensions of properties 5 and 6 of The-
orem 2.1.1.

a. k(A1 +A2 + · · ·+An) = kA1 + kA2 + · · ·+ kAn for
any number k

b. (k1 + k2 + · · ·+ kn)A = k1A+ k2A+ · · ·+ knA for
any numbers k1, k2, . . . , kn

Exercise 2.1.24 Let A be a square matrix. If
A = pBT and B = qAT for some matrix B and num-
bers p and q, show that either A = 0 = B or pq = 1.
[Hint: Example 2.1.7.]
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2.2 Matrix-Vector Multiplication

Up to now we have used matrices to solve systems of linear equations by manipulating the rows of
the augmented matrix. In this section we introduce a different way of describing linear systems that
makes more use of the coefficient matrix of the system and leads to a useful way of “multiplying”
matrices.

Vectors

It is a well-known fact in analytic geometry that two points in the plane with coordinates (a1, a2)
and (b1, b2) are equal if and only if a1 = b1 and a2 = b2. Moreover, a similar condition applies to
points (a1, a2, a3) in space. We extend this idea as follows.

An ordered sequence (a1, a2, . . . , an) of real numbers is called an ordered n-tuple. The word
“ordered” here reflects our insistence that two ordered n-tuples are equal if and only if corresponding
entries are the same. In other words,

(a1, a2, . . . , an) = (b1, b2, . . . , bn) if and only if a1 = b1, a2 = b2, . . . , and an = bn.

Thus the ordered 2-tuples and 3-tuples are just the ordered pairs and triples familiar from geometry.

Definition 2.4 The set Rn of ordered n-tuples of real numbers

Let R denote the set of all real numbers. The set of all ordered n-tuples from R has a
special notation:

Rn denotes the set of all ordered n-tuples of real numbers.

There are two commonly used ways to denote the n-tuples in Rn: As rows (r1, r2, . . . , rn) or

columns


r1
r2
...

rn

; the notation we use depends on the context. In any event they are called vectors

or n-vectors and will be denoted using bold type such as x or v. For example, an m×n matrix A
will be written as a row of columns:

A =
[

a1 a2 · · · an
]

where a j denotes column j of A for each j.

If x and y are two n-vectors in Rn, it is clear that their matrix sum x+y is also in Rn as is the
scalar multiple kx for any real number k. We express this observation by saying that Rn is closed
under addition and scalar multiplication. In particular, all the basic properties in Theorem 2.1.1
are true of these n-vectors. These properties are fundamental and will be used frequently below
without comment. As for matrices in general, the n×1 zero matrix is called the zero n-vector in
Rn and, if x is an n-vector, the n-vector −x is called the negative x.

Of course, we have already encountered these n-vectors in Section 1.3 as the solutions to systems
of linear equations with n variables. In particular we defined the notion of a linear combination



54 Matrix Algebra

of vectors and showed that a linear combination of solutions to a homogeneous system is again a
solution. Clearly, a linear combination of n-vectors in Rn is again in Rn, a fact that we will be using.

Matrix-Vector Multiplication

Given a system of linear equations, the left sides of the equations depend only on the coefficient
matrix A and the column x of variables, and not on the constants. This observation leads to a
fundamental idea in linear algebra: We view the left sides of the equations as the “product” Ax of
the matrix A and the vector x. This simple change of perspective leads to a completely new way of
viewing linear systems—one that is very useful and will occupy our attention throughout this book.

To motivate the definition of the “product” Ax, consider first the following system of two equa-
tions in three variables:

ax1 + bx2 + cx3 = b1
a′x1 + b′x2 + c′x3 = b1

(2.2)

and let A=

[
a b c
a′ b′ c′

]
, x=

 x1
x2
x3

, b=

[
b1
b2

]
denote the coefficient matrix, the variable matrix,

and the constant matrix, respectively. The system (2.2) can be expressed as a single vector equation[
ax1 + bx2 + cx3
a′x1 + b′x2 + c′x3

]
=

[
b1
b2

]
which in turn can be written as follows:

x1

[
a
a′

]
+ x2

[
b
b′

]
+ x3

[
c
c′

]
=

[
b1
b2

]
Now observe that the vectors appearing on the left side are just the columns

a1 =

[
a
a′

]
, a2 =

[
b
b′

]
, and a3 =

[
c
c′

]
of the coefficient matrix A. Hence the system (2.2) takes the form

x1a1 + x2a2 + x3a3 = b (2.3)

This shows that the system (2.2) has a solution if and only if the constant matrix b is a linear
combination3 of the columns of A, and that in this case the entries of the solution are the coefficients
x1, x2, and x3 in this linear combination.

Moreover, this holds in general. If A is any m×n matrix, it is often convenient to view A as a
row of columns. That is, if a1, a2, . . . , an are the columns of A, we write

A =
[

a1 a2 · · · an
]

and say that A =
[

a1 a2 · · · an
]

is given in terms of its columns.
3Linear combinations were introduced in Section 1.3 to describe the solutions of homogeneous systems of linear

equations. They will be used extensively in what follows.
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Now consider any system of linear equations with m×n coefficient matrix A. If b is the constant

matrix of the system, and if x=


x1
x2
...

xn

 is the matrix of variables then, exactly as above, the system

can be written as a single vector equation

x1a1 + x2a2 + · · ·+ xnan = b (2.4)

Example 2.2.1

Write the system


3x1 + 2x2 − 4x3 = 0
x1 − 3x2 + x3 = 3

x2 − 5x3 =−1
in the form given in (2.4).

Solution.

x1

 3
1
0

+ x2

 2
−3

1

+ x3

 −4
1

−5

=

 0
3

−1



As mentioned above, we view the left side of (2.4) as the product of the matrix A and the vector
x. This basic idea is formalized in the following definition:

Definition 2.5 Matrix-Vector Multiplication

Let A =
[

a1 a2 · · · an
]

be an m×n matrix, written in terms of its columns

a1, a2, . . . , an. If x =


x1
x2
...

xn

 is any n-vector, the product Ax is defined to be the m-vector

given by:
Ax = x1a1 + x2a2 + · · ·+ xnan

In other words, if A is m×n and x is an n-vector, the product Ax is the linear combination of the
columns of A where the coefficients are the entries of x (in order).

Note that if A is an m×n matrix, the product Ax is only defined if x is an n-vector and then the
vector Ax is an m-vector because this is true of each column a j of A. But in this case the system of
linear equations with coefficient matrix A and constant vector b takes the form of a single matrix
equation

Ax = b
The following theorem combines Definition 2.5 and equation (2.4) and summarizes the above dis-
cussion. Recall that a system of linear equations is said to be consistent if it has at least one
solution.
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Theorem 2.2.1

1. Every system of linear equations has the form Ax = b where A is the coefficient
matrix, b is the constant matrix, and x is the matrix of variables.

2. The system Ax = b is consistent if and only if b is a linear combination of the
columns of A.

3. If a1, a2, . . . , an are the columns of A and if x =


x1
x2
...

xn

, then x is a solution to the

linear system Ax = b if and only if x1, x2, . . . , xn are a solution of the vector equation

x1a1 + x2a2 + · · ·+ xnan = b

A system of linear equations in the form Ax = b as in (1) of Theorem 2.2.1 is said to be written in
matrix form. This is a useful way to view linear systems as we shall see.

Theorem 2.2.1 transforms the problem of solving the linear system Ax = b into the problem of
expressing the constant matrix B as a linear combination of the columns of the coefficient matrix
A. Such a change in perspective is very useful because one approach or the other may be better in
a particular situation; the importance of the theorem is that there is a choice.

Example 2.2.2

If A =

 2 −1 3 5
0 2 −3 1

−3 4 1 2

 and x =


2
1
0

−2

, compute Ax.

Solution. By Definition 2.5: Ax = 2

 2
0

−3

+1

 −1
2
4

+0

 3
−3

1

−2

 5
1
2

=

 −7
0

−6

.

Example 2.2.3

Given columns a1, a2, a3, and a4 in R3, write 2a1 −3a2 +5a3 +a4 in the form Ax where A is
a matrix and x is a vector.

Solution. Here the column of coefficients is x =


2

−3
5
1

 . Hence Definition 2.5 gives

Ax = 2a1 −3a2 +5a3 +a4

where A =
[

a1 a2 a3 a4
]

is the matrix with a1, a2, a3, and a4 as its columns.
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Example 2.2.4

Let A =
[

a1 a2 a3 a4
]

be the 3×4 matrix given in terms of its columns a1 =

 2
0

−1

,

a2 =

 1
1
1

, a3 =

 3
−1
−3

, and a4 =

 3
1
0

. In each case below, either express b as a linear

combination of a1, a2, a3, and a4, or show that it is not such a linear combination. Explain
what your answer means for the corresponding system Ax = b of linear equations.

a. b =

 1
2
3

 b. b =

 4
2
1


Solution. By Theorem 2.2.1, b is a linear combination of a1, a2, a3, and a4 if and only if
the system Ax = b is consistent (that is, it has a solution). So in each case we carry the
augmented matrix [A|b] of the system Ax = b to reduced form.

a. Here

 2 1 3 3 1
0 1 −1 1 2

−1 1 −3 0 3

→

 1 0 2 1 0
0 1 −1 1 0
0 0 0 0 1

, so the system Ax = b has no

solution in this case. Hence b is not a linear combination of a1, a2, a3, and a4.

b. Now

 2 1 3 3 4
0 1 −1 1 2

−1 1 −3 0 1

→

 1 0 2 1 1
0 1 −1 1 2
0 0 0 0 0

, so the system Ax = b is

consistent.

Thus b is a linear combination of a1, a2, a3, and a4 in this case. In fact the general solution
is x1 = 1−2s− t, x2 = 2+ s− t, x3 = s, and x4 = t where s and t are arbitrary parameters.

Hence x1a1 + x2a2 + x3a3 + x4a4 = b =

 4
2
1

 for any choice of s and t. If we take s = 0 and

t = 0, this becomes a1 +2a2 = b, whereas taking s = 1 = t gives −2a1 +2a2 +a3 +a4 = b.

Example 2.2.5

Taking A to be the zero matrix, we have 0x = 0 for all vectors x by Definition 2.5 because
every column of the zero matrix is zero. Similarly, A0 = 0 for all matrices A because every
entry of the zero vector is zero.
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Example 2.2.6

If I =

 1 0 0
0 1 0
0 0 1

, show that Ix = x for any vector x in R3.

Solution. If x =

 x1
x2
x3

 then Definition 2.5 gives

Ix = x1

 1
0
0

+ x2

 0
1
0

+ x3

 0
0
1

=

 x1
0
0

+
 0

x2
0

+
 0

0
x3

=

 x1
x2
x3

= x

The matrix I in Example 2.2.6 is called the 3×3 identity matrix, and we will encounter such
matrices again in Example 2.2.11 below. Before proceeding, we develop some algebraic properties
of matrix-vector multiplication that are used extensively throughout linear algebra.

Theorem 2.2.2
Let A and B be m×n matrices, and let x and y be n-vectors in Rn. Then:

1. A(x+y) = Ax+Ay.

2. A(ax) = a(Ax) = (aA)x for all scalars a.

3. (A+B)x = Ax+Bx.

Proof. We prove (3); the other verifications are similar and are left as exercises. Let A=
[

a1 a2 · · · an
]

and B =
[

b1 b2 · · · bn
]

be given in terms of their columns. Since adding two matrices is the
same as adding their columns, we have

A+B =
[

a1 +b1 a2 +b2 · · · an +bn
]

If we write x =


x1
x2
...

xn

 Definition 2.5 gives

(A+B)x = x1(a1 +b1)+ x2(a2 +b2)+ · · ·+ xn(an +bn)

= (x1a1 + x2a2 + · · ·+ xnan)+(x1b1 + x2b2 + · · ·+ xnbn)

= Ax+Bx

Theorem 2.2.2 allows matrix-vector computations to be carried out much as in ordinary arithmetic.
For example, for any m×n matrices A and B and any n-vectors x and y, we have:

A(2x−5y) = 2Ax−5Ay and (3A−7B)x = 3Ax−7Bx
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We will use such manipulations throughout the book, often without mention.

Linear Equations

Theorem 2.2.2 also gives a useful way to describe the solutions to a system

Ax = b

of linear equations. There is a related system

Ax = 0

called the associated homogeneous system, obtained from the original system Ax = b by re-
placing all the constants by zeros. Suppose x1 is a solution to Ax = b and x0 is a solution to Ax = 0
(that is Ax1 = b and Ax0 = 0). Then x1+x0 is another solution to Ax = b. Indeed, Theorem 2.2.2
gives

A(x1 +x0) = Ax1 +Ax0 = b+0 = b

This observation has a useful converse.

Theorem 2.2.3
Suppose x1 is any particular solution to the system Ax = b of linear equations. Then every
solution x2 to Ax = b has the form

x2 = x0 +x1

for some solution x0 of the associated homogeneous system Ax = 0.

Proof. Suppose x2 is also a solution to Ax = b, so that Ax2 = b. Write x0 = x2 − x1. Then
x2 = x0 +x1 and, using Theorem 2.2.2, we compute

Ax0 = A(x2 −x1) = Ax2 −Ax1 = b−b = 0

Hence x0 is a solution to the associated homogeneous system Ax = 0.

Note that gaussian elimination provides one such representation.

Example 2.2.7

Express every solution to the following system as the sum of a specific solution plus a
solution to the associated homogeneous system.

x1 − x2 − x3 + 3x4 = 2
2x1 − x2 − 3x3 + 4x4 = 6

x1 − 2x3 + x4 = 4
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Solution. Gaussian elimination gives x1 = 4+2s− t, x2 = 2+ s+2t, x3 = s, and x4 = t where
s and t are arbitrary parameters. Hence the general solution can be written

x =


x1
x2
x3
x4

=


4+2s− t
2+ s+2t

s
t

=


4
2
0
0

+
s


2
1
1
0

+ t


−1

2
0
1




Thus x1 =


4
2
0
0

 is a particular solution (where s = 0 = t), and x0 = s


2
1
1
0

+ t


−1

2
0
1


gives all solutions to the associated homogeneous system. (To see why this is so, carry out
the gaussian elimination again but with all the constants set equal to zero.)

The following useful result is included with no proof.

Theorem 2.2.4
Let Ax = b be a system of equations with augmented matrix

[
A b

]
. Write rank A = r.

1. rank
[

A b
]

is either r or r+1.

2. The system is consistent if and only if rank
[

A b
]
= r.

3. The system is inconsistent if and only if rank
[

A b
]
= r+1.

The Dot Product

Definition 2.5 is not always the easiest way to compute a matrix-vector product Ax because it
requires that the columns of A be explicitly identified. There is another way to find such a product
which uses the matrix A as a whole with no reference to its columns, and hence is useful in practice.
The method depends on the following notion.

Definition 2.6 Dot Product in Rn

If (a1, a2, . . . , an) and (b1, b2, . . . , bn) are two ordered n-tuples, their dot product is
defined to be the number

a1b1 +a2b2 + · · ·+anbn

obtained by multiplying corresponding entries and adding the results.

To see how this relates to matrix products, let A denote a 3× 4 matrix and let x be a 4-vector.
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Writing

x =


x1
x2
x3
x4

 and A =

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34


in the notation of Section 2.1, we compute

Ax =

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34




x1
x2
x3
x4

= x1

 a11
a21
a31

+ x2

 a12
a22
a32

+ x3

 a13
a23
a33

+ x4

 a14
a24
a34



=

 a11x1 +a12x2 +a13x3 +a14x4
a21x1 +a22x2 +a23x3 +a24x4
a31x1 +a32x2 +a33x3 +a34x4


From this we see that each entry of Ax is the dot product of the corresponding row of A with x.
This computation goes through in general, and we record the result in Theorem 2.2.5.

Theorem 2.2.5: Dot Product Rule
Let A be an m×n matrix and let x be an n-vector. Then each entry of the vector Ax is the
dot product of the corresponding row of A with x.

This result is used extensively throughout linear algebra.
If A is m×n and x is an n-vector, the computation of Ax by the dot product rule is simpler than

using Definition 2.5 because the computation can be carried out directly with no explicit reference
to the columns of A (as in Definition 2.5). The first entry of Ax is the dot product of row 1 of A
with x. In hand calculations this is computed by going across row one of A, going down the column
x, multiplying corresponding entries, and adding the results. The other entries of Ax are computed
in the same way using the other rows of A with the column x.

  =

 
row i entry i

A x Ax
In general, compute entry i of Ax as follows (see the diagram):

Go across row i of A and down column x, multiply corre-
sponding entries, and add the results.

As an illustration, we rework Example 2.2.2 using the dot product
rule instead of Definition 2.5.

Example 2.2.8

If A =

 2 −1 3 5
0 2 −3 1

−3 4 1 2

 and x =


2
1
0

−2

, compute Ax.
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Solution. The entries of Ax are the dot products of the rows of A with x:

Ax=

 2 −1 3 5
0 2 −3 1

−3 4 1 2




2
1
0

−2

=

 2 ·2 + (−1)1 + 3 ·0 + 5(−2)
0 ·2 + 2 ·1 + (−3)0 + 1(−2)

(−3)2 + 4 ·1 + 1 ·0 + 2(−2)

=

 −7
0

−6


Of course, this agrees with the outcome in Example 2.2.2.

Example 2.2.9

Write the following system of linear equations in the form Ax = b.

5x1 − x2 + 2x3 + x4 − 3x5 = 8
x1 + x2 + 3x3 − 5x4 + 2x5 =−2

−x1 + x2 − 2x3 + − 3x5 = 0

Solution. Write A =

 5 −1 2 1 −3
1 1 3 −5 2

−1 1 −2 0 −3

, b =

 8
−2

0

, and x =


x1
x2
x3
x4
x5

. Then the

dot product rule gives Ax =

 5x1 − x2 + 2x3 + x4 − 3x5
x1 + x2 + 3x3 − 5x4 + 2x5

−x1 + x2 − 2x3 − 3x5

, so the entries of Ax are the left

sides of the equations in the linear system. Hence the system becomes Ax = b because
matrices are equal if and only corresponding entries are equal.

Example 2.2.10

If A is the zero m×n matrix, then Ax = 0 for each n-vector x.

Solution. For each k, entry k of Ax is the dot product of row k of A with x, and this is zero
because row k of A consists of zeros.

Definition 2.7 The Identity Matrix

For each n > 2, the identity matrix In is the n×n matrix with 1s on the main diagonal
(upper left to lower right), and zeros elsewhere.
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The first few identity matrices are

I2 =

[
1 0
0 1

]
, I3 =

 1 0 0
0 1 0
0 0 1

 , I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , . . .

In Example 2.2.6 we showed that I3x = x for each 3-vector x using Definition 2.5. The following
result shows that this holds in general, and is the reason for the name.

Example 2.2.11

For each n ≥ 2 we have Inx = x for each n-vector x in Rn.

Solution. We verify the case n = 4. Given the 4-vector x =


x1
x2
x3
x4

 the dot product rule

gives

I4x =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




x1
x2
x3
x4

=


x1 +0+0+0
0+ x2 +0+0
0+0+ x3 +0
0+0+0+ x4

=


x1
x2
x3
x4

= x

In general, Inx = x because entry k of Inx is the dot product of row k of In with x, and row k
of In has 1 in position k and zeros elsewhere.

Example 2.2.12

Let A =
[

a1 a2 · · · an
]

be any m×n matrix with columns a1, a2, . . . , an. If e j denotes
column j of the n×n identity matrix In, then Ae j = a j for each j = 1, 2, . . . , n.

Solution. Write e j =


t1
t2
...
tn

 where t j = 1, but ti = 0 for all i 6= j. Then Theorem 2.2.5 gives

Ae j = t1a1 + · · ·+ t ja j + · · ·+ tnan = 0+ · · ·+a j + · · ·+0 = a j

Example 2.2.12 will be referred to later; for now we use it to prove:

Theorem 2.2.6
Let A and B be m×n matrices. If Ax = Bx for all x in Rn, then A = B.

Proof. Write A =
[

a1 a2 · · · an
]

and B =
[

b1 b2 · · · bn
]

and in terms of their columns.
It is enough to show that ak = bk holds for all k. But we are assuming that Aek = Bek, which gives
ak = bk by Example 2.2.12.
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We have introduced matrix-vector multiplication as a new way to think about systems of linear
equations. But it has several other uses as well. It turns out that many geometric operations can
be described using matrix multiplication, and we now investigate how this happens. As a bonus,
this description provides a geometric “picture” of a matrix by revealing the effect on a vector when
it is multiplied by A. This “geometric view” of matrices is a fundamental tool in understanding
them.

Transformations

0 =

[
0
0

]

[
a1
a2

]

a1

a2

x1

x2

Figure 2.2.1

 a1
a2
a3


a1

a2

a3

0

x1

x2

x3

Figure 2.2.2

The set R2 has a geometrical interpretation as the euclidean plane
where a vector

[
a1
a2

]
in R2 represents the point (a1, a2) in the plane

(see Figure 2.2.1). In this way we regard R2 as the set of all points
in the plane. Accordingly, we will refer to vectors in R2 as points,
and denote their coordinates as a column rather than a row. To
enhance this geometrical interpretation of the vector

[
a1
a2

]
, it is de-

noted graphically by an arrow from the origin
[

0
0

]
to the vector as

in Figure 2.2.1.
Similarly we identify R3 with 3-dimensional space by writing a

point (a1, a2, a3) as the vector

 a1
a2
a3

 in R3, again represented by

an arrow4 from the origin to the point as in Figure 2.2.2. In this way
the terms “point” and “vector” mean the same thing in the plane or
in space.

We begin by describing a particular geometrical transformation of the plane R2.

Example 2.2.13

[
a1
a2

]

[
a1

−a2

]
0

x

y

Figure 2.2.3

Consider the transformation of R2 given by reflection in
the x axis. This operation carries the vector

[
a1
a2

]
to its

reflection
[

a1
−a2

]
as in Figure 2.2.3. Now observe that

[
a1

−a2

]
=

[
1 0
0 −1

][
a1
a2

]

so reflecting
[

a1
a2

]
in the x axis can be achieved by

4This “arrow” representation of vectors in R2 and R3 will be used extensively in Chapter 4.



2.2. Matrix-Vector Multiplication 65

multiplying by the matrix
[

1 0
0 −1

]
.

If we write A =

[
1 0
0 −1

]
, Example 2.2.13 shows that reflection in the x axis carries each vector

x in R2 to the vector Ax in R2. It is thus an example of a function

T : R2 → R2 where T (x) = Ax for all x in R2

As such it is a generalization of the familiar functions f : R→ R that carry a number x to another
real number f (x).

x T (x)
T

Rn Rm

Figure 2.2.4

More generally, functions T : Rn → Rm are called transforma-
tions from Rn to Rm. Such a transformation T is a rule that assigns
to every vector x in Rn a uniquely determined vector T (x) in Rm

called the image of x under T . We denote this state of affairs by
writing

T : Rn → Rm or Rn T−→ Rm

The transformation T can be visualized as in Figure 2.2.4.
To describe a transformation T : Rn → Rm we must specify the vector T (x) in Rm for every x

in Rn. This is referred to as defining T , or as specifying the action of T . Saying that the action
defines the transformation means that we regard two transformations S : Rn →Rm and T : Rn →Rm

as equal if they have the same action; more formally

S = T if and only if S(x) = T (x) for all x in Rn.

Again, this what we mean by f = g where f , g : R→ R are ordinary functions.
Functions f : R→ R are often described by a formula, examples being f (x) = x2 +1 and f (x) =

sinx. The same is true of transformations; here is an example.

Example 2.2.14

The formula T


x1
x2
x3
x4

=

 x1 + x2
x2 + x3
x3 + x4

 defines a transformation R4 → R3.

Example 2.2.13 suggests that matrix multiplication is an important way of defining transforma-
tions Rn → Rm. If A is any m×n matrix, multiplication by A gives a transformation

TA : Rn → Rm defined by TA(x) = Ax for every x in Rn

Definition 2.8 Matrix Transformation TA

TA is called the matrix transformation induced by A.
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Thus Example 2.2.13 shows that reflection in the x axis is the matrix transformation R2 → R2

induced by the matrix
[

1 0
0 −1

]
. Also, the transformation R : R4 → R3 in Example 2.2.13 is the

matrix transformation induced by the matrix

A =

 1 1 0 0
0 1 1 0
0 0 1 1

 because

 1 1 0 0
0 1 1 0
0 0 1 1




x1
x2
x3
x4

=

 x1 + x2
x2 + x3
x3 + x4



Example 2.2.15

Let Rπ

2
: R2 →R2 denote counterclockwise rotation about the origin through π

2 radians (that

is, 90◦)5. Show that Rπ

2
is induced by the matrix

[
0 −1
1 0

]
.

Solution.

a

b

a
b

q

0 p x

y

R π

2
(x) =

[
−b

a

]

x =

[
a
b

]

Figure 2.2.5

The effect of Rπ

2
is to rotate the vector x =

[
a
b

]
counterclockwise through π

2 to produce the vector
Rπ

2
(x) shown in Figure 2.2.5. Since triangles 0px and

0qRπ

2
(x) are identical, we obtain Rπ

2
(x) =

[
−b

a

]
. But[

−b
a

]
=

[
0 −1
1 0

][
a
b

]
, so we obtain Rπ

2
(x) = Ax

for all x in R2 where A =

[
0 −1
1 0

]
. In other words,

Rπ

2
is the matrix transformation induced by A.

If A is the m×n zero matrix, then A induces the transformation

T : Rn → Rm given by T (x) = Ax = 0 for all x in Rn

This is called the zero transformation, and is denoted T = 0.
Another important example is the identity transformation

1Rn : Rn → Rn given by 1Rn(x) = x for all x in Rn

That is, the action of 1Rn on x is to do nothing to it. If In denotes the n× n identity matrix, we
showed in Example 2.2.11 that Inx = x for all x in Rn. Hence 1Rn(x) = Inx for all x in Rn; that is,
the identity matrix In induces the identity transformation.

Here are two more examples of matrix transformations with a clear geometric description.

5Radian measure for angles is based on the fact that 360◦ equals 2π radians. Hence π radians = 180◦ and
π

2 radians = 90◦.
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Example 2.2.16

If a > 0, the matrix transformation T
[

x
y

]
=

[
ax
y

]
induced by the matrix A =

[
a 0
0 1

]
is

called an x-expansion of R2 if a > 1, and an x-compression if 0 < a < 1. The reason for
the names is clear in the diagram below. Similarly, if b > 0 the matrix A =

[
1 0
0 b

]
gives

rise to y-expansions and y-compressions.

0
x

y

[
x
y

]

0
x

y

[ 1
2 x
y

]
x-compression

a = 1
2

0
x

y

[ 3
2 x
y

]
x-expansion

a = 3
2

Example 2.2.17

If a is a number, the matrix transformation T
[

x
y

]
=

[
x+ay

y

]
induced by the matrix

A =

[
1 a
0 1

]
is called an x-shear of R2 (positive if a > 0 and negative if a < 0). Its effect

is illustrated below when a = 1
4 and a =−1

4 .

0
x

y

[
x
y

]

0
x

y

[
x+ 1

4 y
y

]Positive x-shear

a = 1
4

0
x

y

[
x− 1

4 y
y

]Negative x-shear

a =−1
4

0

x =

[
x
y

]
x

y

Tw(x) =

[
x+2
y+1

]

Figure 2.2.6

We hasten to note that there are important geometric transfor-
mations that are not matrix transformations. For example, if w is a
fixed column in Rn, define the transformation Tw : Rn → Rn by

Tw(x) = x+w for all x in Rn

Then Tw is called translation by w. In particular, if w =

[
2
1

]
in
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R2, the effect of Tw on
[

x
y

]
is to translate it two units to the right

and one unit up (see Figure 2.2.6).
The translation Tw is not a matrix transformation unless w = 0. Indeed, if Tw were induced by

a matrix A, then Ax = Tw(x) = x+w would hold for every x in Rn. In particular, taking x = 0
gives w = A0 = 0.

Exercises for 2.2

Exercise 2.2.1 In each case find a system of equa-
tions that is equivalent to the given vector equation.
(Do not solve the system.)

a. x1

 2
−3

0

+ x2

 1
1
4

+ x3

 2
0

−1

=

 5
6

−3



b. x1


1
0
1
0

+ x2


−3

8
2
1

+ x3


−3

0
2
2

+ x4


3
2
0

−2

=


5
1
2
0



b. x1 − 3x2 − 3x3 + 3x4 = 5
8x2 + 2x4 = 1

x1 + 2x2 + 2x3 = 2
x2 + 2x3 − 5x4 = 0

Exercise 2.2.2 In each case find a vector equation
that is equivalent to the given system of equations.
(Do not solve the equation.)

a. x1 − x2 + 3x3 = 5
−3x1 + x2 + x3 =−6

5x1 − 8x2 = 9

b. x1 − 2x2 − x3 + x4 = 5
−x1 + x3 − 2x4 =−3
2x1 − 2x2 + 7x3 = 8
3x1 − 4x2 + 9x3 − 2x4 = 12

b. x1


1

−1
2
3

 + x2


−2

0
−2
−4

 + x3


−1

1
7
9

 +

x4


1

−2
0

−2

=


5

−3
8

12


Exercise 2.2.3 In each case compute Ax using: (i)
Definition 2.5. (ii) Theorem 2.2.5.

a. A =

[
3 −2 0
5 −4 1

]
and x =

 x1
x2
x3

.

b. A =

[
1 2 3
0 −4 5

]
and x =

 x1
x2
x3

.

c. A =

 −2 0 5 4
1 2 0 3

−5 6 −7 8

 and x =


x1
x2
x3
x4

.

d. A =

 3 −4 1 6
0 2 1 5

−8 7 −3 0

 and x =


x1
x2
x3
x4

.

b. Ax =

[
1 2 3
0 −4 5

] x1
x2
x3

 = x1

[
1
0

]
+

x2

[
2

−4

]
+ x3

[
3
5

]
=

[
x1 + 2x2 + 3x3

− 4x2 + 5x3

]

d. Ax =

 3 −4 1 6
0 2 1 5

−8 7 −3 0




x1
x2
x3
x4





2.2. Matrix-Vector Multiplication 69

= x1

 3
0

−8

 + x2

 −4
2
7

 + x3

 1
1

−3

 +

x4

 6
5
0

=

 3x1 − 4x2 + x3 + 6x4
2x2 + x3 + 5x4

−8x1 + 7x2 − 3x3


Exercise 2.2.4 Let A =

[
a1 a2 a3 a4

]
be

the 3 × 4 matrix given in terms of its columns

a1 =

 1
1

−1

, a2 =

 3
0
2

, a3 =

 2
−1

3

, and a4 = 0
−3

5

. In each case either express b as a linear

combination of a1, a2, a3, and a4, or show that it is
not such a linear combination. Explain what your
answer means for the corresponding system Ax = b
of linear equations.

b =

 0
3
5

a) b =

 4
1
1

b)

b. To solve Ax = b the reduction is 1 3 2 0 4
1 0 −1 −3 1

−1 2 3 5 1


↓ 1 0 −1 −3 1

0 1 1 1 1
0 0 0 0 0

 .

So the general solution is


1+ s+3t
1− s− t

s
t

.

Hence (1+s+3t)a1+(1−s−t)a2+sa3+ta4 =
b for any choice of s and t. If s = t = 0, we
get a1 + a2 = b; if s = 1 and t = 0, we have
2a1 +a3 = b.

Exercise 2.2.5 In each case, express every solution
of the system as a sum of a specific solution plus a
solution of the associated homogeneous system.

x+ y+ z= 2
2x+ y = 3
x− y− 3z= 0

a) x− y− 4z=−4
x+ 2y+ 5z= 2
x+ y+ 2z= 0

b)

x1 + x2 − x3 − 5x5 = 2
x2 + x3 − 4x5 =−1
x2 + x3 + x4 − x5 =−1

2x1 − 4x3 + x4 + x5 = 6

c)

2x1 + x2 − x3 − x4 =−1
3x1 + x2 + x3 − 2x4 =−2
−x1 − x2 + 2x3 + x4 = 2
−2x1 − x2 + 2x4 = 3

d)

b.

 −2
2
0

+ t

 1
−3

1



d.


3

−9
−2

0

+ t


−1

4
1
1


Exercise 2.2.6 If x0 and x1 are solutions to the
homogeneous system of equations Ax = 0, use Theo-
rem 2.2.2 to show that sx0+ tx1 is also a solution for
any scalars s and t (called a linear combination of
x0 and x1).
We have Ax0 = 0 and Ax1 = 0 and so A(sx0 + tx1) =
s(Ax0)+ t(Ax1) = s ·0+ t ·0 = 0.

Exercise 2.2.7 Assume that A

 1
−1

2

 = 0 =

A

 2
0
3

. Show that x0 =

 2
−1

3

 is a solution to

Ax = b. Find a two-parameter family of solutions to
Ax = b.

Exercise 2.2.8 In each case write the system in
the form Ax= b, use the gaussian algorithm to solve
the system, and express the solution as a particular
solution plus a linear combination of basic solutions
to the associated homogeneous system Ax = 0.

a. x1 − 2x2 + x3 + 4x4 − x5 = 8
−2x1 + 4x2 + x3 − 2x4 − 4x5 =−1

3x1 − 6x2 + 8x3 + 4x4 − 13x5 = 1
8x1 − 16x2 + 7x3 + 12x4 − 6x5 = 11
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b. x1 − 2x2 + x3 + 2x4 + 3x5 =−4
−3x1 + 6x2 − 2x3 − 3x4 − 11x5 = 11
−2x1 + 4x2 − x3 + x4 − 8x5 = 7
−x1 + 2x2 + 3x4 − 5x5 = 3

b. x =


−3

0
−1

0
0

+
s


2
1
0
0
0

+ t


−5

0
2
0
1


 .

Exercise 2.2.9 Given vectors a1 =

 1
0
1

,

a2 =

 1
1
0

, and a3 =

 0
−1

1

, find a vector b that

is not a linear combination of a1, a2, and a3. Justify
your answer. [Hint: Part (2) of Theorem 2.2.1.]

Exercise 2.2.10 In each case either show that the
statement is true, or give an example showing that
it is false.

a.
[

3
2

]
is a linear combination of

[
1
0

]
and[

0
1

]
.

b. If Ax has a zero entry, then A has a row of
zeros.

c. If Ax = 0 where x 6= 0, then A = 0.

d. Every linear combination of vectors in Rn can
be written in the form Ax.

e. If A =
[

a1 a2 a3
]

in terms of its columns,
and if b = 3a1 −2a2, then the system Ax = b
has a solution.

f. If A =
[

a1 a2 a3
]

in terms of its columns,
and if the system Ax = b has a solution, then
b = sa1 + ta2 for some s, t.

g. If A is m× n and m < n, then Ax = b has a
solution for every column b.

h. If Ax = b has a solution for some column b,
then it has a solution for every column b.

i. If x1 and x2 are solutions to Ax = b, then
x1 −x2 is a solution to Ax = 0.

j. Let A =
[

a1 a2 a3
]

in terms of its
columns. If a3 = sa1+ ta2, then Ax = 0, where

x =

 s
t
−1

.

b. False.
[

1 2
2 4

][
2

−1

]
=

[
0
0

]
.

d. True. The linear combination x1a1+ · · ·+xnan

equals Ax where A =
[

a1 · · · an
]

by The-
orem 2.2.1.

f. False. If A =

[
1 1 −1
2 2 0

]
and x =

 2
0
1

,

then

Ax=

[
1
4

]
6= s
[

1
2

]
+t
[

1
2

]
for any s and t.

h. False. If A =

[
1 −1 1

−1 1 −1

]
, there is a so-

lution for b =

[
0
0

]
but not for b =

[
1
0

]
.

Exercise 2.2.11 Let T : R2 → R2 be a transfor-
mation. In each case show that T is induced by a
matrix and find the matrix.

a. T is a reflection in the y axis.

b. T is a reflection in the line y = x.

c. T is a reflection in the line y =−x.

d. T is a clockwise rotation through π

2 .

b. Here T
[

x
y

]
=

[
y
x

]
=

[
0 1
1 0

][
x
y

]
.

d. Here T
[

x
y

]
=

[
y
−x

]
=

[
0 1

−1 0

][
x
y

]
.
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Exercise 2.2.12 The projection P :R3 →R2 is de-

fined by P

 x
y
z

=

[
x
y

]
for all

 x
y
z

 in R3. Show

that P is induced by a matrix and find the matrix.

Exercise 2.2.13 Let T : R3 → R3 be a transfor-
mation. In each case show that T is induced by a
matrix and find the matrix.

a. T is a reflection in the x− y plane.

b. T is a reflection in the y− z plane.

b. Here

T

 x
y
z

=

 −x
y
z

=

 −1 0 0
0 1 0
0 0 1

 x
y
z

 ,

so the matrix is

 −1 0 0
0 1 0
0 0 1

.

Exercise 2.2.14 Fix a > 0 in R, and define Ta :
R4 → R4 by Ta(x) = ax for all x in R4. Show that
T is induced by a matrix and find the matrix. [T
is called a dilation if a > 1 and a contraction if
a < 1.]

Exercise 2.2.15 Let A be m× n and let x be in
Rn. If A has a row of zeros, show that Ax has a zero
entry.

Exercise 2.2.16 If a vector b is a linear combi-
nation of the columns of A, show that the system
Ax = b is consistent (that is, it has at least one so-
lution.)

Write A =
[

a1 a2 · · · an
]

in terms of its
columns. If b = x1a1 + x2a2 + · · ·+ xnan where the
xi are scalars, then Ax = b by Theorem 2.2.1 where
x =

[
x1 x2 · · · xn

]T . That is, x is a solution to
the system Ax = b.

Exercise 2.2.17 If a system Ax = b is inconsistent
(no solution), show that b is not a linear combina-
tion of the columns of A.

Exercise 2.2.18 Let x1 and x2 be solutions to the
homogeneous system Ax = 0.

a. Show that x1 +x2 is a solution to Ax = 0.

b. Show that tx1 is a solution to Ax = 0 for any
scalar t.

b. By Theorem 2.2.3, A(tx1) = t(Ax1) = t ·0 = 0;
that is, tx1 is a solution to Ax = 0.

Exercise 2.2.19 Suppose x1 is a solution to the
system Ax = b. If x0 is any nontrivial solution to
the associated homogeneous system Ax = 0, show
that x1 + tx0, t a scalar, is an infinite one parameter
family of solutions to Ax = b. [Hint: Example 2.1.7
Section 2.1.]

Exercise 2.2.20 Let A and B be matrices of the
same size. If x is a solution to both the system
Ax = 0 and the system Bx = 0, show that x is a
solution to the system (A+B)x = 0.

Exercise 2.2.21 If A is m×n and Ax = 0 for every
x in Rn, show that A = 0 is the zero matrix. [Hint:
Consider Ae j where e j is the jth column of In; that
is, e j is the vector in Rn with 1 as entry j and every
other entry 0.]

Exercise 2.2.22 Prove part (1) of Theorem 2.2.2.

If A is m × n and x and y are n-vectors, we
must show that A(x + y) = Ax + Ay. Denote the
columns of A by a1, a2, . . . , an, and write x =[

x1 x2 · · · xn
]T and y =

[
y1 y2 · · · yn

]T .
Then x+ y =

[
x1 + y1 x2 + y2 · · · xn + yn

]T , so
Definition 2.1 and Theorem 2.1.1 give A(x+ y) =
(x1 + y1)a1 +(x2 + y2)a2 + · · ·+(xn + yn)an = (x1a1 +
x2a2 + · · ·+ xnan)+ (y1a1 + y2a2 + · · ·+ ynan) = Ax+
Ay.

Exercise 2.2.23 Prove part (2) of Theorem 2.2.2.
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2.3 Matrix Multiplication

In Section 2.2 matrix-vector products were introduced. If A is an m× n matrix, the product Ax
was defined for any n-column x in Rn as follows: If A =

[
a1 a2 · · · an

]
where the a j are the

columns of A, and if x =


x1
x2
...

xn

, Definition 2.5 reads

Ax = x1a1 + x2a2 + · · ·+ xnan (2.5)

This was motivated as a way of describing systems of linear equations with coefficient matrix A.
Indeed every such system has the form Ax = b where b is the column of constants.

In this section we extend this matrix-vector multiplication to a way of multiplying matrices in
general, and then investigate matrix algebra for its own sake. While it shares several properties of
ordinary arithmetic, it will soon become clear that matrix arithmetic is different in a number of
ways.

Matrix multiplication is closely related to composition of transformations.

Composition and Matrix Multiplication

Sometimes two transformations “link” together as follows:

Rk T−→ Rn S−→ Rm

In this case we can apply T first and then apply S, and the result is a new transformation

S◦T : Rk → Rm

called the composite of S and T , defined by

(S◦T )(x) = S [T (x)] for all x in Rk

T S

S◦T

Rk Rn Rm

The action of S ◦T can be described as “first T then S ” (note the
order!)6. This new transformation is described in the diagram. The
reader will have encountered composition of ordinary functions: For
example, consider R g−→ R f−→ R where f (x) = x2 and g(x) = x+ 1 for
all x in R. Then

( f ◦g)(x) = f [g(x)] = f (x+1) = (x+1)2

(g◦ f )(x) = g [ f (x)] = g(x2) = x2 +1

6When reading the notation S ◦T , we read S first and then T even though the action is “first T then S ”. This
annoying state of affairs results because we write T (x) for the effect of the transformation T on x, with T on the
left. If we wrote this instead as (x)T , the confusion would not occur. However the notation T (x) is well established.
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for all x in R.
Our concern here is with matrix transformations. Suppose that A is an m× n matrix and B

is an n× k matrix, and let Rk TB−→ Rn TA−→ Rm be the matrix transformations induced by B and A
respectively, that is:

TB(x) = Bx for all x in Rk and TA(y) = Ay for all y in Rn

Write B =
[

b1 b2 · · · bk
]

where b j denotes column j of B for each j. Hence each b j is an
n-vector (B is n× k) so we can form the matrix-vector product Ab j. In particular, we obtain an
m× k matrix [

Ab1 Ab2 · · · Abk
]

with columns Ab1, Ab2, · · · , Abk. Now compute (TA ◦TB)(x) for any x =


x1
x2
...

xk

 in Rk:

(TA ◦TB)(x) = TA [TB(x)] Definition of TA ◦TB
= A(Bx) A and B induce TA and TB
= A(x1b1 + x2b2 + · · ·+ xkbk) Equation 2.5 above
= A(x1b1)+A(x2b2)+ · · ·+A(xkbk) Theorem 2.2.2
= x1(Ab1)+ x2(Ab2)+ · · ·+ xk(Abk) Theorem 2.2.2
=

[
Ab1 Ab2 · · · Abk

]
x Equation 2.5 above

Because x was an arbitrary vector in Rn, this shows that TA◦TB is the matrix transformation induced
by the matrix

[
Ab1 Ab2 · · · Abn

]
. This motivates the following definition.

Definition 2.9 Matrix Multiplication

Let A be an m×n matrix, let B be an n× k matrix, and write B =
[

b1 b2 · · · bk
]

where
b j is column j of B for each j. The product matrix AB is the m×k matrix defined as follows:

AB = A
[

b1 b2 · · · bk
]
=
[

Ab1 Ab2 · · · Abk
]

Thus the product matrix AB is given in terms of its columns Ab1, Ab2, . . . , Abn: Column j of
AB is the matrix-vector product Ab j of A and the corresponding column b j of B. Note that each
such product Ab j makes sense by Definition 2.5 because A is m× n and each b j is in Rn (since B
has n rows). Note also that if B is a column matrix, this definition reduces to Definition 2.5 for
matrix-vector multiplication.

Given matrices A and B, Definition 2.9 and the above computation give

A(Bx) =
[

Ab1 Ab2 · · · Abn
]
x = (AB)x

for all x in Rk. We record this for reference.
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Theorem 2.3.1
Let A be an m×n matrix and let B be an n×k matrix. Then the product matrix AB is m×k
and satisfies

A(Bx) = (AB)x for all x in Rk

Here is an example of how to compute the product AB of two matrices using Definition 2.9.

Example 2.3.1

Compute AB if A =

 2 3 5
1 4 7
0 1 8

 and B =

 8 9
7 2
6 1

.

Solution. The columns of B are b1 =

 8
7
6

 and b2 =

 9
2
1

, so Definition 2.5 gives

Ab1 =

 2 3 5
1 4 7
0 1 8

 8
7
6

=

 67
78
55

 and Ab2 =

 2 3 5
1 4 7
0 1 8

 9
2
1

=

 29
24
10



Hence Definition 2.9 above gives AB =
[

Ab1 Ab2
]
=

 67 29
78 24
55 10

.

Example 2.3.2

If A is m×n and B is n× k, Theorem 2.3.1 gives a simple formula for the composite of the
matrix transformations TA and TB:

TA ◦TB = TAB

Solution. Given any x in Rk,

(TA ◦TB)(x) = TA[TB(x)]
= A[Bx]
= (AB)x
= TAB(x)

While Definition 2.9 is important, there is another way to compute the matrix product AB that
gives a way to calculate each individual entry. In Section 2.2 we defined the dot product of two n-
tuples to be the sum of the products of corresponding entries. We went on to show (Theorem 2.2.5)
that if A is an m × n matrix and x is an n-vector, then entry j of the product Ax is the dot
product of row j of A with x. This observation was called the “dot product rule” for matrix-vector
multiplication, and the next theorem shows that it extends to matrix multiplication in general.
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Theorem 2.3.2: Dot Product Rule
Let A and B be matrices of sizes m×n and n× k, respectively. Then the (i, j)-entry of AB is
the dot product of row i of A with column j of B.

Proof. Write B =
[

b1 b2 · · · bn
]

in terms of its columns. Then Ab j is column j of AB for each
j. Hence the (i, j)-entry of AB is entry i of Ab j, which is the dot product of row i of A with b j.
This proves the theorem.

Thus to compute the (i, j)-entry of AB, proceed as follows (see the diagram):

Go across row i of A, and down column j of B, multiply corresponding entries, and add the results.

  =

 
row i column j (i, j)-entry

A B AB

Note that this requires that the rows of A must be the same length as the columns of B. The
following rule is useful for remembering this and for deciding the size of the product matrix AB.
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Compatibility Rule

A B

m× n n′ × k

Let A and B denote matrices. If A is m×n and B is n′×k, the product
AB can be formed if and only if n = n′. In this case the size of the
product matrix AB is m× k, and we say that AB is defined, or that
A and B are compatible for multiplication.

The diagram provides a useful mnemonic for remembering this. We adopt the following convention:

Convention
Whenever a product of matrices is written, it is tacitly assumed that the sizes of the factors are
such that the product is defined.

To illustrate the dot product rule, we recompute the matrix product in Example 2.3.1.

Example 2.3.3

Compute AB if A =

 2 3 5
1 4 7
0 1 8

 and B =

 8 9
7 2
6 1

.

Solution. Here A is 3×3 and B is 3×2, so the product matrix AB is defined and will be of
size 3×2. Theorem 2.3.2 gives each entry of AB as the dot product of the corresponding row
of A with the corresponding column of B j that is,

AB =

 2 3 5
1 4 7
0 1 8

 8 9
7 2
6 1

=

 2 ·8+3 ·7+5 ·6 2 ·9+3 ·2+5 ·1
1 ·8+4 ·7+7 ·6 1 ·9+4 ·2+7 ·1
0 ·8+1 ·7+8 ·6 0 ·9+1 ·2+8 ·1

=

 67 29
78 24
55 10


Of course, this agrees with Example 2.3.1.

Example 2.3.4

Compute the (1, 3)- and (2, 4)-entries of AB where

A =

[
3 −1 2
0 1 4

]
and B =

 2 1 6 0
0 2 3 4

−1 0 5 8

 .

Then compute AB.

Solution. The (1, 3)-entry of AB is the dot product of row 1 of A and column 3 of B
(highlighted in the following display), computed by multiplying corresponding entries and
adding the results.

[
3 −1 2
0 1 4

] 2 1 6 0
0 2 3 4

−1 0 5 8

 (1, 3)-entry = 3 ·6+(−1) ·3+2 ·5 = 25
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Similarly, the (2, 4)-entry of AB involves row 2 of A and column 4 of B.

[
3 −1 2
0 1 4

] 2 1 6 0
0 2 3 4

−1 0 5 8

 (2, 4)-entry = 0 ·0+1 ·4+4 ·8 = 36

Since A is 2×3 and B is 3×4, the product is 2×4.

AB =

[
3 −1 2
0 1 4

] 2 1 6 0
0 2 3 4

−1 0 5 8

=

[
4 1 25 12

−4 2 23 36

]

Example 2.3.5

If A =
[

1 3 2
]

and B =

 5
6
4

, compute A2, AB, BA, and B2 when they are defined.7

Solution. Here, A is a 1×3 matrix and B is a 3×1 matrix, so A2 and B2 are not defined.
However, the compatibility rule reads

A B
1×3 3×1 and B A

3×1 1×3

so both AB and BA can be formed and these are 1×1 and 3×3 matrices, respectively.

AB =
[

1 3 2
] 5

6
4

=
[

1 ·5+3 ·6+2 ·4
]
=
[

31
]

BA =

 5
6
4

[ 1 3 2
]
=

 5 ·1 5 ·3 5 ·2
6 ·1 6 ·3 6 ·2
4 ·1 4 ·3 4 ·2

=

 5 15 10
6 18 12
4 12 8



Unlike numerical multiplication, matrix products AB and BA need not be equal. In fact they
need not even be the same size, as Example 2.3.5 shows. It turns out to be rare that AB = BA
(although it is by no means impossible), and A and B are said to commute when this happens.

Example 2.3.6

Let A =

[
6 9

−4 −6

]
and B =

[
1 2

−1 0

]
. Compute A2, AB, BA.

7As for numbers, we write A2 = A ·A, A3 = A ·A ·A, etc. Note that A2 is defined if and only if A is of size n×n for
some n.



78 Matrix Algebra

Solution. A2 =

[
6 9

−4 −6

][
6 9

−4 −6

]
=

[
0 0
0 0

]
, so A2 = 0 can occur even if A 6= 0.

Next,

AB =

[
6 9

−4 −6

][
1 2

−1 0

]
=

[
−3 12

2 −8

]
BA =

[
1 2

−1 0

][
6 9

−4 −6

]
=

[
−2 −3
−6 −9

]
Hence AB 6= BA, even though AB and BA are the same size.

Example 2.3.7

If A is any matrix, then IA = A and AI = A, and where I denotes an identity matrix of a size
so that the multiplications are defined.

Solution. These both follow from the dot product rule as the reader should verify. For a
more formal proof, write A =

[
a1 a2 · · · an

]
where a j is column j of A. Then

Definition 2.9 and Example 2.2.11 give

IA =
[

Ia1 Ia2 · · · Ian
]
=
[

a1 a2 · · · an
]
= A

If e j denotes column j of I, then Ae j = a j for each j by Example 2.2.12. Hence
Definition 2.9 gives:

AI = A
[

e1 e2 · · · en
]
=
[

Ae1 Ae2 · · · Aen
]
=
[

a1 a2 · · · an
]
= A

The following theorem collects several results about matrix multiplication that are used every-
where in linear algebra.

Theorem 2.3.3
Assume that a is any scalar, and that A, B, and C are matrices of sizes such that the
indicated matrix products are defined. Then:

1. IA = A and AI = A where I denotes an
identity matrix.

2. A(BC) = (AB)C.

3. A(B+C) = AB+AC.

4. (B+C)A = BA+CA.

5. a(AB) = (aA)B = A(aB).

6. (AB)T = BT AT .

Proof. Condition (1) is Example 2.3.7; we prove (2), (4), and (6) and leave (3) and (5) as exercises.

1. If C =
[

c1 c2 · · · ck
]

in terms of its columns, then BC =
[

Bc1 Bc2 · · · Bck
]

by Defi-
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nition 2.9, so

A(BC) =
[

A(Bc1) A(Bc2) · · · A(Bck)
]

Definition 2.9

=
[
(AB)c1 (AB)c2 · · · (AB)ck)

]
Theorem 2.3.1

= (AB)C Definition 2.9

4. We know (Theorem 2.2.2) that (B+C)x = Bx+Cx holds for every column x. If we write
A =

[
a1 a2 · · · an

]
in terms of its columns, we get

(B+C)A =
[
(B+C)a1 (B+C)a2 · · · (B+C)an

]
Definition 2.9

=
[

Ba1 +Ca1 Ba2 +Ca2 · · · Ban +Can
]

Theorem 2.2.2

=
[

Ba1 Ba2 · · · Ban
]
+
[

Ca1 Ca2 · · · Can
]

Adding Columns

= BA+CA Definition 2.9

6. As in Section 2.1, write A = [ai j] and B = [bi j], so that AT = [a′i j] and BT = [b′i j] where a′i j = a ji

and b′ji = bi j for all i and j. If ci j denotes the (i, j)-entry of BT AT , then ci j is the dot product
of row i of BT with column j of AT . Hence

ci j = b′i1a′1 j +b′i2a′2 j + · · ·+b′ima′m j = b1ia j1 +b2ia j2 + · · ·+bmia jm

= a j1b1i +a j2b2i + · · ·+a jmbmi

But this is the dot product of row j of A with column i of B; that is, the ( j, i)-entry of AB;
that is, the (i, j)-entry of (AB)T . This proves (6).

Property 2 in Theorem 2.3.3 is called the associative law of matrix multiplication. It as-
serts that the equation A(BC) = (AB)C holds for all matrices (if the products are defined). Hence
this product is the same no matter how it is formed, and so is written simply as ABC. This ex-
tends: The product ABCD of four matrices can be formed several ways—for example, (AB)(CD),
[A(BC)]D, and A[B(CD)]—but the associative law implies that they are all equal and so are written
as ABCD. A similar remark applies in general: Matrix products can be written unambiguously with
no parentheses.

However, a note of caution about matrix multiplication must be taken: The fact that AB and
BA need not be equal means that the order of the factors is important in a product of matrices.
For example ABCD and ADCB may not be equal.

Warning

If the order of the factors in a product of matrices is changed, the product matrix may
change (or may not be defined). Ignoring this warning is a source of many errors by
students of linear algebra!
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Properties 3 and 4 in Theorem 2.3.3 are called distributive laws. They assert that A(B+C) =
AB+AC and (B+C)A = BA+CA hold whenever the sums and products are defined. These rules
extend to more than two terms and, together with Property 5, ensure that many manipulations
familiar from ordinary algebra extend to matrices. For example

A(2B−3C+D−5E) = 2AB−3AC+AD−5AE
(A+3C−2D)B = AB+3CB−2DB

Note again that the warning is in effect: For example A(B−C) need not equal AB−CA. These rules
make possible a lot of simplification of matrix expressions.

Example 2.3.8

Simplify the expression A(BC−CD)+A(C−B)D−AB(C−D).

Solution.

A(BC−CD)+A(C−B)D−AB(C−D) = A(BC)−A(CD)+(AC−AB)D− (AB)C+(AB)D
= ABC−ACD+ACD−ABD−ABC+ABD
= 0

Example 2.3.9 and Example 2.3.10 below show how we can use the properties in Theorem 2.3.2
to deduce other facts about matrix multiplication. Matrices A and B are said to commute if
AB = BA.

Example 2.3.9

Suppose that A, B, and C are n×n matrices and that both A and B commute with C; that
is, AC =CA and BC =CB. Show that AB commutes with C.

Solution. Showing that AB commutes with C means verifying that (AB)C =C(AB). The
computation uses the associative law several times, as well as the given facts that AC =CA
and BC =CB.

(AB)C = A(BC) = A(CB) = (AC)B = (CA)B =C(AB)

Example 2.3.10

Show that AB = BA if and only if (A−B)(A+B) = A2 −B2.

Solution. The following always holds:

(A−B)(A+B) = A(A+B)−B(A+B) = A2 +AB−BA−B2 (2.6)

Hence if AB = BA, then (A−B)(A+B) = A2 −B2 follows. Conversely, if this last equation
holds, then equation (2.6) becomes

A2 −B2 = A2 +AB−BA−B2
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This gives 0 = AB−BA, and AB = BA follows.

In Section 2.2 we saw (in Theorem 2.2.1) that every system of linear equations has the form

Ax = b

where A is the coefficient matrix, x is the column of variables, and b is the constant matrix. Thus
the system of linear equations becomes a single matrix equation. Matrix multiplication can yield
information about such a system.

Example 2.3.11

Consider a system Ax = b of linear equations where A is an m×n matrix. Assume that a
matrix C exists such that CA = In. If the system Ax = b has a solution, show that this
solution must be Cb. Give a condition guaranteeing that Cb is in fact a solution.

Solution. Suppose that x is any solution to the system, so that Ax = b. Multiply both
sides of this matrix equation by C to obtain, successively,

C(Ax) =Cb, (CA)x =Cb, Inx =Cb, x =Cb

This shows that if the system has a solution x, then that solution must be x =Cb, as
required. But it does not guarantee that the system has a solution. However, if we write
x1 =Cb, then

Ax1 = A(Cb) = (AC)b

Thus x1 =Cb will be a solution if the condition AC = Im is satisfied.

The ideas in Example 2.3.11 lead to important information about matrices; this will be pursued
in the next section.

Block Multiplication

Definition 2.10 Block Partition of a Matrix
It is often useful to consider matrices whose entries are themselves matrices (called blocks).
A matrix viewed in this way is said to be partitioned into blocks.

For example, writing a matrix B in the form

B =
[

b1 b2 · · · bk
]

where the b j are the columns of B

is such a block partition of B. Here is another example.
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Consider the matrices

A =


1 0 0 0 0
0 1 0 0 0
2 −1 4 2 1
3 1 −1 7 5

=

[
I2 023
P Q

]
and B =


4 −2
5 6
7 3

−1 0
1 6

=

[
X
Y

]

where the blocks have been labelled as indicated. This is a natural way to partition A into blocks in
view of the blocks I2 and 023 that occur. This notation is particularly useful when we are multiplying
the matrices A and B because the product AB can be computed in block form as follows:

AB =

[
I 0
P Q

][
X
Y

]
=

[
IX +0Y
PX +QY

]
=

[
X

PX +QY

]
=


4 −2
5 6

30 8
8 27


This is easily checked to be the product AB, computed in the conventional manner.

In other words, we can compute the product AB by ordinary matrix multiplication, using blocks
as entries. The only requirement is that the blocks be compatible. That is, the sizes of the blocks
must be such that all (matrix) products of blocks that occur make sense. This means that the number
of columns in each block of A must equal the number of rows in the corresponding block of B.

Theorem 2.3.4: Block Multiplication

If matrices A and B are partitioned compatibly into blocks, the product AB can be
computed by matrix multiplication using blocks as entries.

We omit the proof.
We have been using two cases of block multiplication. If B =

[
b1 b2 · · · bk

]
is a matrix

where the b j are the columns of B, and if the matrix product AB is defined, then we have

AB = A
[

b1 b2 · · · bk
]
=
[

Ab1 Ab2 · · · Abk
]

This is Definition 2.9 and is a block multiplication where A = [A] has only one block. As another
illustration,

Bx =
[

b1 b2 · · · bk
]


x1
x2
...

xk

= x1b1 + x2b2 + · · ·+ xkbk

where x is any k×1 column matrix (this is Definition 2.5).
It is not our intention to pursue block multiplication in detail here. However, we give one more

example because it will be used below.
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Theorem 2.3.5

Suppose matrices A =

[
B X
0 C

]
and A1 =

[
B1 X1
0 C1

]
are partitioned as shown where B and

B1 are square matrices of the same size, and C and C1 are also square of the same size.
These are compatible partitionings and block multiplication gives

AA1 =

[
B X
0 C

][
B1 X1
0 C1

]
=

[
BB1 BX1 +XC1

0 CC1

]

Example 2.3.12

Obtain a formula for Ak where A =

[
I X
0 0

]
is square and I is an identity matrix.

Solution. We have A2 =

[
I X
0 0

][
I X
0 0

]
=

[
I2 IX +X0
0 02

]
=

[
I X
0 0

]
= A. Hence

A3 = AA2 = AA = A2 = A. Continuing in this way, we see that Ak = A for every k ≥ 1.

Block multiplication has theoretical uses as we shall see. However, it is also useful in computing
products of matrices in a computer with limited memory capacity. The matrices are partitioned
into blocks in such a way that each product of blocks can be handled. Then the blocks are stored
in auxiliary memory and their products are computed one by one.

Directed Graphs

The study of directed graphs illustrates how matrix multiplication arises in ways other than the
study of linear equations or matrix transformations.

A directed graph consists of a set of points (called vertices) connected by arrows (called
edges). For example, the vertices could represent cities and the edges available flights. If the graph
has n vertices v1, v2, . . . , vn, the adjacency matrix A =

[
ai j
]

is the n×n matrix whose (i, j)-entry
ai j is 1 if there is an edge from v j to vi (note the order), and zero otherwise. For example, the

adjacency matrix of the directed graph shown is A =

 1 1 0
1 0 1
1 0 0

.

v1 v2

v3

A path of length r (or an r-path) from vertex j to vertex i is a
sequence of r edges leading from v j to vi. Thus v1 → v2 → v1 → v1 → v3
is a 4-path from v1 to v3 in the given graph. The edges are just the
paths of length 1, so the (i, j)-entry ai j of the adjacency matrix A is the
number of 1-paths from v j to vi. This observation has an important

extension:
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Theorem 2.3.6
If A is the adjacency matrix of a directed graph with n vertices, then the (i, j)-entry of Ar is
the number of r-paths v j → vi.

As an illustration, consider the adjacency matrix A in the graph shown. Then

A =

 1 1 0
1 0 1
1 0 0

 , A2 =

 2 1 1
2 1 0
1 1 0

 , and A3 =

 4 2 1
3 2 1
2 1 1


Hence, since the (2, 1)-entry of A2 is 2, there are two 2-paths v1 → v2 (in fact they are v1 → v1 → v2
and v1 → v3 → v2). Similarly, the (2, 3)-entry of A2 is zero, so there are no 2-paths v3 → v2, as the
reader can verify. The fact that no entry of A3 is zero shows that it is possible to go from any vertex
to any other vertex in exactly three steps.

To see why Theorem 2.3.6 is true, observe that it asserts that

the (i, j)-entry of Ar equals the number of r-paths v j → vi (2.7)

holds for each r ≥ 1. We proceed by induction on r (see Appendix ??). The case r = 1 is the
definition of the adjacency matrix. So assume inductively that (2.7) is true for some r ≥ 1; we must
prove that (2.7) also holds for r+1. But every (r+1)-path v j → vi is the result of an r-path v j → vk
for some k, followed by a 1-path vk → vi. Writing A =

[
ai j
]

and Ar =
[
bi j
]
, there are bk j paths of

the former type (by induction) and aik of the latter type, and so there are aikbk j such paths in all.
Summing over k, this shows that there are

ai1b1 j +ai2b2 j + · · ·+ainbn j (r+1)-paths v j → vi

But this sum is the dot product of the ith row
[

ai1 ai2 · · · ain
]

of A with the jth column
[

b1 j b2 j · · · bn j
]T

of Ar. As such, it is the (i, j)-entry of the matrix product ArA = Ar+1. This shows that (2.7) holds
for r+1, as required.

Exercises for 2.3

Exercise 2.3.1 Compute the following matrix
products.

[
1 3
0 −2

][
2 −1
0 1

]
a)

[
1 −1 2
2 0 4

] 2 3 1
1 9 7

−1 0 2

b)

[
5 0 −7
1 5 9

] 3
1

−1

c)

[
1 3 −3

] 3 0
−2 1

0 6

d)

 1 0 0
0 1 0
0 0 1

 3 −2
5 −7
9 7

e)
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[
1 −1 3

] 2
1

−8

f)

 2
1

−7

[ 1 −1 3
]

g)

[
3 1
5 2

][
2 −1

−5 3

]
h)

[
2 3 1
5 7 4

] a 0 0
0 b 0
0 0 c

i)

 a 0 0
0 b 0
0 0 c

 a′ 0 0
0 b′ 0
0 0 c′

j)

b.
[
−1 −6 −2

0 6 10

]
d.
[
−3 −15

]
f. [−23]

h.
[

1 0
0 1

]

j.

 aa′ 0 0
0 bb′ 0
0 0 cc′


Exercise 2.3.2 In each of the following cases, find
all possible products A2, AB, AC, and so on.

a. A =

[
1 2 3

−1 0 0

]
, B =

[
1 −2
1
2 3

]
,

C =

 −1 0
2 5
0 5


b. A =

[
1 2 4
0 1 −1

]
, B =

[
−1 6

1 0

]
,

C =

 2 0
−1 1

1 2



b. BA =

[
−1 4 −10

1 2 4

]
, B2 =

[
7 −6

−1 6

]
,

CB =

 −2 12
2 −6
1 6


AC =

[
4 10

−2 −1

]
, CA =

 2 4 8
−1 −1 −5

1 4 2


Exercise 2.3.3 Find a, b, a1, and b1 if:

a.
[

a b
a1 b1

][
3 −5

−1 2

]
=

[
1 −1
2 0

]
b.
[

2 1
−1 2

][
a b
a1 b1

]
=

[
7 2

−1 4

]

b. (a, b, a1, b1) = (3, 0, 1, 2)

Exercise 2.3.4 Verify that A2 −A−6I = 0 if:[
3 −1
0 −2

]
a)

[
2 2
2 −1

]
b)

b. A2 − A − 6I =

[
8 2
2 5

]
−
[

2 2
2 −1

]
−[

6 0
0 6

]
=

[
0 0
0 0

]

Exercise 2.3.5 Given A =

[
1 −1
0 1

]
, B =[

1 0 −2
3 1 0

]
,

C =

 1 0
2 1
5 8

, and D =

[
3 −1 2
1 0 5

]
, verify the

following facts from Theorem 2.3.1.

A(B−D) = AB−ADa) A(BC) = (AB)Cb)
(CD)T = DTCTc)

b. A(BC)=

[
1 −1
0 1

][
−9 −16

5 1

]
=

[
−14 −17

5 1

]
=[

−2 −1 −2
3 1 0

] 1 0
2 1
5 8

= (AB)C
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Exercise 2.3.6 Let A be a 2×2 matrix.

a. If A commutes with
[

0 1
0 0

]
, show that

A =

[
a b
0 a

]
for some a and b.

b. If A commutes with
[

0 0
1 0

]
, show that

A =

[
a 0
c a

]
for some a and c.

c. Show that A commutes with every 2× 2 ma-
trix
if and only if A =

[
a 0
0 a

]
for some a.

b. If A =

[
a b
c d

]
and E =

[
0 0
1 0

]
, compare

entries an AE and EA.

Exercise 2.3.7

a. If A2 can be formed, what can be said about
the size of A?

b. If AB and BA can both be formed, describe the
sizes of A and B.

c. If ABC can be formed, A is 3×3, and C is 5×5,
what size is B?

b. m×n and n×m for some m and n

Exercise 2.3.8

a. Find two 2×2 matrices A such that A2 = 0.

b. Find three 2×2 matrices A such that (i) A2 = I;
(ii) A2 = A.

c. Find 2×2 matrices A and B such that AB = 0
but BA 6= 0.

b. i.
[

1 0
0 1

]
,
[

1 0
0 −1

]
,
[

1 1
0 −1

]
ii.
[

1 0
0 0

]
,
[

1 0
0 1

]
,
[

1 1
0 0

]

Exercise 2.3.9 Write P =

 1 0 0
0 0 1
0 1 0

, and let A

be 3×n and B be m×3.

a. Describe PA in terms of the rows of A.

b. Describe BP in terms of the columns of B.

Exercise 2.3.10 Let A, B, and C be as in Exer-
cise 2.3.5. Find the (3, 1)-entry of CAB using exactly
six numerical multiplications.
Exercise 2.3.11 Compute AB, using the indicated
block partitioning.

A =


2 −1 3 1
1 0 1 2
0 0 1 0
0 0 0 1

 B =


1 2 0

−1 0 0
0 5 1
1 −1 0


Exercise 2.3.12 In each case give formulas for all
powers A, A2, A3, . . . of A using the block decompo-
sition indicated.

a. A =

 1 0 0
1 1 −1
1 −1 1



b. A =


1 −1 2 −1
0 1 0 0
0 0 −1 1
0 0 0 1



b. A2k =


1 −2k 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 for k = 0, 1, 2, . . . ,

A2k+1 = A2kA =


1 −(2k+1) 2 −1
0 1 0 0
0 0 −1 1
0 0 0 1


for k = 0, 1, 2, . . .

Exercise 2.3.13 Compute the following using
block multiplication (all blocks are k× k).
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[
I X

−Y I

][
I 0

Y I

]
a)

[
I X
0 I

][
I −X
0 I

]
b)[

I X
][

I X
]Tc)

[
I XT

][
−X I

]Td)[
I X
0 −I

]n

any n ≥ 1e) [
0 X
I 0

]n

any n ≥ 1f)

b.
[

I 0
0 I

]
= I2k

d. 0k

f.
[

Xm 0
0 Xm

]
if n = 2m;

[
0 Xm+1

Xm 0

]
if n =

2m+1

Exercise 2.3.14 Let A denote an m×n matrix.

a. If AX = 0 for every n×1 matrix X , show that
A = 0.

b. If YA = 0 for every 1×m matrix Y , show that
A = 0.

b. If Y is row i of the identity matrix I, then YA
is row i of IA = A.

Exercise 2.3.15

a. If U =

[
1 2
0 −1

]
, and AU = 0, show that

A = 0.

b. Let U be such that AU = 0 implies that A = 0.
If PU = QU , show that P = Q.

Exercise 2.3.16 Simplify the following expressions
where A, B, and C represent matrices.

a. A(3B−C)+(A−2B)C+2B(C+2A)

b. A(B+C−D)+B(C−A+D)− (A+B)C
+(A−B)D

c. AB(BC−CB)+(CA−AB)BC+CA(A−B)C

d. (A−B)(C−A)+(C−B)(A−C)+(C−A)2

b. AB−BA

d. 0

Exercise 2.3.17 If A=

[
a b
c d

]
where a 6= 0, show

that A factors in the form A =

[
1 0
x 1

][
y z
0 w

]
.

Exercise 2.3.18 If A and B commute with C, show
that the same is true of:

A+Ba) kA, k any scalarb)

b. (kA)C = k(AC) = k(CA) =C(kA)

Exercise 2.3.19 If A is any matrix, show that both
AAT and AT A are symmetric.

Exercise 2.3.20 If A and B are symmetric, show
that AB is symmetric if and only if AB = BA.

We have AT = A and BT = B, so (AB)T = BT AT = BA.
Hence AB is symmetric if and only if AB = BA.

Exercise 2.3.21 If A is a 2×2 matrix, show that
AT A = AAT if and only if A is symmetric or

A =

[
a b
−b a

]
for some a and b.

Exercise 2.3.22

a. Find all symmetric 2×2 matrices A such that
A2 = 0.

b. Repeat (a) if A is 3×3.

c. Repeat (a) if A is n×n.

b. A = 0
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Exercise 2.3.23 Show that there exist no 2× 2
matrices A and B such that AB−BA = I. [Hint: Ex-
amine the (1, 1)- and (2, 2)-entries.]

Exercise 2.3.24 Let B be an n× n matrix. Sup-
pose AB = 0 for some nonzero m×n matrix A. Show
that no n × n matrix C exists such that BC = I.

If BC = I, then AB = 0 gives 0 = 0C = (AB)C =
A(BC) = AI = A, contrary to the assumption that
A 6= 0.

Exercise 2.3.25 An autoparts manufacturer
makes fenders, doors, and hoods. Each requires
assembly and packaging carried out at factories:
Plant 1, Plant 2, and Plant 3. Matrix A be-
low gives the number of hours for assembly and
packaging, and matrix B gives the hourly rates
at the three plants. Explain the meaning of the
(3, 2)-entry in the matrix AB. Which plant is
the most economical to operate? Give reasons.

Assembly Packaging
Fenders
Doors
Hoods

 12 2
21 3
10 2

 = A

Plant 1 Plant 2 Plant 3
Assembly
Packaging

[
21 18 20
14 10 13

]
= B

Exercise 2.3.26 For the directed graph below, find
the adjacency matrix A, compute A3, and determine
the number of paths of length 3 from v1 to v4 and
from v2 to v3.

v1 v2

v3v4

3 paths v1 → v4, 0 paths v2 → v3

Exercise 2.3.27 In each case either show the state-
ment is true, or give an example showing that it is
false.

a. If A2 = I, then A = I.

b. If AJ = A, then J = I.

c. If A is square, then (AT )3 = (A3)T .

d. If A is symmetric, then I +A is symmetric.

e. If AB = AC and A 6= 0, then B =C.

f. If A 6= 0, then A2 6= 0.

g. If A has a row of zeros, so also does BA for all
B.

h. If A commutes with A+B, then A commutes
with B.

i. If B has a column of zeros, so also does AB.

j. If AB has a column of zeros, so also does B.

k. If A has a row of zeros, so also does AB.

l. If AB has a row of zeros, so also does A.

b. False. If A =

[
1 0
0 0

]
= J, then AJ = A but

J 6= I.

d. True. Since AT = A, we have (I +AT = IT +
AT = I +A.

f. False. If A =

[
0 1
0 0

]
, then A 6= 0 but A2 = 0.

h. True. We have A(A + B) = (A + B)A; that
is, A2 + AB = A2 + BA. Subtracting A2 gives
AB = BA.

j. False. A =

[
1 −2
2 4

]
, B =

[
2 4
1 2

]
l. False. See (j).

Exercise 2.3.28

a. If A and B are 2×2 matrices whose rows sum
to 1, show that the rows of AB also sum to 1.

b. Repeat part (a) for the case where A and B
are n×n.
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b. If A = [ai j] and B = [bi j] and ∑ j ai j = 1 = ∑ j bi j,
then the (i, j)-entry of AB is ci j = ∑k aikbk j,
whence ∑ j ci j = ∑ j ∑k aikbk j = ∑k aik(∑ j bk j) =

∑k aik = 1. Alternatively: If e = (1, 1, . . . , 1),
then the rows of A sum to 1 if and only if Ae=
e. If also Be= e then (AB)e= A(Be) = Ae= e.

Exercise 2.3.29 Let A and B be n×n matrices for
which the systems of equations Ax = 0 and Bx = 0
each have only the trivial solution x = 0. Show that
the system (AB)x = 0 has only the trivial solution.

Exercise 2.3.30 The trace of a square matrix A,
denoted tr A, is the sum of the elements on the main
diagonal of A. Show that, if A and B are n× n ma-
trices:

tr (A+B) = tr A+ tr B.a)
tr (kA) = k tr (A) for any number k.b)
tr (AT ) = tr (A).c) tr (AB) = tr (BA).d)
tr (AAT ) is the sum of the squares of all entries
of A.

e)

b. If A = [ai j], then tr (kA) = tr [kai j] = ∑
n
i=1 kaii =

k ∑
n
i=1 aii = k tr (A).

e. Write AT =
[
a′i j

]
, where a′i j = a ji. Then AAT =(

∑
n
k=1 aika′k j

)
, so tr (AAT )=∑

n
i=1
[
∑

n
k=1 aika′ki

]
=

∑
n
i=1 ∑

n
k=1 a2

ik.

Exercise 2.3.31 Show that AB−BA = I is impos-
sible. [Hint: See the preceding exercise.]

Exercise 2.3.32 A square matrix P is called an
idempotent if P2 = P. Show that:

a. 0 and I are idempotents.

b.
[

1 1
0 0

]
,
[

1 0
1 0

]
, and 1

2

[
1 1
1 1

]
, are idem-

potents.

c. If P is an idempotent, so is I−P. Show further
that P(I −P) = 0.

d. If P is an idempotent, so is PT .

e. If P is an idempotent, so is Q = P+AP−PAP
for any square matrix A (of the same size as
P).

f. If A is n×m and B is m× n, and if AB = In,
then BA is an idempotent.

e. Observe that PQ = P2 +PAP−P2AP = P, so
Q2 = PQ+APQ−PAPQ = P+AP−PAP = Q.

Exercise 2.3.33 Let A and B be n× n diagonal
matrices (all entries off the main diagonal are zero).

a. Show that AB is diagonal and AB = BA.

b. Formulate a rule for calculating XA if X is
m×n.

c. Formulate a rule for calculating AY if Y is n×k.

Exercise 2.3.34 If A and B are n× n matrices,
show that:

a. AB = BA if and only if

(A+B)2 = A2 +2AB+B2

b. AB = BA if and only if

(A+B)(A−B) = (A−B)(A+B)

b. (A+B)(A−B) = A2 −AB+BA−B2, and (A−
B)(A+B) =A2+AB−BA−B2. These are equal
if and only if −AB+ BA = AB− BA; that is,
2BA = 2AB; that is, BA = AB.

Exercise 2.3.35 In Theorem 2.3.3, prove

part 3;a) part 5.b)

b. (A+B)(A−B) = A2 −AB+BA−B2 and (A−
B)(A+B) =A2−BA+AB−B2. These are equal
if and only if −AB+BA = −BA+AB, that is
2AB = 2BA, that is AB = BA.
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Exercise 2.3.36 Show that the product of two
reduced row-echelon matrices is also reduced row-
echelon.

See V. Camillo, Communications in Algebra 25(6),
(1997), 1767–1782; Theorem 2.3.2.
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2.4 Matrix Inverses

Three basic operations on matrices, addition, multiplication, and subtraction, are analogs for matri-
ces of the same operations for numbers. In this section we introduce the matrix analog of numerical
division.

To begin, consider how a numerical equation ax = b is solved when a and b are known numbers.
If a = 0, there is no solution (unless b = 0). But if a 6= 0, we can multiply both sides by the inverse
a−1 = 1

a to obtain the solution x = a−1b. Of course multiplying by a−1 is just dividing by a, and the
property of a−1 that makes this work is that a−1a = 1. Moreover, we saw in Section 2.2 that the
role that 1 plays in arithmetic is played in matrix algebra by the identity matrix I. This suggests
the following definition.

Definition 2.11 Matrix Inverses
If A is a square matrix, a matrix B is called an inverse of A if and only if

AB = I and BA = I

A matrix A that has an inverse is called an invertible matrix.8

Example 2.4.1

Show that B =

[
−1 1

1 0

]
is an inverse of A =

[
0 1
1 1

]
.

Solution. Compute AB and BA.

AB =

[
0 1
1 1

][
−1 1

1 0

]
=

[
1 0
0 1

]
BA =

[
−1 1

1 0

][
0 1
1 1

]
=

[
1 0
0 1

]
Hence AB = I = BA, so B is indeed an inverse of A.

Example 2.4.2

Show that A =

[
0 0
1 3

]
has no inverse.

Solution. Let B =

[
a b
c d

]
denote an arbitrary 2×2 matrix. Then

AB =

[
0 0
1 3

][
a b
c d

]
=

[
0 0

a+3c b+3d

]
so AB has a row of zeros. Hence AB cannot equal I for any B.

8Only square matrices have inverses. Even though it is plausible that nonsquare matrices A and B could exist
such that AB = Im and BA = In, where A is m× n and B is n×m, we claim that this forces n = m. Indeed, if m < n
there exists a nonzero column x such that Ax = 0 (by Theorem 1.3.1), so x = Inx = (BA)x = B(Ax) = B(0) = 0, a
contradiction. Hence m ≥ n. Similarly, the condition AB = Im implies that n ≥ m. Hence m = n so A is square.
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The argument in Example 2.4.2 shows that no zero matrix has an inverse. But Example 2.4.2
also shows that, unlike arithmetic, it is possible for a nonzero matrix to have no inverse. However,
if a matrix does have an inverse, it has only one.

Theorem 2.4.1
If B and C are both inverses of A, then B =C.

Proof. Since B and C are both inverses of A, we have CA = I = AB. Hence

B = IB = (CA)B =C(AB) =CI =C

If A is an invertible matrix, the (unique) inverse of A is denoted A−1. Hence A−1 (when it exists)
is a square matrix of the same size as A with the property that

AA−1 = I and A−1A = I

These equations characterize A−1 in the following sense:

Inverse Criterion: If somehow a matrix B can be found such that AB = I and BA = I,
then A is invertible and B is the inverse of A; in symbols, B = A−1.

This is a way to verify that the inverse of a matrix exists. Example 2.4.3 and Example 2.4.4 offer
illustrations.

Example 2.4.3

If A =

[
0 −1
1 −1

]
, show that A3 = I and so find A−1.

Solution. We have A2 =

[
0 −1
1 −1

][
0 −1
1 −1

]
=

[
−1 1
−1 0

]
, and so

A3 = A2A =

[
−1 1
−1 0

][
0 −1
1 −1

]
=

[
1 0
0 1

]
= I

Hence A3 = I, as asserted. This can be written as A2A = I = AA2, so it shows that A2 is the
inverse of A. That is, A−1 = A2 =

[
−1 1
−1 0

]
.

The next example presents a useful formula for the inverse of a 2×2 matrix A =

[
a b
c d

]
when

it exists. To state it, we define the determinant det A and the adjugate adj A of the matrix A as
follows:

det
[

a b
c d

]
= ad −bc, and adj

[
a b
c d

]
=

[
d −b

−c a

]
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Example 2.4.4

If A =

[
a b
c d

]
, show that A has an inverse if and only if det A 6= 0, and in this case

A−1 = 1
det A adj A

Solution. For convenience, write e = det A = ad −bc and B = adj A =

[
d −b

−c a

]
. Then

AB = eI = BA as the reader can verify. So if e 6= 0, scalar multiplication by 1
e gives

A(1
e B) = I = (1

e B)A

Hence A is invertible and A−1 = 1
e B. Thus it remains only to show that if A−1 exists, then

e 6= 0.
We prove this by showing that assuming e = 0 leads to a contradiction. In fact, if e = 0,
then AB = eI = 0, so left multiplication by A−1 gives A−1AB = A−10; that is, IB = 0, so
B = 0. But this implies that a, b, c, and d are all zero, so A = 0, contrary to the assumption
that A−1 exists.

As an illustration, if A =

[
2 4

−3 8

]
then det A = 2 ·8−4 · (−3) = 28 6= 0. Hence A is invertible and

A−1 = 1
det A adj A = 1

28

[
8 −4
3 2

]
, as the reader is invited to verify.

The determinant and adjugate will be defined in Chapter 3 for any square matrix, and the
conclusions in Example 2.4.4 will be proved in full generality.

Inverses and Linear Systems

Matrix inverses can be used to solve certain systems of linear equations. Recall that a system of
linear equations can be written as a single matrix equation

Ax = b

where A and b are known and x is to be determined. If A is invertible, we multiply each side of the
equation on the left by A−1 to get

A−1Ax = A−1b
Ix = A−1b
x = A−1b

This gives the solution to the system of equations (the reader should verify that x = A−1b really
does satisfy Ax = b). Furthermore, the argument shows that if x is any solution, then necessarily
x = A−1b, so the solution is unique. Of course the technique works only when the coefficient matrix
A has an inverse. This proves Theorem 2.4.2.
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Theorem 2.4.2
Suppose a system of n equations in n variables is written in matrix form as

Ax = b

If the n×n coefficient matrix A is invertible, the system has the unique solution

x = A−1b

Example 2.4.5

Use Example 2.4.4 to solve the system
{

5x1 − 3x2 =−4
7x1 + 4x2 = 8 .

Solution. In matrix form this is Ax = b where A =

[
5 −3
7 4

]
, x =

[
x1
x2

]
, and b =

[
−4

8

]
.

Then det A = 5 ·4− (−3) ·7 = 41, so A is invertible and A−1 = 1
41

[
4 3

−7 5

]
by

Example 2.4.4. Thus Theorem 2.4.2 gives

x = A−1b = 1
41

[
4 3

−7 5

][
−4

8

]
= 1

41

[
8

68

]
so the solution is x1 =

8
41 and x2 =

68
41 .

An Inversion Method

If a matrix A is n× n and invertible, it is desirable to have an efficient technique for finding the
inverse. The following procedure will be justified in Section 2.5.

Matrix Inversion Algorithm

If A is an invertible (square) matrix, there exists a sequence of elementary row operations
that carry A to the identity matrix I of the same size, written A → I. This same series of row
operations carries I to A−1; that is, I → A−1. The algorithm can be summarized as follows:[

A I
]
→
[

I A−1 ]
where the row operations on A and I are carried out simultaneously.
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Example 2.4.6

Use the inversion algorithm to find the inverse of the matrix

A =

 2 7 1
1 4 −1
1 3 0



Solution. Apply elementary row operations to the double matrix

[
A I

]
=

 2 7 1 1 0 0
1 4 −1 0 1 0
1 3 0 0 0 1


so as to carry A to I. First interchange rows 1 and 2. 1 4 −1 0 1 0

2 7 1 1 0 0
1 3 0 0 0 1


Next subtract 2 times row 1 from row 2, and subtract row 1 from row 3. 1 4 −1 0 1 0

0 −1 3 1 −2 0
0 −1 1 0 −1 1


Continue to reduced row-echelon form. 1 0 11 4 −7 0

0 1 −3 −1 2 0
0 0 −2 −1 1 1




1 0 0 −3
2

−3
2

11
2

0 1 0 1
2

1
2

−3
2

0 0 1 1
2

−1
2

−1
2


Hence A−1 = 1

2

 −3 −3 11
1 1 −3
1 −1 −1

, as is readily verified.

Given any n × n matrix A, Theorem 1.2.1 shows that A can be carried by elementary row
operations to a matrix R in reduced row-echelon form. If R = I, the matrix A is invertible (this
will be proved in the next section), so the algorithm produces A−1. If R 6= I, then R has a row of
zeros (it is square), so no system of linear equations Ax = b can have a unique solution. But then
A is not invertible by Theorem 2.4.2. Hence, the algorithm is effective in the sense conveyed in
Theorem 2.4.3.
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Theorem 2.4.3
If A is an n×n matrix, either A can be reduced to I by elementary row operations or it
cannot. In the first case, the algorithm produces A−1; in the second case, A−1 does not exist.

Properties of Inverses

The following properties of an invertible matrix are used everywhere.

Example 2.4.7: Cancellation Laws

Let A be an invertible matrix. Show that:

1. If AB = AC, then B =C.

2. If BA =CA, then B =C.

Solution. Given the equation AB = AC, left multiply both sides by A−1 to obtain
A−1AB = A−1AC. Thus IB = IC, that is B =C. This proves (1) and the proof of (2) is left to
the reader.

Properties (1) and (2) in Example 2.4.7 are described by saying that an invertible matrix can be
“left cancelled” and “right cancelled”, respectively. Note however that “mixed” cancellation does
not hold in general: If A is invertible and AB =CA, then B and C may not be equal, even if both
are 2×2. Here is a specific example:

A =

[
1 1
0 1

]
, B =

[
0 0
1 2

]
, C =

[
1 1
1 1

]
Sometimes the inverse of a matrix is given by a formula. Example 2.4.4 is one illustration; Exam-
ple 2.4.8 and Example 2.4.9 provide two more. The idea is the Inverse Criterion: If a matrix B can
be found such that AB = I = BA, then A is invertible and A−1 = B.

Example 2.4.8

If A is an invertible matrix, show that the transpose AT is also invertible. Show further that
the inverse of AT is just the transpose of A−1; in symbols, (AT )−1 = (A−1)T .

Solution. A−1 exists (by assumption). Its transpose (A−1)T is the candidate proposed for
the inverse of AT . Using the inverse criterion, we test it as follows:

AT (A−1)T =(A−1A)T = IT = I
(A−1)T AT =(AA−1)T = IT = I

Hence (A−1)T is indeed the inverse of AT ; that is, (AT )−1 = (A−1)T .
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Example 2.4.9

If A and B are invertible n×n matrices, show that their product AB is also invertible and
(AB)−1 = B−1A−1.

Solution. We are given a candidate for the inverse of AB, namely B−1A−1. We test it as
follows:

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

Hence B−1A−1 is the inverse of AB; in symbols, (AB)−1 = B−1A−1.

We now collect several basic properties of matrix inverses for reference.

Theorem 2.4.4
All the following matrices are square matrices of the same size.

1. I is invertible and I−1 = I.

2. If A is invertible, so is A−1, and (A−1)−1 = A.

3. If A and B are invertible, so is AB, and (AB)−1 = B−1A−1.

4. If A1, A2, . . . , Ak are all invertible, so is their product A1A2 · · ·Ak, and

(A1A2 · · ·Ak)
−1 = A−1

k · · ·A−1
2 A−1

1 .

5. If A is invertible, so is Ak for any k ≥ 1, and (Ak)−1 = (A−1)k.

6. If A is invertible and a 6= 0 is a number, then aA is invertible and (aA)−1 = 1
aA−1.

7. If A is invertible, so is its transpose AT , and (AT )−1 = (A−1)T .

Proof.
1. This is an immediate consequence of the fact that I2 = I.

2. The equations AA−1 = I = A−1A show that A is the inverse of A−1; in symbols, (A−1)−1 = A.

3. This is Example 2.4.9.

4. Use induction on k. If k = 1, there is nothing to prove, and if k = 2, the result is property
3. If k > 2, assume inductively that (A1A2 · · ·Ak−1)

−1 = A−1
k−1 · · ·A

−1
2 A−1

1 . We apply this fact
together with property 3 as follows:

[A1A2 · · ·Ak−1Ak]
−1 = [(A1A2 · · ·Ak−1)Ak]

−1

= A−1
k (A1A2 · · ·Ak−1)

−1

= A−1
k

(
A−1

k−1 · · ·A
−1
2 A−1

1
)
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So the proof by induction is complete.

5. This is property 4 with A1 = A2 = · · ·= Ak = A.

6. This is left as Exercise 2.4.29.

7. This is Example 2.4.8.

The reversal of the order of the inverses in properties 3 and 4 of Theorem 2.4.4 is a consequence
of the fact that matrix multiplication is not commutative. Another manifestation of this comes
when matrix equations are dealt with. If a matrix equation B =C is given, it can be left-multiplied
by a matrix A to yield AB = AC. Similarly, right-multiplication gives BA =CA. However, we cannot
mix the two: If B = C, it need not be the case that AB = CA even if A is invertible, for example,
A =

[
1 1
0 1

]
, B =

[
0 0
1 0

]
=C.

Part 7 of Theorem 2.4.4 together with the fact that (AT )T = A gives

Corollary 2.4.1

A square matrix A is invertible if and only if AT is invertible.

Example 2.4.10

Find A if (AT −2I)−1 =

[
2 1

−1 0

]
.

Solution. By Theorem 2.4.4(2) and Example 2.4.4, we have

(AT −2I) =
[(

AT −2I
)−1
]−1

=

[
2 1

−1 0

]−1

=

[
0 −1
1 2

]

Hence AT = 2I +
[

0 −1
1 2

]
=

[
2 −1
1 4

]
, so A =

[
2 1

−1 4

]
by Theorem 2.4.4(7).

The following important theorem collects a number of conditions all equivalent9 to invertibility.
It will be referred to frequently below.

Theorem 2.4.5: Inverse Theorem
The following conditions are equivalent for an n×n matrix A:

1. A is invertible.

2. The homogeneous system Ax = 0 has only the trivial solution x = 0.

9If p and q are statements, we say that p implies q (written p ⇒ q) if q is true whenever p is true. The statements
are called equivalent if both p ⇒ q and q ⇒ p (written p ⇔ q, spoken “p if and only if q”). See Appendix ??.
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3. A can be carried to the identity matrix In by elementary row operations.

4. The system Ax = b has at least one solution x for every choice of column b.

5. There exists an n×n matrix C such that AC = In.

Proof. We show that each of these conditions implies the next, and that (5) implies (1).
(1) ⇒ (2). If A−1 exists, then Ax = 0 gives x = Inx = A−1Ax = A−10 = 0.
(2) ⇒ (3). Assume that (2) is true. Certainly A → R by row operations where R is a reduced,

row-echelon matrix. It suffices to show that R = In. Suppose that this is not the case. Then R has
a row of zeros (being square). Now consider the augmented matrix

[
A 0

]
of the system Ax = 0.

Then
[

A 0
]
→
[

R 0
]

is the reduced form, and
[

R 0
]

also has a row of zeros. Since R is
square there must be at least one nonleading variable, and hence at least one parameter. Hence the
system Ax = 0 has infinitely many solutions, contrary to (2). So R = In after all.

(3) ⇒ (4). Consider the augmented matrix
[

A b
]

of the system Ax= b. Using (3), let A → In
by a sequence of row operations. Then these same operations carry

[
A b

]
→
[

In c
]

for some
column c. Hence the system Ax = b has a solution (in fact unique) by gaussian elimination. This
proves (4).

(4) ⇒ (5). Write In =
[

e1 e2 · · · en
]

where e1, e2, . . . , en are the columns of In. For each
j = 1, 2, . . . , n, the system Ax= e j has a solution c j by (4), so Ac j = e j. Now let C =

[
c1 c2 · · · cn

]
be the n×n matrix with these matrices c j as its columns. Then Definition 2.9 gives (5):

AC = A
[

c1 c2 · · · cn
]
=
[

Ac1 Ac2 · · · Acn
]
=
[

e1 e2 · · · en
]
= In

(5) ⇒ (1). Assume that (5) is true so that AC = In for some matrix C. Then Cx = 0 implies x = 0
(because x = Inx = ACx = A0 = 0). Thus condition (2) holds for the matrix C rather than A. Hence
the argument above that (2) ⇒ (3) ⇒ (4) ⇒ (5) (with A replaced by C) shows that a matrix C′

exists such that CC′ = In. But then

A = AIn = A(CC′) = (AC)C′ = InC′ =C′

Thus CA =CC′ = In which, together with AC = In, shows that C is the inverse of A. This proves (1).

The proof of (5) ⇒ (1) in Theorem 2.4.5 shows that if AC = I for square matrices, then necessarily
CA = I, and hence that C and A are inverses of each other. We record this important fact for
reference.

Corollary 2.4.1

If A and C are square matrices such that AC = I, then also CA = I. In particular, both A and
C are invertible, C = A−1, and A =C−1.

Here is a quick way to remember Corollary 2.4.1. If A is a square matrix, then

1. If AC = I then C = A−1.
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2. If CA = I then C = A−1.

Observe that Corollary 2.4.1 is false if A and C are not square matrices. For example, we have

[
1 2 1
1 1 1

] −1 1
1 −1
0 1

= I2 but

 −1 1
1 −1
0 1

[ 1 2 1
1 1 1

]
6= I3

In fact, it is verified in the footnote on page 91 that if AB = Im and BA = In, where A is m×n and
B is n×m, then m = n and A and B are (square) inverses of each other.

An n×n matrix A has rank n if and only if (3) of Theorem 2.4.5 holds. Hence

Corollary 2.4.2

An n×n matrix A is invertible if and only if rank A = n.

Here is a useful fact about inverses of block matrices.

Example 2.4.11

Let P =

[
A X
0 B

]
and Q =

[
A 0
Y B

]
be block matrices where A is m×m and B is n×n

(possibly m 6= n).

a. Show that P is invertible if and only if A and B are both invertible. In this case, show
that

P−1 =

[
A−1 −A−1XB−1

0 B−1

]
b. Show that Q is invertible if and only if A and B are both invertible. In this case, show

that
Q−1 =

[
A−1 0

−B−1YA−1 B−1

]

Solution. We do (a.) and leave (b.) for the reader.

a. If A−1 and B−1 both exist, write R =

[
A−1 −A−1XB−1

0 B−1

]
. Using block

multiplication, one verifies that PR = Im+n = RP, so P is invertible, and P−1 = R.
Conversely, suppose that P is invertible, and write P−1 =

[
C V
W D

]
in block form,

where C is m×m and D is n×n.
Then the equation PP−1 = In+m becomes[

A X
0 B

][
C V
W D

]
=

[
AC+XW AV +XD

BW BD

]
= Im+n =

[
Im 0
0 In

]
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using block notation. Equating corresponding blocks, we find

AC+XW = Im, BW = 0, and BD = In

Hence B is invertible because BD = In (by Corollary 2.4.1), then W = 0 because
BW = 0, and finally, AC = Im (so A is invertible, again by Corollary 2.4.1).

Inverses of Matrix Transformations

Let T = TA : Rn → Rn denote the matrix transformation induced by the n×n matrix A. Since A is
square, it may very well be invertible, and this leads to the question:

What does it mean geometrically for T that A is invertible?

To answer this, let T ′ = TA−1 : Rn → Rn denote the transformation induced by A−1. Then

T ′ [T (x)] = A−1 [Ax] = Ix = x
for all x in Rn

T [T ′(x)] = A
[
A−1x

]
= Ix = x

(2.8)

The first of these equations asserts that, if T carries x to a vector T (x), then T ′ carries T (x) right
back to x; that is T ′ “reverses” the action of T . Similarly T “reverses” the action of T ′. Conditions
(2.8) can be stated compactly in terms of composition:

T ′ ◦T = 1Rn and T ◦T ′ = 1Rn (2.9)

When these conditions hold, we say that the matrix transformation T ′ is an inverse of T , and we
have shown that if the matrix A of T is invertible, then T has an inverse (induced by A−1).

The converse is also true: If T has an inverse, then its matrix A must be invertible. Indeed,
suppose S : Rn → Rn is any inverse of T , so that S ◦T = 1Rn and T ◦S = 1Rn . It can be shown that
S is also a matrix transformation. If B is the matrix of S, we have

BAx = S [T (x)] = (S◦T )(x) = 1Rn(x) = x = Inx for all x in Rn

It follows by Theorem 2.2.6 that BA = In, and a similar argument shows that AB = In. Hence A is
invertible with A−1 = B. Furthermore, the inverse transformation S has matrix A−1, so S = T ′ using
the earlier notation. This proves the following important theorem.

Theorem 2.4.6
Let T : Rn → Rn denote the matrix transformation induced by an n×n matrix A. Then

A is invertible if and only if T has an inverse.

In this case, T has exactly one inverse (which we denote as T−1), and T−1 : Rn → Rn is the
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transformation induced by the matrix A−1. In other words

(TA)
−1 = TA−1

The geometrical relationship between T and T−1 is embodied in equations (2.8) above:

T−1 [T (x)] = x and T
[
T−1(x)

]
= x for all x in Rn

These equations are called the fundamental identities relating T and T−1. Loosely speaking,
they assert that each of T and T−1 “reverses” or “undoes” the action of the other.

This geometric view of the inverse of a linear transformation provides a new way to find the
inverse of a matrix A. More precisely, if A is an invertible matrix, we proceed as follows:

1. Let T be the linear transformation induced by A.

2. Obtain the linear transformation T−1 which “reverses” the action of T .

3. Then A−1 is the matrix of T−1.

Here is an example.

Example 2.4.12

0

y = x

Q1

[
x
y

]
=

[
y
x

]

[
x
y

]

x

y
Find the inverse of A =

[
0 1
1 0

]
by viewing it as a linear

transformation R2 → R2.

Solution. If x =

[
x
y

]
the vector Ax =

[
0 1
1 0

][
x
y

]
=

[
y
x

]
is the result of reflecting x in the line y = x (see the diagram).
Hence, if Q1 : R2 → R2 denotes reflection in the line y = x,
then A is the matrix of Q1. Now observe that Q1 reverses itself
because reflecting a vector x twice results in x. Consequently

Q−1
1 = Q1. Since A−1 is the matrix of Q−1

1 and A is the matrix of Q, it follows that A−1 = A.
Of course this conclusion is clear by simply observing directly that A2 = I, but the geometric
method can often work where these other methods may be less straightforward.

Exercises for 2.4



2.4. Matrix Inverses 103

Exercise 2.4.1 In each case, show that the matri-
ces are inverses of each other.

a.
[

3 5
1 2

]
,
[

2 −5
−1 3

]

b.
[

3 0
1 −4

]
, 1

2

[
4 0
1 −3

]

c.

 1 2 0
0 2 3
1 3 1

,

 7 2 −6
−3 −1 3

2 1 −2


d.
[

3 0
0 5

]
,
[ 1

3 0
0 1

5

]

Exercise 2.4.2 Find the inverse of each of the fol-
lowing matrices.[

1 −1
−1 3

]
a)

[
4 1
3 2

]
b) 1 0 −1

3 2 0
−1 −1 0

c)

 1 −1 2
−5 7 −11
−2 3 −5

d)

 3 5 0
3 7 1
1 2 1

e)

 3 1 −1
2 1 0
1 5 −1

f)

 2 4 1
3 3 2
4 1 4

g)

 3 1 −1
5 2 0
1 1 −1

h)

 3 1 2
1 −1 3
1 2 4

i)


−1 4 5 2

0 0 0 −1
1 −2 −2 0
0 −1 −1 0

j)


1 0 7 5
0 1 3 6
1 −1 5 2
1 −1 5 1

k)


1 2 0 0 0
0 1 3 0 0
0 0 1 5 0
0 0 0 1 7
0 0 0 0 1

l)

b. 1
5

[
2 −1

−3 4

]

d.

 2 −1 3
3 1 −1
1 1 −2



f. 1
10

 1 4 −1
−2 2 2
−9 14 −1



h. 1
4

 2 0 −2
−5 2 5
−3 2 −1



j.


0 0 1 −2

−1 −2 −1 −3
1 2 1 2
0 −1 0 0



l.


1 −2 6 −30 210
0 1 −3 15 −105
0 0 1 −5 35
0 0 0 1 −7
0 0 0 0 1


Exercise 2.4.3 In each case, solve the systems
of equations by finding the inverse of the coefficient
matrix.

3x− y= 5
2x+ 2y= 1

a) 2x− 3y= 0
x− 4y= 1

b)

x+ y+ 2z= 5
x+ y+ z= 0
x+ 2y+ 4z=−2

c) x+ 4y+ 2z= 1
2x+ 3y+ 3z=−1
4x+ y+ 4z= 0

d)

b.
[

x
y

]
= 1

5

[
4 −3
1 −2

][
0
1

]
= 1

5

[
−3
−2

]

d.

 x
y
z

 = 1
5

 9 −14 6
4 −4 1

−10 15 −5

 1
−1

0

 =

1
5

 23
8

−25



Exercise 2.4.4 Given A−1 =

 1 −1 3
2 0 5

−1 1 0

:

a. Solve the system of equations Ax =

 1
−1

3

.

b. Find a matrix B such that

AB =

 1 −1 2
0 1 1
1 0 0

.
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c. Find a matrix C such that
CA =

[
1 2 −1
3 1 1

]
.

b. B = A−1AB =

 4 −2 1
7 −2 4

−1 2 −1


Exercise 2.4.5 Find A when

(3A)−1 =

[
1 −1
0 1

]
a) (2A)T =

[
1 −1
2 3

]−1

b)

(I +3A)−1 =

[
2 0
1 −1

]
c)

(I −2AT )−1 =

[
2 1
1 1

]
d) (

A
[

1 −1
0 1

])−1

=

[
2 3
1 1

]
e) ([

1 0
2 1

]
A
)−1

=

[
1 0
2 2

]
f)

(
AT −2I

)−1
= 2

[
1 1
2 3

]
g)

(
A−1 −2I

)T
=−2

[
1 1
1 0

]
h)

b. 1
10

[
3 −2
1 1

]

d. 1
2

[
0 1
1 −1

]

f. 1
2

[
2 0

−6 1

]

h. −1
2

[
1 1
1 0

]
Exercise 2.4.6 Find A when:

A−1 =

 1 −1 3
2 1 1
0 2 −2

a) A−1 =

 0 1 −1
1 2 1
1 0 1

b)

b. A = 1
2

 2 −1 3
0 1 −1

−2 1 −1



Exercise 2.4.7 Given

 x1
x2
x3

=

 3 −1 2
1 0 4
2 1 0

 y1
y2
y3


and

 z1
z2
z3

=

 1 −1 1
2 −3 0

−1 1 −2

 y1
y2
y3

, express the

variables x1, x2, and x3 in terms of z1, z2, and z3.

Exercise 2.4.8

a. In the system 3x+ 4y= 7
4x+ 5y= 1

, substitute the new

variables x′ and y′ given by x=−5x′ + 4y′

y= 4x′ − 3y′
.

Then find x and y.

b. Explain part (a) by writing the equations as

A
[

x
y

]
=

[
7
1

]
and

[
x
y

]
= B

[
x′

y′

]
. What

is the relationship between A and B?

b. A and B are inverses.

Exercise 2.4.9 In each case either prove the as-
sertion or give an example showing that it is false.

a. If A 6= 0 is a square matrix, then A is invertible.

b. If A and B are both invertible, then A+B is
invertible.

c. If A and B are both invertible, then (A−1B)T

is invertible.

d. If A4 = 3I, then A is invertible.

e. If A2 = A and A 6= 0, then A is invertible.

f. If AB = B for some B 6= 0, then A is invertible.

g. If A is invertible and skew symmetric (AT =
−A), the same is true of A−1.

h. If A2 is invertible, then A is invertible.

i. If AB = I, then A and B commute.
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b. False.
[

1 0
0 1

]
+

[
1 0
0 −1

]
d. True. A−1 = 1

3 A3

f. False. A = B =

[
1 0
0 0

]
h. True. If (A2)B = I, then A(AB) = I; use Theo-

rem 2.4.5.

Exercise 2.4.10

a. If A, B, and C are square matrices and AB = I,
I =CA, show that A is invertible and B =C =
A−1.

b. If C−1 = A, find the inverse of CT in terms of
A.

b. (CT )−1 = (C−1)T = AT because C−1 =
(A−1)−1 = A.

Exercise 2.4.11 Suppose CA= Im, where C is m×n
and A is n×m. Consider the system Ax = b of n
equations in m variables.

a. Show that this system has a unique solution
CB if it is consistent.

b. If C =

[
0 −5 1
3 0 −1

]
and A =

 2 −3
1 −2
6 −10

,

find x (if it exists) when

(i) b =

 1
0
3

; and (ii) b =

 7
4

22

.

b. (i) Inconsistent. (ii)
[

x1
x2

]
=

[
2

−1

]

Exercise 2.4.12 Verify that A =

[
1 −1
0 2

]
satis-

fies A2 −3A+2I = 0, and use this fact to show that
A−1 = 1

2(3I −A).

Exercise 2.4.13 Let Q =


a −b −c −d
b a −d c
c d a −b
d −c b a

.

Compute QQT and so find Q−1 if Q 6= 0.

Exercise 2.4.14 Let U =

[
0 1
1 0

]
. Show that

each of U , −U , and −I2 is its own inverse and that
the product of any two of these is the third.

Exercise 2.4.15 Consider A =

[
1 1

−1 0

]
,

B =

[
0 −1
1 0

]
, C =

 0 1 0
0 0 1
5 0 0

. Find the in-

verses by computing (a) A6; (b) B4; and (c) C3.

b. B4 = I, so B−1 = B3 =

[
0 1

−1 0

]

Exercise 2.4.16 Find the inverse of

 1 0 1
c 1 c
3 c 2


in terms of c. c2 −2 −c 1

−c 1 0
3− c2 c −1


Exercise 2.4.17 If c 6= 0, find the inverse of 1 −1 1

2 −1 2
0 2 c

 in terms of c.

Exercise 2.4.18 Show that A has no inverse when:

a. A has a row of zeros.

b. A has a column of zeros.

c. each row of A sums to 0.
[Hint: Theorem 2.4.5(2).]

d. each column of A sums to 0. [Hint: Corol-
lary 2.4.1, Theorem 2.4.4.]

b. If column j of A is zero, Ay = 0 where y is
column j of the identity matrix. Use Theo-
rem 2.4.5.
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d. If each column of A sums to 0, XA = 0 where
X is the row of 1s. Hence AT XT = 0 so A has
no inverse by Theorem 2.4.5 (XT 6= 0).

Exercise 2.4.19 Let A denote a square matrix.

a. Let YA = 0 for some matrix Y 6= 0. Show that
A has no inverse. [Hint: Corollary 2.4.1, The-
orem 2.4.4.]

b. Use part (a) to show that (i)

 1 −1 1
0 1 1
1 0 2

;

and (ii)

 2 1 −1
1 1 0
1 0 −1

 have no inverse. [Hint:

For part (ii) compare row 3 with the difference
between row 1 and row 2.]

b. (ii) (−1, 1, 1)A = 0

Exercise 2.4.20 If A is invertible, show that

A2 6= 0.a) Ak 6= 0 for all
k = 1, 2, . . . .

b)

b. Each power Ak is invertible by Theorem 2.4.4
(because A is invertible). Hence Ak cannot be
0.

Exercise 2.4.21 Suppose AB = 0, where A and B
are square matrices. Show that:

a. If one of A and B has an inverse, the other is
zero.

b. It is impossible for both A and B to have in-
verses.

c. (BA)2 = 0.

b. By (a), if one has an inverse the other is zero
and so has no inverse.

Exercise 2.4.22 Find the inverse of the x-
expansion in Example 2.2.16 and describe it geomet-
rically.

If A =

[
a 0
0 1

]
, a > 1, then A−1 =

[ 1
a 0
0 1

]
is an

x-compression because 1
a < 1.

Exercise 2.4.23 Find the inverse of the shear
transformation in Example 2.2.17 and describe it ge-
ometrically.

Exercise 2.4.24 In each case assume that A is
a square matrix that satisfies the given condition.
Show that A is invertible and find a formula for A−1

in terms of A.

a. A3 −3A+2I = 0.

b. A4 +2A3 −A−4I = 0.

b. A−1 = 1
4(A

3 +2A2 −1)

Exercise 2.4.25 Let A and B denote n×n matrices.

a. If A and AB are invertible, show that B is
invertible using only (2) and (3) of Theo-
rem 2.4.4.

b. If AB is invertible, show that both A and B are
invertible using Theorem 2.4.5.

b. If Bx = 0, then (AB)x = (A)Bx = 0, so x = 0
because AB is invertible. Hence B is invertible
by Theorem 2.4.5. But then A = (AB)B−1 is
invertible by Theorem 2.4.4.

Exercise 2.4.26 In each case find the inverse of
the matrix A using Example 2.4.11.

A=

 −1 1 2
0 2 −1
0 1 −1

a) A =

 3 1 0
5 2 0
1 3 −1

b)

A =


3 4 0 0
2 3 0 0
1 −1 1 3
3 1 1 4

c)



2.4. Matrix Inverses 107

A =


2 1 5 2
1 1 −1 0
0 0 1 −1
0 0 1 −2

d)

b.

 2 −1 0
−5 3 0

−13 8 −1



d.


1 −1 −14 8

−1 2 16 −9
0 0 2 −1
0 0 1 −1


Exercise 2.4.27 If A and B are invertible symmet-
ric matrices such that AB = BA, show that A−1, AB,
AB−1, and A−1B−1 are also invertible and symmet-
ric.

Exercise 2.4.28 Let A be an n×n matrix and let
I be the n×n identity matrix.

a. If A2 = 0, verify that (I −A)−1 = I +A.

b. If A3 = 0, verify that (I −A)−1 = I +A+A2.

c. Find the inverse of

 1 2 −1
0 1 3
0 0 1

.

d. If An = 0, find the formula for (I −A)−1.

d. If An = 0, (I −A)−1 = I +A+ · · ·+An−1.

Exercise 2.4.29 Prove property 6 of Theo-
rem 2.4.4: If A is invertible and a 6= 0, then aA is
invertible and (aA)−1 = 1

a A−1

Exercise 2.4.30 Let A, B, and C denote n×n ma-
trices. Using only Theorem 2.4.4, show that:

a. If A, C, and ABC are all invertible, B is invert-
ible.

b. If AB and BA are both invertible, A and B are
both invertible.

b. A[B(AB)−1] = I = [(BA)−1B]A, so A is invertible
by Exercise 2.4.10.

Exercise 2.4.31 Let A and B denote invertible
n×n matrices.

a. If A−1 = B−1, does it mean that A = B? Ex-
plain.

b. Show that A = B if and only if A−1B = I.

Exercise 2.4.32 Let A, B, and C be n×n matrices,
with A and B invertible. Show that

a. If A commutes with C, then A−1 commutes
with C.

b. If A commutes with B, then A−1 commutes
with B−1.

a. Have AC = CA. Left-multiply by A−1 to get
C = A−1CA. Then right-multiply by A−1 to
get CA−1 = A−1C.

Exercise 2.4.33 Let A and B be square matrices
of the same size.

a. Show that (AB)2 = A2B2 if AB = BA.

b. If A and B are invertible and (AB)2 = A2B2,
show that AB = BA.

c. If A =

[
1 0
0 0

]
and B =

[
1 1
0 0

]
, show that

(AB)2 = A2B2 but AB 6= BA.

b. Given ABAB = AABB. Left multiply by A−1,
then right multiply by B−1.

Exercise 2.4.34 Let A and B be n×n matrices for
which AB is invertible. Show that A and B are both
invertible.



108 Matrix Algebra

If Bx = 0 where x is n× 1, then ABx = 0 so x = 0
as AB is invertible. Hence B is invertible by Theo-
rem 2.4.5, so A = (AB)B−1 is invertible.

Exercise 2.4.35 Consider A =

 1 3 −1
2 1 5
1 −7 13

,

B =

 1 1 2
3 0 −3

−2 5 17

.

a. Show that A is not invertible by finding a
nonzero 1 × 3 matrix Y such that YA = 0.
[Hint: Row 3 of A equals 2(row 2) −3(row 1).]

b. Show that B is not invertible. [Hint: Column
3 = 3(column 2) − column 1.]

b. B

 −1
3

−1

 = 0 so B is not invertible by Theo-

rem 2.4.5.

Exercise 2.4.36 Show that a square matrix A
is invertible if and only if it can be left-cancelled:
AB = AC implies B =C.

Exercise 2.4.37 If U2 = I, show that I +U is not
invertible unless U = I.

Exercise 2.4.38

a. If J is the 4×4 matrix with every entry 1, show
that I − 1

2 J is self-inverse and symmetric.

b. If X is n×m and satisfies XT X = Im, show that
In −2XXT is self-inverse and symmetric.

b. Write U = In − 2XXT . Then UT = IT
n −

2XT T XT = U , and U2 = I2
n − (2XXT )In −

In(2XXT ) + 4(XXT )(XXT ) = In − 4XXT +
4XXT = In.

Exercise 2.4.39 An n× n matrix P is called an
idempotent if P2 = P. Show that:

a. I is the only invertible idempotent.

b. P is an idempotent if and only if I−2P is self-
inverse.

c. U is self-inverse if and only if U = I − 2P for
some idempotent P.

d. I −aP is invertible for any a 6= 1, and that
(I −aP)−1 = I +

( a
1−a

)P.

b. (I − 2P)2 = I − 4P+ 4P2, and this equals I if
and only if P2 = P.

Exercise 2.4.40 If A2 = kA, where k 6= 0, show that
A is invertible if and only if A = kI.

Exercise 2.4.41 Let A and B denote n×n invert-
ible matrices.

a. Show that A−1 +B−1 = A−1(A+B)B−1.

b. If A+B is also invertible, show that A−1+B−1

is invertible and find a formula for (A−1 +
B−1)−1.

b. (A−1 +B−1)−1 = B(A+B)−1A

Exercise 2.4.42 Let A and B be n× n matrices,
and let I be the n×n identity matrix.

a. Verify that A(I +BA) = (I +AB)A and that
(I +BA)B = B(I +AB).

b. If I + AB is invertible, verify that I + BA is
also invertible and that (I +BA)−1 = I −B(I +
AB)−1A.
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2.5 Elementary Matrices

It is now clear that elementary row operations are important in linear algebra: They are essential
in solving linear systems (using the gaussian algorithm) and in inverting a matrix (using the ma-
trix inversion algorithm). It turns out that they can be performed by left multiplying by certain
invertible matrices. These matrices are the subject of this section.

Definition 2.12 Elementary Matrices

An n×n matrix E is called an elementary matrix if it can be obtained from the identity
matrix In by a single elementary row operation (called the operation corresponding to E).
We say that E is of type I, II, or III if the operation is of that type (see Definition 1.2).

Hence
E1 =

[
0 1
1 0

]
, E2 =

[
1 0
0 9

]
, and E3 =

[
1 5
0 1

]
are elementary of types I, II, and III, respectively, obtained from the 2× 2 identity matrix by
interchanging rows 1 and 2, multiplying row 2 by 9, and adding 5 times row 2 to row 1.

Suppose now that the matrix A=

[
a b c
p q r

]
is left multiplied by the above elementary matrices

E1, E2, and E3. The results are:

E1A =

[
0 1
1 0

][
a b c
p q r

]
=

[
p q r
a b c

]
E2A =

[
1 0
0 9

][
a b c
p q r

]
=

[
a b c

9p 9q 9r

]
E3A =

[
1 5
0 1

][
a b c
p q r

]
=

[
a+5p b+5q c+5r

p q r

]
In each case, left multiplying A by the elementary matrix has the same effect as doing the corre-
sponding row operation to A. This works in general.

Lemma 2.5.1: 10

If an elementary row operation is performed on an m×n matrix A, the result is EA where E
is the elementary matrix obtained by performing the same operation on the m×m identity
matrix.

Proof. We prove it for operations of type III; the proofs for types I and II are left as exercises. Let
E be the elementary matrix corresponding to the operation that adds k times row p to row q 6= p.
The proof depends on the fact that each row of EA is equal to the corresponding row of E times

10A lemma is an auxiliary theorem used in the proof of other theorems.



110 Matrix Algebra

A. Let K1, K2, . . . , Km denote the rows of Im. Then row i of E is Ki if i 6= q, while row q of E is
Kq + kKp. Hence:

If i 6= q then row i of EA = KiA = (row i of A).
Row q of EA = (Kq + kKp)A = KqA+ k(KpA)

= (row q of A) plus k (row p of A).

Thus EA is the result of adding k times row p of A to row q, as required.

The effect of an elementary row operation can be reversed by another such operation (called its
inverse) which is also elementary of the same type (see the discussion following (Example 1.1.3).
It follows that each elementary matrix E is invertible. In fact, if a row operation on I produces E,
then the inverse operation carries E back to I. If F is the elementary matrix corresponding to the
inverse operation, this means FE = I (by Lemma 2.5.1). Thus F = E−1 and we have proved

Lemma 2.5.2
Every elementary matrix E is invertible, and E−1 is also a elementary matrix (of the same
type). Moreover, E−1 corresponds to the inverse of the row operation that produces E.

The following table gives the inverse of each type of elementary row operation:

Type Operation Inverse Operation
I Interchange rows p and q Interchange rows p and q
II Multiply row p by k 6= 0 Multiply row p by 1/k, k 6= 0
III Add k times row p to row q 6= p Subtract k times row p from row q, q 6= p

Note that elementary matrices of type I are self-inverse.

Example 2.5.1

Find the inverse of each of the elementary matrices

E1 =

 0 1 0
1 0 0
0 0 1

 , E2 =

 1 0 0
0 1 0
0 0 9

 , and E3 =

 1 0 5
0 1 0
0 0 1

 .

Solution. E1, E2, and E3 are of type I, II, and III respectively, so the table gives

E−1
1 =

 0 1 0
1 0 0
0 0 1

= E1, E−1
2 =

 1 0 0
0 1 0
0 0 1

9

 , and E−1
3 =

 1 0 −5
0 1 0
0 0 1

 .
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Inverses and Elementary Matrices

Suppose that an m×n matrix A is carried to a matrix B (written A → B) by a series of k elementary
row operations. Let E1, E2, . . . , Ek denote the corresponding elementary matrices. By Lemma 2.5.1,
the reduction becomes

A → E1A → E2E1A → E3E2E1A → ··· → EkEk−1 · · ·E2E1A = B

In other words,
A →UA = B where U = EkEk−1 · · ·E2E1

The matrix U =EkEk−1 · · ·E2E1 is invertible, being a product of invertible matrices by Lemma 2.5.2.
Moreover, U can be computed without finding the Ei as follows: If the above series of operations
carrying A → B is performed on Im in place of A, the result is Im → UIm = U . Hence this series of
operations carries the block matrix

[
A Im

]
→
[

B U
]
. This, together with the above discussion,

proves

Theorem 2.5.1
Suppose A is m×n and A → B by elementary row operations.

1. B =UA where U is an m×m invertible matrix.

2. U can be computed by
[

A Im
]
→
[

B U
]

using the operations carrying A → B.

3. U = EkEk−1 · · ·E2E1 where E1, E2, . . . , Ek are the elementary matrices corresponding
(in order) to the elementary row operations carrying A to B.

Example 2.5.2

If A =

[
2 3 1
1 2 1

]
, express the reduced row-echelon form R of A as R =UA where U is

invertible.

Solution. Reduce the double matrix
[

A I
]
→
[

R U
]

as follows:

[
A I

]
=

[
2 3 1 1 0
1 2 1 0 1

]
→
[

1 2 1 0 1
2 3 1 1 0

]
→
[

1 2 1 0 1
0 −1 −1 1 −2

]
→
[

1 0 −1 2 −3
0 1 1 −1 2

]

Hence R =

[
1 0 −1
0 1 1

]
and U =

[
2 −3

−1 2

]
.

Now suppose that A is invertible. We know that A→ I by Theorem 2.4.5, so taking B= I in Theo-
rem 2.5.1 gives

[
A I

]
→
[

I U
]

where I =UA. Thus U =A−1, so we have
[

A I
]
→
[

I A−1 ].
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This is the matrix inversion algorithm in Section 2.4. However, more is true: Theorem 2.5.1 gives
A−1 = U = EkEk−1 · · ·E2E1 where E1, E2, . . . , Ek are the elementary matrices corresponding (in
order) to the row operations carrying A → I. Hence

A =
(
A−1)−1

= (EkEk−1 · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k−1E−1
k (2.10)

By Lemma 2.5.2, this shows that every invertible matrix A is a product of elementary matrices.
Since elementary matrices are invertible (again by Lemma 2.5.2), this proves the following important
characterization of invertible matrices.

Theorem 2.5.2
A square matrix is invertible if and only if it is a product of elementary matrices.

It follows from Theorem 2.5.1 that A → B by row operations if and only if B = UA for some
invertible matrix B. In this case we say that A and B are row-equivalent. (See Exercise 2.5.17.)

Example 2.5.3

Express A =

[
−2 3

1 0

]
as a product of elementary matrices.

Solution. Using Lemma 2.5.1, the reduction of A → I is as follows:

A =

[
−2 3

1 0

]
→ E1A =

[
1 0

−2 3

]
→ E2E1A =

[
1 0
0 3

]
→ E3E2E1A =

[
1 0
0 1

]
where the corresponding elementary matrices are

E1 =

[
0 1
1 0

]
, E2 =

[
1 0
2 1

]
, E3 =

[
1 0
0 1

3

]
Hence (E3 E2 E1)A = I, so:

A = (E3E2E1)
−1 = E−1

1 E−1
2 E−1

3 =

[
0 1
1 0

][
1 0

−2 1

][
1 0
0 3

]

Smith Normal Form

Let A be an m×n matrix of rank r, and let R be the reduced row-echelon form of A. Theorem 2.5.1
shows that R =UA where U is invertible, and that U can be found from

[
A Im

]
→
[

R U
]
.

The matrix R has r leading ones (since rank A = r) so, as R is reduced, the n×m matrix RT

contains each row of Ir in the first r columns. Thus row operations will carry RT →
[

Ir 0
0 0

]
n×m

.

Hence Theorem 2.5.1 (again) shows that
[

Ir 0
0 0

]
n×m

=U1RT where U1 is an n×n invertible matrix.
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Writing V =UT
1 , we obtain

UAV = RV = RUT
1 =

(
U1RT)T

=

([
Ir 0
0 0

]
n×m

)T

=

[
Ir 0
0 0

]
m×n

Moreover, the matrix U1 =V T can be computed by
[

RT In
]
→
[[

Ir 0
0 0

]
n×m

V T
]
. This proves

Theorem 2.5.3
Let A be an m×n matrix of rank r. There exist invertible matrices U and V of size m×m
and n×n, respectively, such that

UAV =

[
Ir 0
0 0

]
m×n

Moreover, if R is the reduced row-echelon form of A, then:

1. U can be computed by
[

A Im
]
→
[

R U
]
;

2. V can be computed by
[

RT In
]
→
[[

Ir 0
0 0

]
n×m

V T
]
.

If A is an m×n matrix of rank r, the matrix
[

Ir 0
0 0

]
is called the Smith normal form11 of

A. Whereas the reduced row-echelon form of A is the “nicest” matrix to which A can be carried
by row operations, the Smith canonical form is the “nicest” matrix to which A can be carried by
row and column operations. This is because doing row operations to RT amounts to doing column
operations to R and then transposing.

Example 2.5.4

Given A =

 1 −1 1 2
2 −2 1 −1

−1 1 0 3

, find invertible matrices U and V such that

UAV =

[
Ir 0
0 0

]
, where r = rank A.

Solution. The matrix U and the reduced row-echelon form R of A are computed by the row
reduction

[
A I3

]
→
[

R U
]
: 1 −1 1 2 1 0 0

2 −2 1 −1 0 1 0
−1 1 0 3 0 0 1

→

 1 −1 0 −3 −1 1 0
0 0 1 5 2 −1 0
0 0 0 0 −1 1 1


11Named after Henry John Stephen Smith (1826–83).
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Hence

R =

 1 −1 0 −3
0 0 1 5
0 0 0 0

 and U =

 −1 1 0
2 −1 0

−1 1 1


In particular, r = rank R = 2. Now row-reduce

[
RT I4

]
→
[ [

Ir 0
0 0

]
V T

]
:


1 0 0 1 0 0 0

−1 0 0 0 1 0 0
0 1 0 0 0 1 0

−3 5 0 0 0 0 1

→


1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 0 1 1 0 0
0 0 0 3 0 −5 1


whence

V T =


1 0 0 0
0 0 1 0
1 1 0 0
3 0 −5 −1

 so V =


1 0 1 3
0 0 1 0
0 1 0 −5
0 0 0 1


Then UAV =

[
I2 0
0 0

]
as is easily verified.

Uniqueness of the Reduced Row-echelon Form

In this short subsection, Theorem 2.5.1 is used to prove the following important theorem.

Theorem 2.5.4
If a matrix A is carried to reduced row-echelon matrices R and S by row operations, then
R = S.

Proof. Observe first that UR = S for some invertible matrix U (by Theorem 2.5.1 there exist
invertible matrices P and Q such that R = PA and S = QA; take U = QP−1). We show that R = S
by induction on the number m of rows of R and S. The case m = 1 is left to the reader. If R j and
S j denote column j in R and S respectively, the fact that UR = S gives

UR j = S j for each j (2.11)

Since U is invertible, this shows that R and S have the same zero columns. Hence, by passing to the
matrices obtained by deleting the zero columns from R and S, we may assume that R and S have
no zero columns.

But then the first column of R and S is the first column of Im because R and S are row-echelon,
so (2.11) shows that the first column of U is column 1 of Im. Now write U , R, and S in block form
as follows.

U =

[
1 X
0 V

]
, R =

[
1 X
0 R′

]
, and S =

[
1 Z
0 S′

]



2.5. Elementary Matrices 115

Since UR = S, block multiplication gives V R′ = S′ so, since V is invertible (U is invertible) and both
R′ and S′ are reduced row-echelon, we obtain R′ = S′ by induction. Hence R and S have the same
number (say r) of leading 1s, and so both have m–r zero rows.

In fact, R and S have leading ones in the same columns, say r of them. Applying (2.11) to these
columns shows that the first r columns of U are the first r columns of Im. Hence we can write U ,
R, and S in block form as follows:

U =

[
Ir M
0 W

]
, R =

[
R1 R2
0 0

]
, and S =

[
S1 S2
0 0

]
where R1 and S1 are r× r. Then block multiplication gives UR = R; that is, S = R. This completes
the proof.

Exercises for 2.5

Exercise 2.5.1 For each of the following elemen-
tary matrices, describe the corresponding elemen-
tary row operation and write the inverse.

E =

 1 0 3
0 1 0
0 0 1

a) E =

 0 0 1
0 1 0
1 0 0

b)

E =

 1 0 0
0 1

2 0
0 0 1

c) E =

 1 0 0
−2 1 0

0 0 1

d)

E =

 0 1 0
1 0 0
0 0 1

e) E =

 1 0 0
0 1 0
0 0 5

f)

b. Interchange rows 1 and 3 of I. E−1 = E.

d. Add (−2) times row 1 of I to row 2. E−1 = 1 0 0
2 1 0
0 0 1



f. Multiply row 3 of I by 5. E−1 =

 1 0 0
0 1 0
0 0 1

5


Exercise 2.5.2 In each case find an elementary
matrix E such that B = EA.

a. A =

[
2 1
3 −1

]
, B =

[
2 1
1 −2

]

b. A =

[
−1 2

0 1

]
, B =

[
1 −2
0 1

]

c. A =

[
1 1

−1 2

]
, B =

[
−1 2

1 1

]

d. A =

[
4 1
3 2

]
, B =

[
1 −1
3 2

]

e. A =

[
−1 1

1 −1

]
, B =

[
−1 1
−1 1

]

f. A =

[
2 1

−1 3

]
, B =

[
−1 3

2 1

]

b.
[
−1 0

0 1

]

d.
[

1 −1
0 1

]

f.
[

0 1
1 0

]

Exercise 2.5.3 Let A =

[
1 2

−1 1

]
and

C =

[
−1 1

2 1

]
.
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a. Find elementary matrices E1 and E2 such that
C = E2E1A.

b. Show that there is no elementary matrix E
such that C = EA.

b. The only possibilities for E are
[

0 1
1 0

]
,[

k 0
0 1

]
,
[

1 0
0 k

]
,
[

1 k
0 1

]
, and

[
1 0
k 1

]
.

In each case, EA has a row different from C.

Exercise 2.5.4 If E is elementary, show that A and
EA differ in at most two rows.

Exercise 2.5.5

a. Is I an elementary matrix? Explain.

b. Is 0 an elementary matrix? Explain.

b. No, 0 is not invertible.

Exercise 2.5.6 In each case find an invertible ma-
trix U such that UA = R is in reduced row-echelon
form, and express U as a product of elementary ma-
trices.

A =

[
1 −1 2

−2 1 0

]
a) A =

[
1 2 1
5 12 −1

]
b)

A =

 1 2 −1 0
3 1 1 2
1 −3 3 2

c)

A =

 2 1 −1 0
3 −1 2 1
1 −2 3 1

d)

b.
[

1 −2
0 1

][
1 0
0 1

2

][
1 0

−5 1

]
A =

[
1 0 7
0 1 −3

]
. Alternatively,[

1 0
0 1

2

][
1 −1
0 1

][
1 0

−5 1

]
A =

[
1 0 7
0 1 −3

]
.

d.

 1 2 0
0 1 0
0 0 1

 1 0 0
0 1

5 0
0 0 1

 1 0 0
0 1 0
0 −1 1


 1 0 0

0 1 0
−2 0 1

 1 0 0
−3 1 0

0 0 1

  0 0 1
0 1 0
1 0 0

A=
1 0 1

5
1
5

0 1 −7
5 −2

5

0 0 0 0


Exercise 2.5.7 In each case find an invertible ma-
trix U such that UA = B, and express U as a product
of elementary matrices.

a. A =

[
2 1 3

−1 1 2

]
, B =

[
1 −1 −2
3 0 1

]

b. A =

[
2 −1 0
1 1 1

]
, B =

[
3 0 1
2 −1 0

]

b. U =

[
1 1
1 0

]
=

[
1 1
0 1

][
0 1
1 0

]

Exercise 2.5.8 In each case factor A as a product
of elementary matrices.

A =

[
1 1
2 1

]
a) A =

[
2 3
1 2

]
b)

A =

 1 0 2
0 1 1
2 1 6

c) A=

 1 0 −3
0 1 4

−2 2 15

d)

b. A =

[
0 1
1 0

][
1 0
2 1

][
1 0
0 −1

]
[

1 2
0 1

]

d. A =

 1 0 0
0 1 0

−2 0 1

 1 0 0
0 1 0
0 2 1


 1 0 −3

0 1 0
0 0 1

 1 0 0
0 1 4
0 0 1


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Exercise 2.5.9 Let E be an elementary matrix.

a. Show that ET is also elementary of the same
type.

b. Show that ET = E if E is of type I or II.

Exercise 2.5.10 Show that every matrix A can be
factored as A =UR where U is invertible and R is in
reduced row-echelon form.
UA = R by Theorem 2.5.1, so A =U−1R.

Exercise 2.5.11 If A =

[
1 2
1 −3

]
and

B =

[
5 2

−5 −3

]
find an elementary matrix F such

that AF = B. [Hint: See Exercise 2.5.9.]

Exercise 2.5.12 In each case find invertible U and
V such that UAV =

[
Ir 0
0 0

]
, where r = rank A.

A=

[
1 1 −1

−2 −2 4

]
a) A =

[
3 2
2 1

]
b)

A =

 1 −1 2 1
2 −1 0 3
0 1 −4 1

c)

A =

 1 1 0 −1
3 2 1 1
1 0 1 3

d)

b. U = A−1, V = I2; rank A = 2

d. U =

 −2 1 0
3 −1 0
2 −1 1

,

V =


1 0 −1 −3
0 1 1 4
0 0 1 0
0 0 0 1

; rank A = 2

Exercise 2.5.13 Prove Lemma 2.5.1 for elemen-
tary matrices of:

type I;a) type II.b)

Exercise 2.5.14 While trying to invert A,
[

A I
]

is carried to
[

P Q
]

by row operations. Show that
P = QA.

Exercise 2.5.15 If A and B are n×n matrices and
AB is a product of elementary matrices, show that
the same is true of A.

Exercise 2.5.16 If U is invertible, show that the
reduced row-echelon form of a matrix

[
U A

]
is[

I U−1A
]
.

Write U−1 = EkEk−1 · · ·E2E1, Ei elementary. Then[
I U−1A

]
=
[

U−1U U−1A
]

= U−1
[

U A
]
= EkEk−1 · · ·E2E1

[
U A

]
. So[

U A
]
→
[

I U−1A
]

by row operations
(Lemma 2.5.1).

Exercise 2.5.17 Two matrices A and B are called
row-equivalent (written A r∼ B) if there is a se-
quence of elementary row operations carrying A to
B.

a. Show that A r∼B if and only if A=UB for some
invertible matrix U .

b. Show that:

i. A r∼ A for all matrices A.
ii. If A r∼ B, then B r∼ A

iii. If A r∼ B and B r∼C, then A r∼C.

c. Show that, if A and B are both row-equivalent
to some third matrix, then A r∼ B.

d. Show that

 1 −1 3 2
0 1 4 1
1 0 8 6

 and 1 −1 4 5
−2 1 −11 −8
−1 2 2 2

 are row-equivalent.

[Hint: Consider (c) and Theorem 1.2.1.]

b. (i) A r∼ A because A = IA. (ii) If A r∼ B, then
A = UB, U invertible, so B = U−1A. Thus
B r∼ A. (iii) If A r∼ B and B r∼ C, then A = UB
and B = VC, U and V invertible. Hence A =
U(VC) = (UV )C, so A r∼C.

Exercise 2.5.18 If U and V are invertible n× n
matrices, show that U r∼V . (See Exercise 2.5.17.)

Exercise 2.5.19 (See Exercise 2.5.17.) Find all
matrices that are row-equivalent to:
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[
0 0 0
0 0 0

]
a)

[
0 0 0
0 0 1

]
b)[

1 0 0
0 1 0

]
c)

[
1 2 0
0 0 1

]
d)

b. If B r∼ A, let B = UA, U invertible. If U =[
d b

−b d

]
, B = UA =

[
0 0 b
0 0 d

]
where b

and d are not both zero (as U is invert-
ible). Every such matrix B arises in this way:

Use U =

[
a b

−b a

]
–it is invertible by Exam-

ple 2.3.5.

Exercise 2.5.20 Let A and B be m× n and n×m
matrices, respectively. If m > n, show that AB is not
invertible. [Hint: Use Theorem 1.3.1 to find x 6= 0
with Bx = 0.]

Exercise 2.5.21 Define an elementary column op-
eration on a matrix to be one of the following: (I)
Interchange two columns. (II) Multiply a column by
a nonzero scalar. (III) Add a multiple of a column
to another column. Show that:

a. If an elementary column operation is done to
an m× n matrix A, the result is AF , where F
is an n×n elementary matrix.

b. Given any m× n matrix A, there exist m×m
elementary matrices E1, . . . , Ek and n× n el-
ementary matrices F1, . . . , Fp such that, in

block form,

Ek · · ·E1AF1 · · ·Fp =

[
Ir 0
0 0

]

Exercise 2.5.22 Suppose B is obtained from A by:

a. interchanging rows i and j;

b. multiplying row i by k 6= 0;

c. adding k times row i to row j (i 6= j).

In each case describe how to obtain B−1 from
A−1. [Hint: See part (a) of the preceding exer-
cise.]

b. Multiply column i by 1/k.

Exercise 2.5.23 Two m×n matrices A and B are
called equivalent (written A e∼ B) if there exist in-
vertible matrices U and V (sizes m×m and n× n)
such that A =UBV .

a. Prove the following the properties of equiva-
lence.

i. A e∼ A for all m×n matrices A.
ii. If A e∼ B, then B e∼ A.
iii. If A e∼ B and B e∼C, then A e∼C.

b. Prove that two m× n matrices are equivalent
if they have the same rank . [Hint: Use part
(a) and Theorem 2.5.3.]
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2.6 Linear Transformations

If A is an m×n matrix, recall that the transformation TA : Rn → Rm defined by

TA(x) = Ax for all x in Rn

is called the matrix transformation induced by A. In Section 2.2, we saw that many important
geometric transformations were in fact matrix transformations. These transformations can be char-
acterized in a different way. The new idea is that of a linear transformation, one of the basic notions
in linear algebra. We define these transformations in this section, and show that they are really just
the matrix transformations looked at in another way. Having these two ways to view them turns
out to be useful because, in a given situation, one perspective or the other may be preferable.

Linear Transformations

Definition 2.13 Linear Transformations Rn → Rm

A transformation T : Rn → Rm is called a linear transformation if it satisfies the
following two conditions for all vectors x and y in Rn and all scalars a:

T1 T (x+y) = T (x)+T (y)

T2 T (ax) = aT (x)

Of course, x+y and ax here are computed in Rn, while T (x)+T (y) and aT (x) are in Rm. We
say that T preserves addition if T1 holds, and that T preserves scalar multiplication if T2 holds.
Moreover, taking a = 0 and a =−1 in T2 gives

T (0) = 0 and T (−x) =−T (x) for all x

Hence T preserves the zero vector and the negative of a vector. Even more is true.
Recall that a vector y in Rn is called a linear combination of vectors x1, x2, . . . , xk if y has

the form
y = a1x1 +a2x2 + · · ·+akxk

for some scalars a1, a2, . . . , ak. Conditions T1 and T2 combine to show that every linear transfor-
mation T preserves linear combinations in the sense of the following theorem. This result is used
repeatedly in linear algebra.

Theorem 2.6.1: Linearity Theorem

If T : Rn → Rm is a linear transformation, then for each k = 1, 2, . . .

T (a1x1 +a2x2 + · · ·+akxk) = a1T (x1)+a2T (x2)+ · · ·+akT (xk)

for all scalars ai and all vectors xi in Rn.
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Proof. If k = 1, it reads T (a1x1) = a1T (x1) which is Condition T1. If k = 2, we have

T (a1x1 +a2x2) = T (a1x1)+T (a2x2) by Condition T1
= a1T (x1)+a2T (x2) by Condition T2

If k = 3, we use the case k = 2 to obtain

T (a1x1 +a2x2 +a3x3) = T [(a1x1 +a2x2)+a3x3] collect terms
= T (a1x1 +a2x2)+T (a3x3) by Condition T1
= [a1T (x1)+a2T (x2)]+T (a3x3) by the case k = 2
= [a1T (x1)+a2T (x2)]+a3T (x3) by Condition T2

The proof for any k is similar, using the previous case k−1 and Conditions T1 and T2.

The method of proof in Theorem 2.6.1 is called mathematical induction (Appendix ??).
Theorem 2.6.1 shows that if T is a linear transformation and T (x1), T (x2), . . . , T (xk) are all

known, then T (y) can be easily computed for any linear combination y of x1, x2, . . . , xk. This is
a very useful property of linear transformations, and is illustrated in the next example.

Example 2.6.1

If T : R2 → R2 is a linear transformation, T
[

1
1

]
=

[
2

−3

]
and T

[
1

−2

]
=

[
5
1

]
, find

T
[

4
3

]
.

Solution. Write z =

[
4
3

]
, x =

[
1
1

]
, and y =

[
1

−2

]
for convenience. Then we know

T (x) and T (y) and we want T (z), so it is enough by Theorem 2.6.1 to express z as a linear
combination of x and y. That is, we want to find numbers a and b such that z = ax+by.
Equating entries gives two equations 4 = a+b and 3 = a−2b. The solution is, a = 11

3 and
b = 1

3 , so z = 11
3 x+ 1

3y. Thus Theorem 2.6.1 gives

T (z) = 11
3 T (x)+ 1

3T (y) = 11
3

[
2

−3

]
+ 1

3

[
5
1

]
= 1

3

[
27

−32

]
This is what we wanted.

Example 2.6.2

If A is m×n, the matrix transformation TA : Rn → Rm, is a linear transformation.

Solution. We have TA(x) = Ax for all x in Rn, so Theorem 2.2.2 gives

TA(x+y) = A(x+y) = Ax+Ay = TA(x)+TA(y)

and
TA(ax) = A(ax) = a(Ax) = aTA(x)



2.6. Linear Transformations 121

hold for all x and y in Rn and all scalars a. Hence TA satisfies T1 and T2, and so is linear.

The remarkable thing is that the converse of Example 2.6.2 is true: Every linear transformation
T : Rn → Rm is actually a matrix transformation. To see why, we define the standard basis of Rn

to be the set of columns
{e1, e2, . . . , en}

of the identity matrix In. Then each ei is in Rn and every vector x =


x1
x2
...

xn

 in Rn is a linear

combination of the ei. In fact:
x = x1e1 + x2e2 + · · ·+ xnen

as the reader can verify. Hence Theorem 2.6.1 shows that

T (x) = T (x1e1 + x2e2 + · · ·+ xnen) = x1T (e1)+ x2T (e2)+ · · ·+ xnT (en)

Now observe that each T (ei) is a column in Rm, so

A =
[

T (e1) T (e2) · · · T (en)
]

is an m×n matrix. Hence we can apply Definition 2.5 to get

T (x) = x1T (e1)+ x2T (e2)+ · · ·+ xnT (en) =
[

T (e1) T (e2) · · · T (en)
]


x1
x2
...

xn

= Ax

Since this holds for every x in Rn, it shows that T is the matrix transformation induced by A, and
so proves most of the following theorem.

Theorem 2.6.2
Let T : Rn → Rm be a transformation.

1. T is linear if and only if it is a matrix transformation.

2. In this case T = TA is the matrix transformation induced by a unique m×n matrix A,
given in terms of its columns by

A =
[

T (e1) T (e2) · · · T (en)
]

where {e1, e2, . . . , en} is the standard basis of Rn.

Proof. It remains to verify that the matrix A is unique. Suppose that T is induced by another
matrix B. Then T (x) = Bx for all x in Rn. But T (x) = Ax for each x, so Bx = Ax for every x.
Hence A = B by Theorem 2.2.6.
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Hence we can speak of the matrix of a linear transformation. Because of Theorem 2.6.2 we may
(and shall) use the phrases “linear transformation” and “matrix transformation” interchangeably.

Example 2.6.3

Define T : R3 → R2 by T

 x1
x2
x3

=

[
x1
x2

]
for all

 x1
x2
x3

 in R3. Show that T is a linear

transformation and use Theorem 2.6.2 to find its matrix.

Solution. Write x =

 x1
x2
x3

 and y =

 y1
y2
y3

, so that x+y =

 x1 + y1
x2 + y2
x3 + y3

. Hence

T (x+y) =
[

x1 + y1
x2 + y2

]
=

[
x1
x2

]
+

[
y1
y2

]
= T (x)+T (y)

Similarly, the reader can verify that T (ax) = aT (x) for all a in R, so T is a linear
transformation. Now the standard basis of R3 is

e1 =

 1
0
0

 , e2 =

 0
1
0

 , and e3 =

 0
0
1


so, by Theorem 2.6.2, the matrix of T is

A =
[

T (e1) T (e2) T (e3)
]
=

[
1 0 0
0 1 0

]

Of course, the fact that T

 x1
x2
x3

=

[
x1
x2

]
=

[
1 0 0
0 1 0

] x1
x2
x3

 shows directly that T is a

matrix transformation (hence linear) and reveals the matrix.

To illustrate how Theorem 2.6.2 is used, we rederive the matrices of the transformations in
Examples 2.2.13 and 2.2.15.

Example 2.6.4

Let Q0 : R2 → R2 denote reflection in the x axis (as in Example 2.2.13) and let Rπ

2
: R2 → R2

denote counterclockwise rotation through π

2 about the origin (as in Example 2.2.15). Use
Theorem 2.6.2 to find the matrices of Q0 and Rπ

2
.

0 e1

e2

[
0
1

]
[

1
0

]
x

y

Figure 2.6.1

Solution. Observe that Q0 and Rπ

2
are linear by

Example 2.6.2 (they are matrix transformations), so
Theorem 2.6.2 applies to them. The standard basis of R2 is
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{e1, e2} where e1 =

[
1
0

]
points along the positive x axis, and

e2 =

[
0
1

]
points along the positive y axis (see Figure 2.6.1).

The reflection of e1 in the x axis is e1 itself because e1 points along the x axis, and the
reflection of e2 in the x axis is −e2 because e2 is perpendicular to the x axis. In other words,
Q0(e1) = e1 and Q0(e2) =−e2. Hence Theorem 2.6.2 shows that the matrix of Q0 is

[
Q0(e1) Q0(e2)

]
=
[

e1 −e2
]
=

[
1 0
0 −1

]
which agrees with Example 2.2.13.

Similarly, rotating e1 through π

2 counterclockwise about the origin produces e2, and
rotating e2 through π

2 counterclockwise about the origin gives −e1. That is, Rπ

2
(e1) = e2

and Rπ

2
(e2) =−e2. Hence, again by Theorem 2.6.2, the matrix of Rπ

2
is

[
Rπ

2
(e1) Rπ

2
(e2)

]
=
[

e2 −e1
]
=

[
0 −1
1 0

]
agreeing with Example 2.2.15.

Example 2.6.5

e1

e2

0

y = x

T
[

x
y

]
=

[
y
x

]

[
x
y

]

x

y

Figure 2.6.2

Let Q1 : R2 → R2 denote reflection in the line y = x. Show
that Q1 is a matrix transformation, find its matrix, and
use it to illustrate Theorem 2.6.2.

Solution. Figure 2.6.2 shows that Q1

[
x
y

]
=

[
y
x

]
. Hence

Q1

[
x
y

]
=

[
0 1
1 0

][
y
x

]
, so Q1 is the matrix transformation

induced by the matrix A =

[
0 1
1 0

]
. Hence Q1 is linear (by

Example 2.6.2) and so Theorem 2.6.2 applies. If e1 =

[
1
0

]
and e2 =

[
0
1

]
are the standard

basis of R2, then it is clear geometrically that Q1(e1) = e2 and Q1(e2) = e1. Thus (by
Theorem 2.6.2) the matrix of Q1 is

[
Q1(e1) Q1(e2)

]
=
[

e2 e1
]
= A as before.

Recall that, given two “linked” transformations

Rk T−→ Rn S−→ Rm

we can apply T first and then apply S, and so obtain a new transformation

S◦T : Rk → Rm
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called the composite of S and T , defined by
(S◦T )(x) = S [T (x)] for all x in Rk

If S and T are linear, the action of S◦T can be computed by multiplying their matrices.

Theorem 2.6.3

Let Rk T−→ Rn S−→ Rm be linear transformations, and let A and B be the matrices of S and T
respectively. Then S◦T is linear with matrix AB.

Proof. (S◦T )(x) = S [T (x)] = A [Bx] = (AB)x for all x in Rk.

Theorem 2.6.3 shows that the action of the composite S ◦T is determined by the matrices of S
and T . But it also provides a very useful interpretation of matrix multiplication. If A and B are
matrices, the product matrix AB induces the transformation resulting from first applying B and
then applying A. Thus the study of matrices can cast light on geometrical transformations and
vice-versa. Here is an example.

Example 2.6.6

Show that reflection in the x axis followed by rotation through π

2 is reflection in the line
y = x.

Solution. The composite in question is Rπ

2
◦Q0 where Q0 is reflection in the x axis and Rπ

2

is rotation through π

2 . By Example 2.6.4, Rπ

2
has matrix A =

[
0 −1
1 0

]
and Q0 has matrix

B =

[
1 0
0 −1

]
. Hence Theorem 2.6.3 shows that the matrix of Rπ

2
◦Q0 is

AB =

[
0 −1
1 0

][
1 0
0 −1

]
=

[
0 1
1 0

]
, which is the matrix of reflection in the line y = x by

Example 2.6.3.

This conclusion can also be seen geometrically. Let x be a typical point in R2, and assume that
x makes an angle α with the positive x axis. The effect of first applying Q0 and then applying Rπ

2
is shown in Figure 2.6.3. The fact that Rπ

2
[Q0(x)] makes the angle α with the positive y axis shows

that Rπ

2
[Q0(x)] is the reflection of x in the line y = x.

α

x

0 x

y

α

Q0(x)

x

0 x

y

α

α

y = xR π

2
[Q0(x)]

Q0(x)

x

0 x

y

Figure 2.6.3
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In Theorem 2.6.3, we saw that the matrix of the composite of two linear transformations is the
product of their matrices (in fact, matrix products were defined so that this is the case). We are
going to apply this fact to rotations, reflections, and projections in the plane. Before proceeding,
we pause to present useful geometrical descriptions of vector addition and scalar multiplication in
the plane, and to give a short review of angles and the trigonometric functions.

− 1
2 x =

[
− 1

2
−1

]0

1
2 x =

[ 1
2
1

]x =

[
1
2

]
2x =

[
2
4

]

x1

x2

Figure 2.6.4

Some Geometry
As we have seen, it is convenient to view a vector x in R2 as an arrow
from the origin to the point x (see Section 2.2). This enables us to
visualize what sums and scalar multiples mean geometrically. For

example consider x =

[
1
2

]
in R2. Then 2x =

[
2
4

]
, 1

2x =

[ 1
2
1

]
and

−1
2x =

[
−1

2
−1

]
, and these are shown as arrows in Figure 2.6.4.

Observe that the arrow for 2x is twice as long as the arrow for x
and in the same direction, and that the arrows for 1

2x is also in the
same direction as the arrow for x, but only half as long. On the other
hand, the arrow for −1

2x is half as long as the arrow for x, but in the
opposite direction. More generally, we have the following geometrical
description of scalar multiplication in R2:

0

x =
[

2
1

]

y =
[

1
3

] x+y =
[

3
4

]

x1

x2

Figure 2.6.5

Scalar Multiple Law

Let x be a vector in R2. The arrow for kx is |k| times12as long
as the arrow for x, and is in the same direction as the arrow
for x if k > 0, and in the opposite direction if k < 0.

0

x

y

x+y

x1

x2

Figure 2.6.6

Now consider two vectors x =

[
2
1

]
and y =

[
1
3

]
in R2. They

are plotted in Figure 2.6.5 along with their sum x+y =

[
3
4

]
. It is a

routine matter to verify that the four points 0, x, y, and x+y form
the vertices of a parallelogram–that is opposite sides are parallel
and of the same length. (The reader should verify that the side from
0 to x has slope of 1

2 , as does the side from y to x+y, so these sides
are parallel.) We state this as follows:

θ1

0

Radian
measure

of θp

x

y

Figure 2.6.7

Parallelogram Law

Consider vectors x and y in R2. If the arrows for x and y are
drawn (see Figure 2.6.6), the arrow for x+y corresponds to
the fourth vertex of the parallelogram determined by the

12If k is a real number, |k| denotes the absolute value of k; that is, |k|= k if k ≥ 0 and |k|=−k if k < 0.



126 Matrix Algebra

points x, y, and 0.

We will have more to say about this in Chapter 4.
Before proceeding we turn to a brief review of angles and the trigonometric functions. Recall

that an angle θ is said to be in standard position if it is measured counterclockwise from the
positive x axis (as in Figure 2.6.7). Then θ uniquely determines a point p on the unit circle (radius
1, centre at the origin). The radian measure of θ is the length of the arc on the unit circle from
the positive x axis to p. Thus 360◦ = 2π radians, 180◦ = π, 90◦ = π

2 , and so on.
The point p in Figure 2.6.7 is also closely linked to the trigonometric functions cosine and sine,

written cosθ and sinθ respectively. In fact these functions are defined to be the x and y coordinates
of p; that is p=

[
cosθ

sinθ

]
. This defines cosθ and sinθ for the arbitrary angle θ (possibly negative),

and agrees with the usual values when θ is an acute angle
(
0 ≤ θ ≤ π

2

)
as the reader should verify.

For more discussion of this, see Appendix ??.

Rotations

θ

Rθ (x)

x

0
x

y

Figure 2.6.8

We can now describe rotations in the plane. Given an angle θ , let

Rθ : R2 → R2

denote counterclockwise rotation of R2 about the origin through the
angle θ . The action of Rθ is depicted in Figure 2.6.8. We have
already looked at Rπ

2
(in Example 2.2.15) and found it to be a matrix

transformation. It turns out that Rθ is a matrix transformation for
every angle θ (with a simple formula for the matrix), but it is not
clear how to find the matrix. Our approach is to first establish the
(somewhat surprising) fact that Rθ is linear, and then obtain the

matrix from Theorem 2.6.2.

θ x
y

x+yRθ (x)

Rθ (y)

Rθ (x+y)

0
x

y

Figure 2.6.9

Let x and y be two vectors in R2. Then x+y is the diagonal of
the parallelogram determined by x and y as in Figure 2.6.9.
The effect of Rθ is to rotate the entire parallelogram to obtain the
new parallelogram determined by Rθ (x) and Rθ (y), with diagonal
Rθ (x+y). But this diagonal is Rθ (x)+Rθ (y) by the parallelogram
law (applied to the new parallelogram). It follows that

Rθ (x+y) = Rθ (x)+Rθ (y)

A similar argument shows that Rθ (ax) = aRθ (x) for any scalar a,
so Rθ : R2 → R2 is indeed a linear transformation.
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θ

θ

0 e1

e2

Rθ (e1)
Rθ (e2)

cos θ

sin θ

cos θ
sin θ

11
x

y

Figure 2.6.10

With linearity established we can find the matrix of Rθ . Let
e1 =

[
1
0

]
and e2 =

[
0
1

]
denote the standard basis of R2. By Fig-

ure 2.6.10 we see that

Rθ (e1) =

[
cosθ

sinθ

]
and Rθ (e2) =

[
−sinθ

cosθ

]
Hence Theorem 2.6.2 shows that Rθ is induced by the matrix[

Rθ (e1) Rθ (e2)
]
=

[
cosθ −sinθ

sinθ cosθ

]
We record this as

Theorem 2.6.4

The rotation Rθ : R2 → R2 is the linear transformation with matrix
[

cosθ −sinθ

sinθ cosθ

]
.

For example, Rπ

2
and Rπ have matrices

[
0 −1
1 0

]
and

[
−1 0

0 −1

]
, respectively, by Theo-

rem 2.6.4. The first of these confirms the result in Example 2.2.15. The second shows that rotating
a vector x =

[
x
y

]
through the angle π results in Rπ(x) =

[
−1 0

0 −1

][
x
y

]
=

[
−x
−y

]
=−x. Thus

applying Rπ is the same as negating x, a fact that is evident without Theorem 2.6.4.

Example 2.6.7

φ

θ

Rθ

[
Rφ (x)

]
Rφ (x)

x

0
x

y

Figure 2.6.11

Let θ and φ be angles. By finding the matrix of the composite
Rθ ◦Rφ , obtain expressions for cos(θ +φ) and sin(θ +φ).

Solution. Consider the transformations R2 Rφ−→ R2 Rθ−→ R2.
Their composite Rθ ◦Rφ is the transformation that first rotates
the plane through φ and then rotates it through θ , and
so is the rotation through the angle θ +φ (see Figure 2.6.11).
In other words

Rθ+φ = Rθ ◦Rφ

Theorem 2.6.3 shows that the corresponding equation holds for
the matrices of these transformations, so Theorem 2.6.4 gives:[

cos(θ +φ) −sin(θ +φ)
sin(θ +φ) cos(θ +φ)

]
=

[
cosθ −sinθ

sinθ cosθ

][
cosφ −sinφ

sinφ cosφ

]
If we perform the matrix multiplication on the right, and then compare first column entries,
we obtain

cos(θ +φ) = cosθ cosφ − sinθ sinφ

sin(θ +φ) = sinθ cosφ − cosθ sinφ
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These are the two basic identities from which most of trigonometry can be derived.

Reflections

Qm(x)

x

0

y = mx

x

y

Figure 2.6.12

The line through the origin with slope m has equation y = mx, and we
let Qm : R2 → R2 denote reflection in the line y = mx.

This transformation is described geometrically in Figure 2.6.12. In
words, Qm(x) is the “mirror image” of x in the line y = mx. If m = 0
then Q0 is reflection in the x axis, so we already know Q0 is linear.
While we could show directly that Qm is linear (with an argument like
that for Rθ ), we prefer to do it another way that is instructive and
derives the matrix of Qm directly without using Theorem 2.6.2.

Let θ denote the angle between the positive x axis and the line
y = mx. The key observation is that the transformation Qm can be

accomplished in three steps: First rotate through −θ (so our line coincides with the x axis), then
reflect in the x axis, and finally rotate back through θ . In other words:

Qm = Rθ ◦Q0 ◦R−θ

Since R−θ , Q0, and Rθ are all linear, this (with Theorem 2.6.3) shows that Qm is linear and that
its matrix is the product of the matrices of Rθ , Q0, and R−θ . If we write c = cosθ and s = sinθ for
simplicity, then the matrices of Rθ , R−θ , and Q0 are[

c −s
s c

]
,

[
c s

−s c

]
, and

[
1 0
0 −1

]
respectively.13

Hence, by Theorem 2.6.3, the matrix of Qm = Rθ ◦Q0 ◦R−θ is[
c −s
s c

][
1 0
0 −1

][
c s

−s c

]
=

[
c2 − s2 2sc

2sc s2 − c2

]

θ

m

1

[
1
m

]

0

√
1+m2 y = mx

x

y

Figure 2.6.13

We can obtain this matrix in terms of m alone. Figure 2.6.13 shows
that

cosθ = 1√
1+m2 and sinθ = m√

1+m2

so the matrix
[

c2 − s2 2sc
2sc s2 − c2

]
of Qm becomes 1

1+m2

[
1−m2 2m

2m m2 −1

]
.

Theorem 2.6.5
Let Qm denote reflection in the line y = mx. Then Qm is a

13The matrix of R−θ comes from the matrix of Rθ using the fact that, for all angles θ , cos(−θ) = cosθ and
sin(−θ) =−sin(θ).
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linear transformation with matrix 1
1+m2

[
1−m2 2m

2m m2 −1

]
.

Note that if m = 0, the matrix in Theorem 2.6.5 becomes
[

1 0
0 −1

]
, as expected. Of course

this analysis fails for reflection in the y axis because vertical lines have no slope. However it is an
easy exercise to verify directly that reflection in the y axis is indeed linear with matrix

[
−1 0

0 1

]
.14

Example 2.6.8

Let T : R2 → R2 be rotation through −π

2 followed by reflection in the y axis. Show that T is
a reflection in a line through the origin and find the line.

Solution. The matrix of R−π

2
is

 cos(−π

2 ) −sin(−π

2 )

sin(−π

2 ) cos(−π

2 )

=

[
0 1

−1 0

]
and the matrix of

reflection in the y axis is
[
−1 0

0 1

]
. Hence the matrix of T is[

−1 0
0 1

][
0 1

−1 0

]
=

[
0 −1

−1 0

]
and this is reflection in the line y =−x (take m =−1 in

Theorem 2.6.5).

Projections

Pm(x)

x

y = mx

0
x

y

Figure 2.6.14

The method in the proof of Theorem 2.6.5 works more generally. Let
Pm : R2 → R2 denote projection on the line y = mx. This transforma-
tion is described geometrically in Figure 2.6.14.

If m = 0, then P0

[
x
y

]
=

[
x
0

]
for all

[
x
y

]
in R2, so P0 is linear

with matrix
[

1 0
0 0

]
. Hence the argument above for Qm goes through

for Pm. First observe that

Pm = Rθ ◦P0 ◦R−θ

as before. So, Pm is linear with matrix[
c −s
s c

][
1 0
0 0

][
c s

−s c

]
=

[
c2 sc
sc s2

]
where c = cosθ = 1√

1+m2 and s = sinθ = m√
1+m2 .

14Note that
[

−1 0
0 1

]
= lim

m→∞

1
1+m2

[
1−m2 2m

2m m2 −1

]
.
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This gives:

Theorem 2.6.6
Let Pm : R2 → R2 be projection on the line y = mx. Then Pm is a linear transformation with

matrix 1
1+m2

[
1 m
m m2

]
.

Again, if m = 0, then the matrix in Theorem 2.6.6 reduces to
[

1 0
0 0

]
as expected. As the y

axis has no slope, the analysis fails for projection on the y axis, but this transformation is indeed
linear with matrix

[
0 0
0 1

]
as is easily verified directly.

Note that the formula for the matrix of Qm in Theorem 2.6.5 can be derived from the above
formula for the matrix of Pm. Using Figure 2.6.12, observe that Qm(x) = x+2[Pm(x)−x] so Qm(x) =
2Pm(x)−x. Substituting the matrices for Pm(x) and 1R2(x) gives the desired formula.

Example 2.6.9

Given x in R2, write y = Pm(x). The fact that y lies on the line y = mx means that
Pm(y) = y. But then

(Pm ◦Pm)(x) = Pm(y) = y = Pm(x) for all x in R2, that is, Pm ◦Pm = Pm.

In particular, if we write the matrix of Pm as A = 1
1+m2

[
1 m
m m2

]
, then A2 = A. The reader

should verify this directly.

Exercises for 2.6

Exercise 2.6.1 Let T : R3 → R2 be a linear trans-
formation.

a. Find T

 8
3
7

 if T

 1
0

−1

=

[
2
3

]

and T

 2
1
3

=

[
−1

0

]
.

b. Find T

 5
6

−13

 if T

 3
2

−1

=

[
3
5

]

and T

 2
0
5

=

[
−1

2

]
.

b.

 5
6

−13

= 3

 3
2

−1

−2

 2
0
5

, so

T

 5
6

−13

 = 3T

 3
2

−1

 − 2T

 2
0
5

 =

3
[

3
5

]
−2
[
−1

2

]
=

[
11
11

]
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Exercise 2.6.2 Let T : R4 → R3 be a linear trans-
formation.

a. Find T


1
3

−2
−3

 if T


1
1
0

−1

=

 2
3

−1



and T


0

−1
1
1

=

 5
0
1

.

b. Find T


5

−1
2

−4

 if T


1
1
1
1

=

 5
1

−3



and T


−1

1
0
2

=

 2
0
1

.

b. As in 1(b), T


5

−1
2

−4

=

 4
2

−9

.

Exercise 2.6.3 In each case assume that the trans-
formation T is linear, and use Theorem 2.6.2 to ob-
tain the matrix A of T .

a. T : R2 → R2 is reflection in the line y =−x.

b. T : R2 → R2 is given by T (x) = −x for each x in
R2.

c. T : R2 → R2 is clockwise rotation through π

4 .

d. T : R2 → R2 is counterclockwise rotation through
π

4 .

b. T (e1) = −e2 and T (e2) = −e1. So
A
[

T (e1) T (e2)
]

=
[
−e2 −e1

]
=[

−1 0
0 −1

]
.

d. T (e1) =

 √
2

2
√

2
2

 and T (e2) =

 −
√

2
2
√

2
2

 So

A =
[

T (e1) T (e2)
]
=

√
2

2

[
1 −1
1 1

]
.

Exercise 2.6.4 In each case use Theorem 2.6.2 to
obtain the matrix A of the transformation T . You
may assume that T is linear in each case.

a. T : R3 → R3 is reflection in the x− z plane.

b. T : R3 → R3 is reflection in the y− z plane.

b. T (e1) = −e1, T (e2) = e2 and T (e3) =
e3. Hence Theorem 2.6.2 gives
A
[

T (e1) T (e2) T (e3)
]
=
[
−e1 e2 e3

]
= −1 0 0

0 1 0
0 0 1

.

Exercise 2.6.5 Let T : Rn →Rm be a linear trans-
formation.

a. If x is in Rn, we say that x is in the kernel of
T if T (x) = 0. If x1 and x2 are both in the
kernel of T , show that ax1 +bx2 is also in the
kernel of T for all scalars a and b.

b. If y is in Rn, we say that y is in the image of T
if y = T (x) for some x in Rn. If y1 and y2 are
both in the image of T , show that ay1+by2 is
also in the image of T for all scalars a and b.

b. We have y1 = T (x1) for some x1 in Rn, and
y2 = T (x2) for some x2 in Rn. So ay1 +
by2 = aT (x1)+bT (x2) = T (ax1 +bx2). Hence
ay1 +by2 is also in the image of T .

Exercise 2.6.6 Use Theorem 2.6.2 to find the ma-
trix of the identity transformation 1Rn : Rn → Rn

defined by 1Rn(x) = x for each x in Rn.

Exercise 2.6.7 In each case show that T : R2 →R2

is not a linear transformation.

T
[

x
y

]
=

[
xy
0

]
a) T

[
x
y

]
=

[
0
y2

]
b)
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b. T
(

2
[

0
1

])
6= 2

[
0

−1

]
.

Exercise 2.6.8 In each case show that T is either
reflection in a line or rotation through an angle, and
find the line or angle.

a. T
[

x
y

]
= 1

5

[
−3x+4y
4x+3y

]

b. T
[

x
y

]
= 1√

2

[
x+ y
−x+ y

]

c. T
[

x
y

]
= 1√

3

[
x−

√
3y√

3x+ y

]

d. T
[

x
y

]
=− 1

10

[
8x+6y
6x−8y

]

b. A = 1√
2

[
1 1

−1 1

]
, rotation through θ =−π

4 .

d. A = 1
10

[
−8 −6
−6 8

]
, reflection in the line y =

−3x.

Exercise 2.6.9 Express reflection in the line y=−x
as the composition of a rotation followed by reflec-
tion in the line y = x.

Exercise 2.6.10 Find the matrix of T : R3 → R3

in each case:

a. T is rotation through θ about the x axis (from
the y axis to the z axis).

b. T is rotation through θ about the y axis (from
the x axis to the z axis).

b.

 cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ


Exercise 2.6.11 Let Tθ : R2 → R2 denote reflec-
tion in the line making an angle θ with the positive
x axis.

a. Show that the matrix of Tθ is[
cos2θ sin2θ

sin2θ −cos2θ

]
for all θ .

b. Show that Tθ ◦R2φ = Tθ−φ for all θ and φ .

Exercise 2.6.12 In each case find a rotation or
reflection that equals the given transformation.

a. Reflection in the y axis followed by rotation
through π

2 .

b. Rotation through π followed by reflection in
the x axis.

c. Rotation through π

2 followed by reflection in
the line y = x.

d. Reflection in the x axis followed by rotation
through π

2 .

e. Reflection in the line y = x followed by reflec-
tion in the x axis.

f. Reflection in the x axis followed by reflection
in the line y = x.

b. Reflection in the y axis

d. Reflection in y = x

f. Rotation through π

2

Exercise 2.6.13 Let R and S be matrix transfor-
mations Rn → Rm induced by matrices A and B re-
spectively. In each case, show that T is a matrix
transformation and describe its matrix in terms of A
and B.

a. T (x) = R(x)+S(x) for all x in Rn.

b. T (x) = aR(x) for all x in Rn (where a is a fixed
real number).

b. T (x) = aR(x) = a(Ax) = (aA)x for all x in R.
Hence T is induced by aA.

Exercise 2.6.14 Show that the following hold for
all linear transformations T : Rn → Rm:
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T (0) = 0a) T (−x) = −T (x) for all x
in Rn

b)

b. If x is in Rn, then T (−x) = T [(−1)x] =
(−1)T (x) =−T (x).

Exercise 2.6.15 The transformation T : Rn → Rm

defined by T (x) = 0 for all x in Rn is called the zero
transformation.

a. Show that the zero transformation is linear
and find its matrix.

b. Let e1, e2, . . . , en denote the columns of the
n×n identity matrix. If T : Rn → Rm is linear
and T (ei) = 0 for each i, show that T is the
zero transformation. [Hint: Theorem 2.6.1.]

Exercise 2.6.16 Write the elements of Rn and Rm

as rows. If A is an m×n matrix, define T : Rm → Rn

by T (y) = yA for all rows y in Rm. Show that:

a. T is a linear transformation.

b. the rows of A are T (f1), T (f2), . . . , T (fm) where
fi denotes row i of Im. [Hint: Show that fiA is
row i of A.]

Exercise 2.6.17 Let S : Rn → Rn and T : Rn → Rn

be linear transformations with matrices A and B re-
spectively.

a. Show that B2 = B if and only if T 2 = T (where
T 2 means T ◦T ).

b. Show that B2 = I if and only if T 2 = 1Rn .

c. Show that AB = BA if and only if S◦T = T ◦S.

[Hint: Theorem 2.6.3.]

b. If B2 = I then T 2(x) = T [T (x)] = B(Bx) =
B2x = Ix = x = 1R2(x) for all x in Rn. Hence
T 2 = 1R2 . If T 2 = 1R2 , then B2x = T 2(x) =
1R2(x) = x = Ix for all x, so B2 = I by Theo-
rem 2.2.6.

Exercise 2.6.18 Let Q0 : R2 → R2 be reflection
in the x axis, let Q1 : R2 → R2 be reflection in the
line y = x, let Q−1 : R2 → R2 be reflection in the line
y = −x, and let R π

2
: R2 → R2 be counterclockwise

rotation through π

2 .

a. Show that Q1 ◦R π

2
= Q0.

b. Show that Q1 ◦Q0 = R π

2
.

c. Show that R π

2
◦Q0 = Q1.

d. Show that Q0 ◦R π

2
= Q−1.

b. The matrix of Q1◦Q0 is
[

0 1
1 0

][
1 0
0 −1

]
=[

0 −1
1 0

]
, which is the matrix of R π

2
.

d. The matrix of Q0 ◦R π

2
is[

1 0
0 −1

][
0 −1
1 0

]
=

[
0 −1

−1 0

]
, which

is the matrix of Q−1.

Exercise 2.6.19 For any slope m, show that:

Qm ◦Pm = Pma) Pm ◦Qm = Pmb)

Exercise 2.6.20 Define T : Rn → R by
T (x1, x2, . . . , xn) = x1 + x2 + · · ·+ xn. Show that
T is a linear transformation and find its matrix.

We have T (x)= x1+x2+· · ·+xn =
[

1 1 · · · 1
]


x1
x2
...

xn

,

so T is the matrix transformation induced by the ma-
trix A =

[
1 1 · · · 1

]
. In particular, T is linear.

On the other hand, we can use Theorem 2.6.2 to get
A, but to do this we must first show directly that T

is linear. If we write x =


x1
x2
...

xn

 and y =


y1
y2
...

yn

.
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Then

T (x+y) = T


x1 + y1
x2 + y2

...
xn + yn


= (x1 + y1)+(x2 + y2)+ · · ·+(xn + yn)

= (x1 + x2 + · · ·+ xn)+(y1 + y2 + · · ·+ yn)

= T (x)+T (y)

Similarly, T (ax) = aT (x) for any scalar a, so T
is linear. By Theorem 2.6.2, T has matrix A =[

T (e1) T (e2) · · · T (en)
]
=
[

1 1 · · · 1
]
, as

before.
Exercise 2.6.21 Given c in R, define Tc : Rn → R
by Tc(x) = cx for all x in Rn. Show that Tc is a linear
transformation and find its matrix.
Exercise 2.6.22 Given vectors w and x in Rn,
denote their dot product by w ·x.

a. Given w in Rn, define Tw : Rn →R by Tw(x) =
w ·x for all x in Rn. Show that Tw is a linear
transformation.

b. Show that every linear transformation T :
Rn → R is given as in (a); that is T = Tw for
some w in Rn.

b. If T : Rn → R is linear, write T (e j) = w j for
each j = 1, 2, . . . , n where {e1, e2, . . . , en}
is the standard basis of Rn. Since x = x1e1 +
x2e2 + · · ·+ xnen, Theorem 2.6.1 gives

T (x) = T (x1e1 + x2e2 + · · ·+ xnen)

= x1T (e1)+ x2T (e2)+ · · ·+ xnT (en)

= x1w1 + x2w2 + · · ·+ xnwn

= w ·x = Tw(x)

where w =


w1
w2
...

wn

. Since this holds for

all x in Rn, it shows that T = TW. This
also follows from Theorem 2.6.2, but we
have first to verify that T is linear. (This
comes to showing that w · (x + y) = w · s +
w · y and w · (ax) = a(w · x) for all x and
y in Rn and all a in R.) Then T has
matrix A =

[
T (e1) T (e2) · · · T (en)

]
=[

w1 w2 · · · wn
]

by Theorem 2.6.2. Hence

if x =


x1
x2
...

xn

 in R, then T (x) = Ax = w ·x, as

required.

Exercise 2.6.23 If x 6= 0 and y are vectors
in Rn, show that there is a linear transformation
T : Rn → Rn such that T (x) = y. [Hint: By Def-
inition 2.5, find a matrix A such that Ax = y.]

b. Given x in R and a in R, we have
(S◦T )(ax) = S [T (ax)] Definition of S◦T

= S [aT (x)] Because T is linear.
= a [S [T (x)]] Because S is linear.
= a [S◦T (x)] Definition of S◦T

Exercise 2.6.24 Let Rn T−→ Rm S−→ Rk be two linear
transformations. Show directly that S ◦T is linear.
That is:

a. Show that (S ◦T )(x+y) = (S ◦T )x+(S ◦T )y
for all x, y in Rn.

b. Show that (S◦T )(ax) = a[(S◦T )x] for all x in
Rn and all a in R.

Exercise 2.6.25 Let Rn T−→ Rm S−→ Rk R−→ Rk be lin-
ear. Show that R ◦ (S ◦ T ) = (R ◦ S) ◦ T by showing
directly that [R ◦ (S ◦T )](x) = [(R ◦ S) ◦T )](x) holds
for each vector x in Rn.
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2.7 LU-Factorization15

The solution to a system Ax = b of linear equations can be solved quickly if A can be factored
as A = LU where L and U are of a particularly nice form. In this section we show that gaussian
elimination can be used to find such factorizations.

Triangular Matrices

As for square matrices, if A =
[
ai j
]

is an m×n matrix, the elements a11, a22, a33, . . . form the main
diagonal of A. Then A is called upper triangular if every entry below and to the left of the main
diagonal is zero. Every row-echelon matrix is upper triangular, as are the matrices 1 −1 0 3

0 2 1 1
0 0 −3 0

  0 2 1 0 5
0 0 0 3 1
0 0 1 0 1




1 1 1
0 −1 1
0 0 0
0 0 0


By analogy, a matrix A is called lower triangular if its transpose is upper triangular, that is if
each entry above and to the right of the main diagonal is zero. A matrix is called triangular if it
is upper or lower triangular.

Example 2.7.1

Solve the system
x1 + 2x2 − 3x3 − x4 + 5x5 = 3

5x3 + x4 + x5 = 8
2x5 = 6

where the coefficient matrix is upper triangular.

Solution. As in gaussian elimination, let the “non-leading” variables be parameters: x2 = s
and x4 = t. Then solve for x5, x3, and x1 in that order as follows. The last equation gives

x5 =
6
2 = 3

Substitution into the second last equation gives

x3 = 1− 1
5t

Finally, substitution of both x5 and x3 into the first equation gives

x1 =−9−2s+ 2
5t

The method used in Example 2.7.1 is called back substitution because later variables are
substituted into earlier equations. It works because the coefficient matrix is upper triangular.

15This section is not used later and so may be omitted with no loss of continuity.
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Similarly, if the coefficient matrix is lower triangular the system can be solved by forward sub-
stitution where earlier variables are substituted into later equations. As observed in Section 1.2,
these procedures are more numerically efficient than gaussian elimination.

Now consider a system Ax = b where A can be factored as A = LU where L is lower triangular
and U is upper triangular. Then the system Ax = b can be solved in two stages as follows:

1. First solve Ly = b for y by forward substitution.

2. Then solve Ux = y for x by back substitution.

Then x is a solution to Ax = b because Ax = LUx = Ly = b. Moreover, every solution x arises this
way (take y =Ux). Furthermore the method adapts easily for use in a computer.

This focuses attention on efficiently obtaining such factorizations A = LU . The following result
will be needed; the proof is straightforward and is left as Exercises 2.7.7 and 2.7.8.

Lemma 2.7.1
Let A and B denote matrices.

1. If A and B are both lower (upper) triangular, the same is true of AB.

2. If A is n×n and lower (upper) triangular, then A is invertible if and only if every main
diagonal entry is nonzero. In this case A−1 is also lower (upper) triangular.

LU-Factorization

Let A be an m× n matrix. Then A can be carried to a row-echelon matrix U (that is, upper
triangular). As in Section 2.5, the reduction is

A → E1A → E2E1A → E3E2E1A → ··· → EkEk−1 · · ·E2E1A =U

where E1, E2, . . . , Ek are elementary matrices corresponding to the row operations used. Hence

A = LU

where L = (EkEk−1 · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k−1E−1
k . If we do not insist that U is reduced then,

except for row interchanges, none of these row operations involve adding a row to a row above it.
Thus, if no row interchanges are used, all the Ei are lower triangular, and so L is lower triangular
(and invertible) by Lemma 2.7.1. This proves the following theorem. For convenience, let us say
that A can be lower reduced if it can be carried to row-echelon form using no row interchanges.

Theorem 2.7.1
If A can be lower reduced to a row-echelon matrix U , then

A = LU
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where L is lower triangular and invertible and U is upper triangular and row-echelon.

Definition 2.14 LU-factorization
A factorization A = LU as in Theorem 2.7.1 is called an LU-factorization of A.

Such a factorization may not exist (Exercise 2.7.4) because A cannot be carried to row-echelon
form using no row interchange. A procedure for dealing with this situation will be outlined later.
However, if an LU-factorization A = LU does exist, then the gaussian algorithm gives U and also
leads to a procedure for finding L. Example 2.7.2 provides an illustration. For convenience, the first
nonzero column from the left in a matrix A is called the leading column of A.

Example 2.7.2

Find an LU-factorization of A =

 0 2 −6 −2 4
0 −1 3 3 2
0 −1 3 7 10

.

Solution. We lower reduce A to row-echelon form as follows:

A =

 0 2 −6 −2 4
0 −1 3 3 2
0 −1 3 7 10

→

 0 1 −3 −1 2
0 0 0 2 4
0 0 0 6 12

→

 0 1 −3 −1 2
0 0 0 1 2
0 0 0 0 0

=U

The circled columns are determined as follows: The first is the leading column of A, and is
used (by lower reduction) to create the first leading 1 and create zeros below it. This
completes the work on row 1, and we repeat the procedure on the matrix consisting of the
remaining rows. Thus the second circled column is the leading column of this smaller
matrix, which we use to create the second leading 1 and the zeros below it. As the
remaining row is zero here, we are finished. Then A = LU where

L =

 2 0 0
−1 2 0
−1 6 1


This matrix L is obtained from I3 by replacing the bottom of the first two columns by the
circled columns in the reduction. Note that the rank of A is 2 here, and this is the number of
circled columns.

The calculation in Example 2.7.2 works in general. There is no need to calculate the elementary
matrices Ei, and the method is suitable for use in a computer because the circled columns can be
stored in memory as they are created. The procedure can be formally stated as follows:
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LU-Algorithm

Let A be an m×n matrix of rank r, and suppose that A can be lower reduced to a
row-echelon matrix U . Then A = LU where the lower triangular, invertible matrix L is
constructed as follows:

1. If A = 0, take L = Im and U = 0.

2. If A 6= 0, write A1 = A and let c1 be the leading column of A1. Use c1 to create the first
leading 1 and create zeros below it (using lower reduction). When this is completed,
let A2 denote the matrix consisting of rows 2 to m of the matrix just created.

3. If A2 6= 0, let c2 be the leading column of A2 and repeat Step 2 on A2 to create A3.

4. Continue in this way until U is reached, where all rows below the last leading 1 consist
of zeros. This will happen after r steps.

5. Create L by placing c1, c2, . . . , cr at the bottom of the first r columns of Im.

A proof of the LU-algorithm is given at the end of this section.
LU-factorization is particularly important if, as often happens in business and industry, a series

of equations Ax = B1, Ax = B2, . . . , Ax = Bk, must be solved, each with the same coefficient matrix
A. It is very efficient to solve the first system by gaussian elimination, simultaneously creating an
LU-factorization of A, and then using the factorization to solve the remaining systems by forward
and back substitution.

Example 2.7.3

Find an LU-factorization for A =


5 −5 10 0 5

−3 3 2 2 1
−2 2 0 −1 0

1 −1 10 2 5

.

Solution. The reduction to row-echelon form is
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
5 −5 10 0 5

−3 3 2 2 1
−2 2 0 −1 0

1 −1 10 2 5

→


1 −1 2 0 1
0 0 8 2 4
0 0 4 −1 2
0 0 8 2 4



→


1 −1 2 0 1

0 0 1 1
4

1
2

0 0 0 −2 0

0 0 0 0 0



→


1 −1 2 0 1

0 0 1 1
4

1
2

0 0 0 1 0

0 0 0 0 0

=U

If U denotes this row-echelon matrix, then A = LU , where

L =


5 0 0 0

−3 8 0 0
−2 4 −2 0

1 8 0 1



The next example deals with a case where no row of zeros is present in U (in fact, A is invertible).

Example 2.7.4

Find an LU-factorization for A =

 2 4 2
1 1 2

−1 0 2

.

Solution. The reduction to row-echelon form is 2 4 2
1 1 2

−1 0 2

→

 1 2 1
0 −1 1
0 2 3

→

 1 2 1
0 1 −1
0 0 5

→

 1 2 1
0 1 −1
0 0 1

=U

Hence A = LU where L =

 2 0 0
1 −1 0

−1 2 5

.
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There are matrices (for example
[

0 1
1 0

]
) that have no LU-factorization and so require at least

one row interchange when being carried to row-echelon form via the gaussian algorithm. However,
it turns out that, if all the row interchanges encountered in the algorithm are carried out first, the
resulting matrix requires no interchanges and so has an LU-factorization. Here is the precise result.

Theorem 2.7.2
Suppose an m×n matrix A is carried to a row-echelon matrix U via the gaussian algorithm.
Let P1, P2, . . . , Ps be the elementary matrices corresponding (in order) to the row
interchanges used, and write P = Ps · · ·P2P1. (If no interchanges are used take P = Im.) Then:

1. PA is the matrix obtained from A by doing these interchanges (in order) to A.

2. PA has an LU-factorization.

The proof is given at the end of this section.
A matrix P that is the product of elementary matrices corresponding to row interchanges is

called a permutation matrix. Such a matrix is obtained from the identity matrix by arranging
the rows in a different order, so it has exactly one 1 in each row and each column, and has zeros
elsewhere. We regard the identity matrix as a permutation matrix. The elementary permutation
matrices are those obtained from I by a single row interchange, and every permutation matrix is a
product of elementary ones.

Example 2.7.5

If A =


0 0 −1 2

−1 −1 1 2
2 1 −3 6
0 1 −1 4

, find a permutation matrix P such that PA has an

LU-factorization, and then find the factorization.

Solution. Apply the gaussian algorithm to A:

A ∗−→


−1 −1 1 2

0 0 −1 2
2 1 −3 6
0 1 −1 4

→


1 1 −1 −2
0 0 −1 2
0 −1 −1 10
0 1 −1 4

 ∗−→


1 1 −1 −2
0 −1 −1 10
0 0 −1 2
0 1 −1 4



→


1 1 −1 −2
0 1 1 −10
0 0 −1 2
0 0 −2 14

→


1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 10


Two row interchanges were needed (marked with ∗), first rows 1 and 2 and then rows 2 and
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3. Hence, as in Theorem 2.7.2,

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

=


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


If we do these interchanges (in order) to A, the result is PA. Now apply the LU-algorithm to
PA:

PA =


−1 −1 1 2

2 1 −3 6
0 0 −1 2
0 1 −1 4

→


1 1 −1 −2
0 −1 −1 10
0 0 −1 2
0 1 −1 4

→


1 1 −1 −2
0 1 1 −10
0 0 −1 2
0 0 −2 14



→


1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 10

→


1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 1

=U

Hence, PA = LU , where L =


−1 0 0 0

2 −1 0 0
0 0 −1 0
0 1 −2 10

 and U =


1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 1

.

Theorem 2.7.2 provides an important general factorization theorem for matrices. If A is any
m×n matrix, it asserts that there exists a permutation matrix P and an LU-factorization PA = LU .
Moreover, it shows that either P = I or P = Ps · · ·P2P1, where P1, P2, . . . , Ps are the elementary
permutation matrices arising in the reduction of A to row-echelon form. Now observe that P−1

i = Pi
for each i (they are elementary row interchanges). Thus, P−1 = P1P2 · · ·Ps, so the matrix A can be
factored as

A = P−1LU

where P−1 is a permutation matrix, L is lower triangular and invertible, and U is a row-echelon
matrix. This is called a PLU-factorization of A.

The LU-factorization in Theorem 2.7.1 is not unique. For example,[
1 0
3 2

][
1 −2 3
0 0 0

]
=

[
1 0
3 1

][
1 −2 3
0 0 0

]
However, it is necessary here that the row-echelon matrix has a row of zeros. Recall that the rank
of a matrix A is the number of nonzero rows in any row-echelon matrix U to which A can be carried
by row operations. Thus, if A is m×n, the matrix U has no row of zeros if and only if A has rank m.
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Theorem 2.7.3
Let A be an m×n matrix that has an LU-factorization

A = LU

If A has rank m (that is, U has no row of zeros), then L and U are uniquely determined by A.

Proof. Suppose A = MV is another LU-factorization of A, so M is lower triangular and invertible
and V is row-echelon. Hence LU = MV , and we must show that L = M and U = V . We write
N = M−1L. Then N is lower triangular and invertible (Lemma 2.7.1) and NU =V , so it suffices to
prove that N = I. If N is m×m, we use induction on m. The case m = 1 is left to the reader. If
m > 1, observe first that column 1 of V is N times column 1 of U . Thus if either column is zero, so is
the other (N is invertible). Hence, we can assume (by deleting zero columns) that the (1, 1)-entry
is 1 in both U and V .

Now we write N =

[
a 0
X N1

]
, U =

[
1 Y
0 U1

]
, and V =

[
1 Z
0 V1

]
in block form. Then NU =V

becomes
[

a aY
X XY +N1U1

]
=

[
1 Z
0 V1

]
. Hence a = 1, Y = Z, X = 0, and N1U1 =V1. But N1U1 =V1

implies N1 = I by induction, whence N = I.

If A is an m×m invertible matrix, then A has rank m by Theorem 2.4.5. Hence, we get the
following important special case of Theorem 2.7.3.

Corollary 2.7.1

If an invertible matrix A has an LU-factorization A = LU , then L and U are uniquely
determined by A.

Of course, in this case U is an upper triangular matrix with 1s along the main diagonal.

Proofs of Theorems

Proof of the LU-Algorithm. If c1, c2, . . . , cr are columns of lengths m, m− 1, . . . , m− r+ 1,
respectively, write L(m)(c1, c2, . . . , cr) for the lower triangular m×m matrix obtained from Im by
placing c1, c2, . . . , cr at the bottom of the first r columns of Im.

Proceed by induction on n. If A = 0 or n = 1, it is left to the reader. If n > 1, let c1 denote the
leading column of A and let k1 denote the first column of the m×m identity matrix. There exist
elementary matrices E1, . . . , Ek such that, in block form,

(Ek · · ·E2E1)A =

[
0 k1

X1
A1

]
where (Ek · · ·E2E1)c1 = k1

Moreover, each E j can be taken to be lower triangular (by assumption). Write

G = (Ek · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k
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Then G is lower triangular, and Gk1 = c1. Also, each E j (and so each E−1
j ) is the result of either

multiplying row 1 of Im by a constant or adding a multiple of row 1 to another row. Hence,

G = (E−1
1 E−1

2 · · ·E−1
k )Im =

[
c1

0
Im−1

]
in block form. Now, by induction, let A1 = L1U1 be an LU-factorization of A1, where L1 =
L(m−1) [c2, . . . , cr] and U1 is row-echelon. Then block multiplication gives

G−1A =

[
0 k1

X1
L1U1

]
=

[
1 0
0 L1

][
0 1 X1
0 0 U1

]

Hence A = LU , where U =

[
0 1 X1
0 0 U1

]
is row-echelon and

L =

[
c1

0
Im−1

][
1 0
0 L1

]
=

[
c1

0
L

]
= L(m) [c1, c2, . . . , cr]

This completes the proof.

Proof of Theorem 2.7.2. Let A be a nonzero m× n matrix and let k j denote column j of Im.
There is a permutation matrix P1 (where either P1 is elementary or P1 = Im) such that the first
nonzero column c1 of P1A has a nonzero entry on top. Hence, as in the LU-algorithm,

L(m) [c1]
−1 ·P1 ·A =

[
0 1 X1
0 0 A1

]
in block form. Then let P2 be a permutation matrix (either elementary or Im) such that

P2 ·L(m) [c1]
−1 ·P1 ·A =

[
0 1 X1
0 0 A′

1

]
and the first nonzero column c2 of A′

1 has a nonzero entry on top. Thus,

L(m) [k1, c2]
−1 ·P2 ·L(m) [c1]

−1 ·P1 ·A =

 0 1 X1

0 0
0 1 X2
0 0 A2


in block form. Continue to obtain elementary permutation matrices P1, P2, . . . , Pr and columns
c1, c2, . . . , cr of lengths m, m−1, . . . , such that

(LrPrLr−1Pr−1 · · ·L2P2L1P1)A =U

where U is a row-echelon matrix and L j = L(m)
[
k1, . . . , k j−1, c j

]−1 for each j, where the notation
means the first j− 1 columns are those of Im. It is not hard to verify that each L j has the form
L j = L(m)

[
k1, . . . , k j−1, c′j

]
where c′j is a column of length m− j + 1. We now claim that each

permutation matrix Pk can be “moved past” each matrix L j to the right of it, in the sense that

PkL j = L′
jPk



144 Matrix Algebra

where L′
j = L(m)

[
k1, . . . , k j−1, c′′j

]
for some column c′′j of length m− j+1. Given that this is true,

we obtain a factorization of the form

(LrL′
r−1 · · ·L′

2L′
1)(PrPr−1 · · ·P2P1)A =U

If we write P = PrPr−1 · · ·P2P1, this shows that PA has an LU-factorization because LrL′
r−1 · · ·L′

2L′
1 is

lower triangular and invertible. All that remains is to prove the following rather technical result.

Lemma 2.7.2
Let Pk result from interchanging row k of Im with a row below it. If j < k, let c j be a column
of length m− j+1. Then there is another column c′j of length m− j+1 such that

Pk ·L(m)
[
k1, . . . , k j−1, c j

]
= L(m)

[
k1, . . . , k j−1, c′j

]
·Pk

The proof is left as Exercise 2.7.11.

Exercises for 2.7

Exercise 2.7.1 Find an LU-factorization of the
following matrices.

a.

 2 6 −2 0 2
3 9 −3 3 1

−1 −3 1 −3 1



b.

 2 4 2
1 −1 3

−1 7 −7



c.


2 6 −2 0 2
1 5 −1 2 5
3 7 −3 −2 5

−1 −1 1 2 3



d.


−1 −3 1 0 −1

1 4 1 1 1
1 2 −3 −1 1
0 −2 −4 −2 0



e.


2 2 4 6 0 2
1 −1 2 1 3 1

−2 2 −4 −1 1 6
0 2 0 3 4 8

−2 4 −4 1 −2 6



f.


2 2 −2 4 2
1 −1 0 2 1
3 1 −2 6 3
1 3 −2 2 1



b.

 2 0 0
1 −3 0

−1 9 1




1 2 1

0 1 −2
3

0 0 0



d.


−1 0 0 0

1 1 0 0
1 −1 1 0
0 −2 0 1




1 3 −1 0 1
0 1 2 1 0
0 0 0 0 0
0 0 0 0 0



f.


2 0 0 0
1 −2 0 0
3 −2 1 0
0 2 0 1




1 1 −1 2 1

0 1 −1
2 0 0

0 0 0 0 0

0 0 0 0 0





2.7. LU-Factorization 145

Exercise 2.7.2 Find a permutation matrix P and
an LU-factorization of PA if A is: 0 0 2

0 −1 4
3 5 1

a)

 0 −1 2
0 0 4

−1 2 1

b)


0 −1 2 1 3

−1 1 3 1 4
1 −1 −3 6 2
2 −2 −4 1 0

c)


−1 −2 3 0

2 4 −6 5
1 1 −1 3
2 5 −10 1

d)

b. P =

 0 0 1
1 0 0
0 1 0


PA =

 −1 2 1
0 −1 2
0 0 4


=

 −1 0 0
0 −1 0
0 0 4

 1 −2 −1
0 1 2
0 0 1



d. P =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0



PA =


−1 −2 3 0

1 1 −1 3
2 5 −10 1
2 4 −6 5



=


−1 0 0 0

1 −1 0 0
2 1 −2 0
2 0 0 5




1 2 −3 0
0 1 −2 −3
0 0 1 −2
0 0 0 1


Exercise 2.7.3 In each case use the given LU-
decomposition of A to solve the system Ax = b by
finding y such that Ly = b, and then x such that
Ux = y:

a. A =

 2 0 0
0 −1 0
1 1 3

 1 0 0 1
0 0 1 2
0 0 0 1

;

b =

 1
−1

2



b. A =

 2 0 0
1 3 0

−1 2 1

 1 1 0 −1
0 1 0 1
0 0 0 0

;

b =

 −2
−1

1



c. A =


−2 0 0 0

1 −1 0 0
−1 0 2 0

0 1 0 2




1 −1 2 1

0 1 1 −4

0 0 1 − 1
2

0 0 0 1

;

b =


1

−1
2
0



d. A =


2 0 0 0
1 −1 0 0

−1 1 2 0
3 0 1 −1




1 −1 0 1
0 1 −2 −1
0 0 1 1
0 0 0 0

;

b =


4

−6
4
5



b. y =

 −1
0
0

x =


−1+2t

−t
s
t

s and t arbitrary

d. y =


2
8

−1
0

x =


8−2t
6− t
−1− t

t

 t arbitrary

Exercise 2.7.4 Show that
[

0 1
1 0

]
= LU is im-

possible where L is lower triangular and U is upper
triangular.

Exercise 2.7.5 Show that we can accomplish any
row interchange by using only row operations of
other types.[

R1
R2

]
→
[

R1 +R2
R2

]
→
[

R1 +R2
−R1

]
→
[

R2
−R1

]
→[

R2
R1

]
Exercise 2.7.6
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a. Let L and L1 be invertible lower triangular ma-
trices, and let U and U1 be invertible upper
triangular matrices. Show that LU = L1U1 if
and only if there exists an invertible diagonal
matrix D such that L1 = LD and U1 = D−1U .
[Hint: Scrutinize L−1L1 =UU−1

1 .]

b. Use part (a) to prove Theorem 2.7.3 in the
case that A is invertible.

b. Let A = LU = L1U1 be LU-factorizations of the
invertible matrix A. Then U and U1 have no
row of zeros and so (being row-echelon) are
upper triangular with 1’s on the main diag-
onal. Thus, using (a.), the diagonal matrix
D =UU−1

1 has 1’s on the main diagonal. Thus
D = I, U =U1, and L = L1.

Exercise 2.7.7 Prove Lemma 2.7.1(1).
[Hint: Use block multiplication and induction.]

If A =

[
a 0
X A1

]
and B =

[
b 0
Y B1

]
in block form,

then AB =

[
ab 0

Xb+A1Y A1B1

]
, and A1B1 is lower

triangular by induction.

Exercise 2.7.8 Prove Lemma 2.7.1(2). [Hint: Use
block multiplication and induction.]

Exercise 2.7.9 A triangular matrix is called unit
triangular if it is square and every main diagonal

element is a 1.

a. If A can be carried by the gaussian algo-
rithm to row-echelon form using no row in-
terchanges, show that A = LU where L is unit
lower triangular and U is upper triangular.

b. Show that the factorization in (a.) is unique.

b. Let A = LU = L1U1 be two such factoriza-
tions. Then UU−1

1 = L−1L1; write this matrix
as D =UU−1

1 = L−1L1. Then D is lower trian-
gular (apply Lemma 2.7.1 to D = L−1L1); and
D is also upper triangular (consider UU−1

1 ).
Hence D is diagonal, and so D = I because L−1

and L1 are unit triangular. Since A = LU ; this
completes the proof.

Exercise 2.7.10 Let c1, c2, . . . , cr be columns
of lengths m, m− 1, . . . , m− r + 1. If k j denotes
column j of Im, show that L(m) [c1, c2, . . . , cr] =
L(m) [c1]L(m) [k1, c2]L(m) [k1, k2, c3] · · ·
L(m) [k1, k2, . . . , kr−1, cr]. The notation is as in the
proof of Theorem 2.7.2. [Hint: Use induction on m
and block multiplication.]

Exercise 2.7.11 Prove Lemma 2.7.2. [Hint: P−1
k =

Pk. Write Pk =

[
Ik 0
0 P0

]
in block form where P0 is

an (m− k)× (m− k) permutation matrix.]
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With each square matrix we can calculate a number, called the determinant of the matrix, which
tells us whether or not the matrix is invertible. In fact, determinants can be used to give a formula
for the inverse of a matrix. They also arise in calculating certain numbers (called eigenvalues)
associated with the matrix. These eigenvalues are essential to a technique called diagonalization
that is used in many applications where it is desired to predict the future behaviour of a system.
For example, we use it to predict whether a species will become extinct.

Determinants were first studied by Leibnitz in 1696, and the term “determinant” was first used in
1801 by Gauss is his Disquisitiones Arithmeticae. Determinants are much older than matrices (which
were introduced by Cayley in 1878) and were used extensively in the eighteenth and nineteenth
centuries, primarily because of their significance in geometry (see Section 4.4). Although they are
somewhat less important today, determinants still play a role in the theory and application of matrix
algebra.
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3.1 The Cofactor Expansion

In Section 2.4 we defined the determinant of a 2×2 matrix A =

[
a b
c d

]
as follows:1

det A =

∣∣∣∣ a b
c d

∣∣∣∣= ad −bc

and showed (in Example 2.4.4) that A has an inverse if and only if det A 6= 0. One objective of this
chapter is to do this for any square matrix A. There is no difficulty for 1×1 matrices: If A = [a],
we define det A = det [a] = a and note that A is invertible if and only if a 6= 0.

If A is 3×3 and invertible, we look for a suitable definition of det A by trying to carry A to the
identity matrix by row operations. The first column is not zero (A is invertible); suppose the (1,
1)-entry a is not zero. Then row operations give

A =

 a b c
d e f
g h i

→

 a b c
ad ae a f
ag ah ai

→

 a b c
0 ae−bd a f − cd
0 ah−bg ai− cg

=

 a b c
0 u a f − cd
0 v ai− cg


where u = ae− bd and v = ah− bg. Since A is invertible, one of u and v is nonzero (by Example
2.4.11); suppose that u 6= 0. Then the reduction proceeds

A →

 a b c
0 u a f − cd
0 v ai− cg

→

 a b c
0 u a f − cd
0 uv u(ai− cg)

→

 a b c
0 u a f − cd
0 0 w


where w = u(ai− cg)− v(a f − cd) = a(aei+b f g+ cdh− ceg−a f h−bdi). We define

det A = aei+b f g+ cdh− ceg−a f h−bdi (3.1)

and observe that det A 6= 0 because a det A = w 6= 0 (is invertible).
To motivate the definition below, collect the terms in Equation 3.1 involving the entries a, b,

and c in row 1 of A:

det A =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣= aei+b f g+ cdh− ceg−a f h−bdi

= a(ei− f h)−b(di− f g)+ c(dh− eg)

= a
∣∣∣∣ e f

h i

∣∣∣∣−b
∣∣∣∣ d f

g i

∣∣∣∣+ c
∣∣∣∣ d e

g h

∣∣∣∣
This last expression can be described as follows: To compute the determinant of a 3× 3 matrix
A, multiply each entry in row 1 by a sign times the determinant of the 2× 2 matrix obtained by
deleting the row and column of that entry, and add the results. The signs alternate down row 1,
starting with +. It is this observation that we generalize below.

1Determinants are commonly written |A|= det A using vertical bars. We will use both notations.
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Example 3.1.1

det

 2 3 7
−4 0 6

1 5 0

= 2
∣∣∣∣ 0 6

5 0

∣∣∣∣−3
∣∣∣∣ −4 6

1 0

∣∣∣∣+7
∣∣∣∣ −4 0

1 5

∣∣∣∣
= 2(−30)−3(−6)+7(−20)
=−182

This suggests an inductive method of defining the determinant of any square matrix in terms of
determinants of matrices one size smaller. The idea is to define determinants of 3×3 matrices in
terms of determinants of 2×2 matrices, then we do 4×4 matrices in terms of 3×3 matrices, and
so on.

To describe this, we need some terminology.

Definition 3.1 Cofactors of a Matrix
Assume that determinants of (n−1)× (n−1) matrices have been defined. Given the n×n
matrix A, let

Ai j denote the (n−1)× (n−1) matrix obtained from A by deleting row i and column j.

Then the (i, j)-cofactor ci j(A) is the scalar defined by

ci j(A) = (−1)i+ j det (Ai j)

Here (−1)i+ j is called the sign of the (i, j)-position.

The sign of a position is clearly 1 or −1, and the following diagram is useful for remembering it:
+ − + − ·· ·
− + − + · · ·
+ − + − ·· ·
− + − + · · ·
... ... ... ...


Note that the signs alternate along each row and column with + in the upper left corner.

Example 3.1.2

Find the cofactors of positions (1, 2), (3, 1), and (2, 3) in the following matrix.

A =

 3 −1 6
5 2 7
8 9 4


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Solution. Here A12 is the matrix
[

5 7
8 4

]
that remains when row 1 and column 2 are

deleted. The sign of position (1, 2) is (−1)1+2 =−1 (this is also the (1, 2)-entry in the sign
diagram), so the (1, 2)-cofactor is

c12(A) = (−1)1+2
∣∣∣∣ 5 7

8 4

∣∣∣∣= (−1)(5 ·4−7 ·8) = (−1)(−36) = 36

Turning to position (3, 1), we find

c31(A) = (−1)3+1A31 = (−1)3+1
∣∣∣∣ −1 6

2 7

∣∣∣∣= (+1)(−7−12) =−19

Finally, the (2, 3)-cofactor is

c23(A) = (−1)2+3A23 = (−1)2+3
∣∣∣∣ 3 −1

8 9

∣∣∣∣= (−1)(27+8) =−35

Clearly other cofactors can be found—there are nine in all, one for each position in the
matrix.

We can now define det A for any square matrix A

Definition 3.2 Cofactor expansion of a Matrix

Assume that determinants of (n−1)× (n−1) matrices have been defined. If A =
[
ai j
]

is
n×n define

det A = a11c11(A)+a12c12(A)+ · · ·+a1nc1n(A)

This is called the cofactor expansion of det A along row 1.

It asserts that det A can be computed by multiplying the entries of row 1 by the corresponding
cofactors, and adding the results. The astonishing thing is that det A can be computed by taking
the cofactor expansion along any row or column: Simply multiply each entry of that row or column
by the corresponding cofactor and add.

Theorem 3.1.1: Cofactor Expansion Theorem2

The determinant of an n×n matrix A can be computed by using the cofactor expansion
along any row or column of A. That is det A can be computed by multiplying each entry of
the row or column by the corresponding cofactor and adding the results.

The proof will be given in Section ??.

2The cofactor expansion is due to Pierre Simon de Laplace (1749–1827), who discovered it in 1772 as part of
a study of linear differential equations. Laplace is primarily remembered for his work in astronomy and applied
mathematics.
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Example 3.1.3

Compute the determinant of A =

 3 4 5
1 7 2
9 8 −6

.

Solution. The cofactor expansion along the first row is as follows:

det A = 3c11(A)+4c12(A)+5c13(A)

= 3
∣∣∣∣ 7 2

8 −6

∣∣∣∣−4
∣∣∣∣ 1 2

9 −6

∣∣∣∣+3
∣∣∣∣ 1 7

9 8

∣∣∣∣
= 3(−58)−4(−24)+5(−55)
=−353

Note that the signs alternate along the row (indeed along any row or column). Now we
compute det A by expanding along the first column.

det A = 3c11(A)+1c21(A)+9c31(A)

= 3
∣∣∣∣ 7 2

8 −6

∣∣∣∣− ∣∣∣∣ 4 5
8 −6

∣∣∣∣+9
∣∣∣∣ 4 5

7 2

∣∣∣∣
= 3(−58)− (−64)+9(−27)
=−353

The reader is invited to verify that det A can be computed by expanding along any other
row or column.

The fact that the cofactor expansion along any row or column of a matrix A always gives the
same result (the determinant of A) is remarkable, to say the least. The choice of a particular row
or column can simplify the calculation.

Example 3.1.4

Compute det A where A =


3 0 0 0
5 1 2 0
2 6 0 −1

−6 3 1 0

.

Solution. The first choice we must make is which row or column to use in the cofactor
expansion. The expansion involves multiplying entries by cofactors, so the work is
minimized when the row or column contains as many zero entries as possible. Row 1 is a
best choice in this matrix (column 4 would do as well), and the expansion is

det A = 3c11(A)+0c12(A)+0c13(A)+0c14(A)

= 3

∣∣∣∣∣∣
1 2 0
6 0 −1
3 1 0

∣∣∣∣∣∣
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This is the first stage of the calculation, and we have succeeded in expressing the
determinant of the 4×4 matrix A in terms of the determinant of a 3×3 matrix. The next
stage involves this 3×3 matrix. Again, we can use any row or column for the cofactor
expansion. The third column is preferred (with two zeros), so

det A = 3
(

0
∣∣∣∣ 6 0

3 1

∣∣∣∣− (−1)
∣∣∣∣ 1 2

3 1

∣∣∣∣+0
∣∣∣∣ 1 2

6 0

∣∣∣∣)
= 3[0+1(−5)+0]
=−15

This completes the calculation.

Computing the determinant of a matrix A can be tedious. For example, if A is a 4×4 matrix,
the cofactor expansion along any row or column involves calculating four cofactors, each of which
involves the determinant of a 3×3 matrix. And if A is 5×5, the expansion involves five determinants
of 4×4 matrices! There is a clear need for some techniques to cut down the work.3

The motivation for the method is the observation (see Example 3.1.4) that calculating a deter-
minant is simplified a great deal when a row or column consists mostly of zeros. (In fact, when a
row or column consists entirely of zeros, the determinant is zero—simply expand along that row or
column.)

Recall next that one method of creating zeros in a matrix is to apply elementary row operations
to it. Hence, a natural question to ask is what effect such a row operation has on the determinant of
the matrix. It turns out that the effect is easy to determine and that elementary column operations
can be used in the same way. These observations lead to a technique for evaluating determinants
that greatly reduces the labour involved. The necessary information is given in Theorem 3.1.2.

Theorem 3.1.2
Let A denote an n×n matrix.

1. If A has a row or column of zeros, det A = 0.

2. If two distinct rows (or columns) of A are interchanged, the determinant of the
resulting matrix is − det A.

3. If a row (or column) of A is multiplied by a constant u, the determinant of the
resulting matrix is u(det A).

4. If two distinct rows (or columns) of A are identical, det A = 0.

3If A =

 a b c
d e f
g h i

 we can calculate det A by considering

 a b c a b
d e f d e
g h i g h

 obtained from A by adjoining

columns 1 and 2 on the right. Then det A = aei+b f g+cdh−ceg−a f h−bdi, where the positive terms aei, b f g, and
cdh are the products down and to the right starting at a, b, and c, and the negative terms ceg, a f h, and bdi are the
products down and to the left starting at c, a, and b. Warning: This rule does not apply to n×n matrices where
n > 3 or n = 2.



3.1. The Cofactor Expansion 153

5. If a multiple of one row of A is added to a different row (or if a multiple of a column is
added to a different column), the determinant of the resulting matrix is det A.

Proof. We prove properties 2, 4, and 5 and leave the rest as exercises.
Property 2. If A is n×n, this follows by induction on n. If n = 2, the verification is left to the

reader. If n > 2 and two rows are interchanged, let B denote the resulting matrix. Expand det A
and det B along a row other than the two that were interchanged. The entries in this row are the
same for both A and B, but the cofactors in B are the negatives of those in A (by induction) because
the corresponding (n−1)× (n−1) matrices have two rows interchanged. Hence, det B =− det A, as
required. A similar argument works if two columns are interchanged.

Property 4. If two rows of A are equal, let B be the matrix obtained by interchanging them.
Then B = A, so det B = detA. But det B =− det A by property 2, so det A = det B = 0. Again, the
same argument works for columns.

Property 5. Let B be obtained from A =
[
ai j
]

by adding u times row p to row q. Then row q of
B is

(aq1 +uap1, aq2 +uap2, . . . , aqn +uapn)

The cofactors of these elements in B are the same as in A (they do not involve row q): in symbols,
cq j(B) = cq j(A) for each j. Hence, expanding B along row q gives

det A = (aq1 +uap1)cq1(A)+(aq2 +uap2)cq2(A)+ · · ·+(aqn +uapn)cqn(A)
= [aq1cq1(A)+aq2cq2(A)+ · · ·+aqncqn(A)]+u[ap1cq1(A)+ap2cq2(A)+ · · ·+apncqn(A)]
= det A+u det C

where C is the matrix obtained from A by replacing row q by row p (and both expansions are along
row q). Because rows p and q of C are equal, det C = 0 by property 4. Hence, det B = detA, as
required. As before, a similar proof holds for columns.

To illustrate Theorem 3.1.2, consider the following determinants.
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∣∣∣∣∣∣
3 −1 2
2 5 1
0 0 0

∣∣∣∣∣∣= 0 (because the last row consists of zeros)

∣∣∣∣∣∣
3 −1 5
2 8 7
1 2 −1

∣∣∣∣∣∣=−

∣∣∣∣∣∣
5 −1 3
7 8 2

−1 2 1

∣∣∣∣∣∣ (because two columns are interchanged)

∣∣∣∣∣∣
8 1 2
3 0 9
1 2 −1

∣∣∣∣∣∣= 3

∣∣∣∣∣∣
8 1 2
1 0 3
1 2 −1

∣∣∣∣∣∣ (because the second row of the matrix on the left is 3
times the second row of the matrix on the right)∣∣∣∣∣∣

2 1 2
4 0 4
1 3 1

∣∣∣∣∣∣= 0 (because two columns are identical)

∣∣∣∣∣∣
2 5 2

−1 2 9
3 1 1

∣∣∣∣∣∣=
∣∣∣∣∣∣

0 9 20
−1 2 9

3 1 1

∣∣∣∣∣∣ (because twice the second row of the matrix on the left
was added to the first row)

The following four examples illustrate how Theorem 3.1.2 is used to evaluate determinants.

Example 3.1.5

Evaluate det A when A =

 1 −1 3
1 0 −1
2 1 6

.

Solution. The matrix does have zero entries, so expansion along (say) the second row
would involve somewhat less work. However, a column operation can be used to get a zero
in position (2, 3)—namely, add column 1 to column 3. Because this does not change the
value of the determinant, we obtain

det A =

∣∣∣∣∣∣
1 −1 3
1 0 −1
2 1 6

∣∣∣∣∣∣=
∣∣∣∣∣∣

1 −1 4
1 0 0
2 1 8

∣∣∣∣∣∣=−
∣∣∣∣ −1 4

1 8

∣∣∣∣= 12

where we expanded the second 3×3 matrix along row 2.

Example 3.1.6

If det

 a b c
p q r
x y z

= 6, evaluate det A where A =

 a+ x b+ y c+ z
3x 3y 3z
−p −q −r

.
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Solution. First take common factors out of rows 2 and 3.

det A = 3(−1) det

 a+ x b+ y c+ z
x y z
p q r


Now subtract the second row from the first and interchange the last two rows.

det A =−3 det

 a b c
x y z
p q r

= 3 det

 a b c
p q r
x y z

= 3 ·6 = 18

The determinant of a matrix is a sum of products of its entries. In particular, if these entries
are polynomials in x, then the determinant itself is a polynomial in x. It is often of interest to
determine which values of x make the determinant zero, so it is very useful if the determinant is
given in factored form. Theorem 3.1.2 can help.

Example 3.1.7

Find the values of x for which det A = 0, where A =

 1 x x
x 1 x
x x 1

.

Solution. To evaluate det A, first subtract x times row 1 from rows 2 and 3.

det A =

∣∣∣∣∣∣
1 x x
x 1 x
x x 1

∣∣∣∣∣∣=
∣∣∣∣∣∣

1 x x
0 1− x2 x− x2

0 x− x2 1− x2

∣∣∣∣∣∣=
∣∣∣∣ 1− x2 x− x2

x− x2 1− x2

∣∣∣∣
At this stage we could simply evaluate the determinant (the result is 2x3 −3x2 +1). But
then we would have to factor this polynomial to find the values of x that make it zero.
However, this factorization can be obtained directly by first factoring each entry in the
determinant and taking a common factor of (1− x) from each row.

det A =

∣∣∣∣ (1− x)(1+ x) x(1− x)
x(1− x) (1− x)(1+ x)

∣∣∣∣= (1− x)2
∣∣∣∣ 1+ x x

x 1+ x

∣∣∣∣
= (1− x)2(2x+1)

Hence, det A = 0 means (1− x)2(2x+1) = 0, that is x = 1 or x =−1
2 .
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Example 3.1.8

If a1, a2, and a3 are given show that

det

 1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

= (a3 −a1)(a3 −a2)(a2 −a1)

Solution. Begin by subtracting row 1 from rows 2 and 3, and then expand along column 1:

det

 1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

= det

 1 a1 a2
1

0 a2 −a1 a2
2 −a2

1
0 a3 −a1 a2

3 −a2
1

=

[
a2 −a1 a2

2 −a2
1

a3 −a1 a2
3 −a2

1

]

Now (a2 −a1) and (a3 −a1) are common factors in rows 1 and 2, respectively, so

det

 1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

= (a2 −a1)(a3 −a1) det
[

1 a2 +a1
1 a3 +a1

]
= (a2 −a1)(a3 −a1)(a3 −a2)

The matrix in Example 3.1.8 is called a Vandermonde matrix, and the formula for its determinant
can be generalized to the n×n case (see Theorem 3.2.7).

If A is an n×n matrix, forming uA means multiplying every row of A by u. Applying property
3 of Theorem 3.1.2, we can take the common factor u out of each row and so obtain the following
useful result.

Theorem 3.1.3
If A is an n×n matrix, then det (uA) = un det A for any number u.

The next example displays a type of matrix whose determinant is easy to compute.

Example 3.1.9

Evaluate det A if A =


a 0 0 0
u b 0 0
v w c 0
x y z d

.

Solution. Expand along row 1 to get det A = a

∣∣∣∣∣∣
b 0 0
w c 0
y z d

∣∣∣∣∣∣. Now expand this along the top

row to get det A = ab
∣∣∣∣ c 0

z d

∣∣∣∣= abcd, the product of the main diagonal entries.
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A square matrix is called a lower triangular matrix if all entries above the main diagonal
are zero (as in Example 3.1.9). Similarly, an upper triangular matrix is one for which all entries
below the main diagonal are zero. A triangular matrix is one that is either upper or lower
triangular. Theorem 3.1.4 gives an easy rule for calculating the determinant of any triangular
matrix. The proof is like the solution to Example 3.1.9.

Theorem 3.1.4
If A is a square triangular matrix, then det A is the product of the entries on the main
diagonal.

Theorem 3.1.4 is useful in computer calculations because it is a routine matter to carry a matrix to
triangular form using row operations.

Block matrices such as those in the next theorem arise frequently in practice, and the theorem
gives an easy method for computing their determinants. This dovetails with Example 2.4.11.

Theorem 3.1.5

Consider matrices
[

A X
0 B

]
and

[
A 0
Y B

]
in block form, where A and B are square

matrices. Then

det
[

A X
0 B

]
= det A det B and det

[
A 0
Y B

]
= det A det B

Proof. Write T = det
[

A X
0 B

]
and proceed by induction on k where A is k × k. If k = 1, it is

the cofactor expansion along column 1. In general let Si(T ) denote the matrix obtained from T by
deleting row i and column 1. Then the cofactor expansion of det T along the first column is

det T = a11 det (S1(T ))−a21 det (S2(T ))+ · · ·±ak1 det (Sk(T )) (3.2)

where a11, a21, · · · , ak1 are the entries in the first column of A. But Si(T ) =
[

Si(A) Xi
0 B

]
for each

i = 1, 2, · · · , k, so det (Si(T )) = det (Si(A)) · det B by induction. Hence, Equation 3.2 becomes

det T = {a11 det (S1(T ))−a21 det (S2(T ))+ · · ·±ak1 det (Sk(T ))} det B
= {det A} det B

as required. The lower triangular case is similar.
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Example 3.1.10

det


2 3 1 3
1 −2 −1 1
0 1 0 1
0 4 0 1

=−

∣∣∣∣∣∣∣∣
2 1 3 3
1 −1 −2 1
0 0 1 1
0 0 4 1

∣∣∣∣∣∣∣∣=−
∣∣∣∣ 2 1

1 −1

∣∣∣∣ ∣∣∣∣ 1 1
4 1

∣∣∣∣=−(−3)(−3) =−9

The next result shows that det A is a linear transformation when regarded as a function of a
fixed column of A. The proof is Exercise 3.1.21.

Theorem 3.1.6
Given columns c1, · · · , c j−1, c j+1, · · · , cn in Rn, define T : Rn → R by

T (x) = det
[

c1 · · · c j−1 x c j+1 · · · cn
]

for all x in Rn

Then, for all x and y in Rn and all a in R,

T (x+y) = T (x)+T (y) and T (ax) = aT (x)

Exercises for 3.1

Exercise 3.1.1 Compute the determinants of the
following matrices.

[
2 −1
3 2

]
a)

[
6 9
8 12

]
b)

[
a2 ab
ab b2

]
c)

[
a+1 a

a a−1

]
d)

[
cosθ −sinθ

sinθ cosθ

]
e)

 2 0 −3
1 2 5
0 3 0

f)

 1 2 3
4 5 6
7 8 9

g)

 0 a 0
b c d
0 e 0

h)

 1 b c
b c 1
c 1 b

i)

 0 a b
a 0 c
b c 0

j)


0 1 −1 0
3 0 0 2
0 1 2 1
5 0 0 7

k)


1 0 3 1
2 2 6 0

−1 0 −3 1
4 1 12 0

l)


3 1 −5 2
1 3 0 1
1 0 5 2
1 1 2 −1

m)


4 −1 3 −1
3 1 0 2
0 1 2 2
1 2 −1 1

n)


1 −1 5 5
3 1 2 4

−1 −3 8 0
1 1 2 −1

o)


0 0 0 a
0 0 b p
0 c q k
d s t u

p)

b. 0

d. −1

f. −39
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h. 0

j. 2abc

l. 0

n. −56

p. abcd

Exercise 3.1.2 Show that det A = 0 if A has a row
or column consisting of zeros.

Exercise 3.1.3 Show that the sign of the position
in the last row and the last column of A is always
+1.

Exercise 3.1.4 Show that det I = 1 for any identity
matrix I.

Exercise 3.1.5 Evaluate the determinant of each
matrix by reducing it to upper triangular form. 1 −1 2

3 1 1
2 −1 3

a)

 −1 3 1
2 5 3
1 −2 1

b)


−1 −1 1 0

2 1 1 3
0 1 1 2
1 3 −1 2

c)


2 3 1 1
0 2 −1 3
0 5 1 1
1 1 2 5

d)

b. −17

d. 106

Exercise 3.1.6 Evaluate by cursory inspection:

a. det

 a b c
a+1 b+1 c+1
a−1 b−1 c−1



b. det

 a b c
a+b 2b c+b

2 2 2



b. 0

Exercise 3.1.7 If det

 a b c
p q r
x y z

=−1 compute:

a. det

 −x −y −z
3p+a 3q+b 3r+ c

2p 2q 2r



b. det

 −2a −2b −2c
2p+ x 2q+ y 2r+ z

3x 3y 3z



b. 12

Exercise 3.1.8 Show that:

a. det

 p+ x q+ y r+ z
a+ x b+ y c+ z
a+ p b+q c+ r

= 2 det

 a b c
p q r
x y z



b. det

 2a+ p 2b+q 2c+ r
2p+ x 2q+ y 2r+ z
2x+a 2y+b 2z+ c

= 9 det

 a b c
p q r
x y z



b. det

 2a+ p 2b+q 2c+ r
2p+ x 2q+ y 2r+ z
2x+a 2y+b 2z+ c


= 3 det

 a+ p+ x b+q+ y c+ r+ z
2p+ x 2q+ y 2r+ z
2x+a 2y+b 2z+ c


= 3 det

 a+ p+ x b+q+ y c+ r+ z
p−a q−b r− c
x− p y−q z− r


= 3 det

 3x 3y 3z
p−a q−b r− c
x− p y−q z− r

 · · ·
Exercise 3.1.9 In each case either prove the state-
ment or give an example showing that it is false:

a. det (A+B) = det A+ det B.

b. If det A = 0, then A has two equal rows.

c. If A is 2×2, then det (AT ) = det A.

d. If R is the reduced row-echelon form of A, then
det A = det R.

e. If A is 2×2, then det (7A) = 49 det A.
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f. det (AT ) =− det A.

g. det (−A) =− det A.

h. If det A = det B where A and B are the same
size, then A = B.

b. False. A =

[
1 1
2 2

]

d. False. A =

[
2 0
0 1

]
→ R =

[
1 0
0 1

]

f. False. A =

[
1 1
0 1

]

h. False. A =

[
1 1
0 1

]
and B =

[
1 0
1 1

]

Exercise 3.1.10 Compute the determinant of each
matrix, using Theorem 3.1.5.

a.


1 −1 2 0 −2
0 1 0 4 1
1 1 5 0 0
0 0 0 3 −1
0 0 0 1 1



b.


1 2 0 3 0

−1 3 1 4 0
0 0 2 1 1
0 0 −1 0 2
0 0 3 0 1



b. 35

Exercise 3.1.11 If det A = 2, det B = −1, and
det C = 3, find:

det

 A X Y
0 B Z
0 0 C

a) det

 A 0 0
X B 0
Y Z C

b)

det

 A X Y
0 B 0
0 Z C

c) det

 A X 0
0 B 0
Y Z C

d)

b. −6

d. −6

Exercise 3.1.12 If A has three columns with only
the top two entries nonzero, show that det A = 0.

Exercise 3.1.13

a. Find det A if A is 3×3 and det (2A) = 6.

b. Under what conditions is det (−A) = det A?

Exercise 3.1.14 Evaluate by first adding all other
rows to the first row.

a. det

 x−1 2 3
2 −3 x−2
−2 x −2



b. det

 x−1 −3 1
2 −1 x−1
−3 x+2 −2



b. −(x−2)(x2 +2x−12)

Exercise 3.1.15

a. Find b if det

 5 −1 x
2 6 y

−5 4 z

= ax+by+ cz.

b. Find c if det

 2 x −1
1 y 3

−3 z 4

= ax+by+ cz.

b. −7

Exercise 3.1.16 Find the real numbers x and y
such that det A = 0 if:

A =

 0 x y
y 0 x
x y 0

a) A=

 1 x x
−x −2 x
−x −x −3

b)
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A =


1 x x2 x3

x x2 x3 1
x2 x3 1 x
x3 1 x x2

c)

A =


x y 0 0
0 x y 0
0 0 x y
y 0 0 x

d)

b. ±
√

6
2

d. x =±y

Exercise 3.1.17 Show that

det


0 1 1 1
1 0 x x
1 x 0 x
1 x x 0

=−3x2

Exercise 3.1.18 Show that

det


1 x x2 x3

a 1 x x2

p b 1 x
q r c 1

= (1−ax)(1−bx)(1− cx).

Exercise 3.1.19
Given the polynomial p(x) = a+ bx+ cx2 + dx3 + x4,

the matrix C =


0 1 0 0
0 0 1 0
0 0 0 1

−a −b −c −d

 is called the

companion matrix of p(x). Show that det (xI −
C) = p(x).

Exercise 3.1.20 Show that

det

 a+ x b+ x c+ x
b+ x c+ x a+ x
c+ x a+ x b+ x


= (a+b+ c+3x)[(ab+ac+bc)− (a2 +b2 + c2)]

Exercise 3.1.21 . Prove Theorem 3.1.6.
[Hint: Expand the determinant along column j.]

Let x =


x1
x2
...

xn

, y =


y1
y2
...

yn

 and A =

[
c1 · · · x+y · · · cn

]
where x + y is in col-

umn j. Expanding det A along column j (the one

containing x+y):

T (x+y) = det A =
n

∑
i=1

(xi + yi)ci j(A)

=
n

∑
i=1

xici j(A)+
n

∑
i=1

yici j(A)

= T (x)+T (y)

Similarly for T (ax) = aT (x).

Exercise 3.1.22 Show that

det


0 0 · · · 0 a1
0 0 · · · a2 ∗
...

...
...

...
0 an−1 · · · ∗ ∗
an ∗ · · · ∗ ∗

= (−1)ka1a2 · · ·an

where either n = 2k or n = 2k+ 1, and ∗-entries are
arbitrary.

Exercise 3.1.23 By expanding along the first col-
umn, show that:

det



1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 1 1
1 0 0 0 · · · 0 1


= 1+(−1)n+1

if the matrix is n×n, n ≥ 2.

Exercise 3.1.24 Form matrix B from a matrix A
by writing the columns of A in reverse order. Express
det B in terms of det A.
If A is n× n, then det B = (−1)k det A where n = 2k
or n = 2k+1.

Exercise 3.1.25 Prove property 3 of Theo-
rem 3.1.2 by expanding along the row (or column)
in question.

Exercise 3.1.26 Show that the line through two
distinct points (x1, y1) and (x2, y2) in the plane has
equation

det

 x y 1
x1 y1 1
x2 y2 1

= 0

Exercise 3.1.27 Let A be an n×n matrix. Given
a polynomial p(x) = a0 +a1x+ · · ·+amxm, we write
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p(A) = a0I+a1A+ · · ·+amAm. For example, if p(x) =
2−3x+5x2, then
p(A) = 2I −3A+5A2. The characteristic polynomial
of A is defined to be cA(x) = det [xI − A], and the
Cayley-Hamilton theorem asserts that cA(A) = 0 for
any matrix A.

a. Verify the theorem for

i. A =

[
3 2
1 −1

]
ii. A=

 1 −1 1
0 1 0
8 2 2


b. Prove the theorem for A =

[
a b
c d

]
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3.2 Determinants and Matrix Inverses

In this section, several theorems about determinants are derived. One consequence of these theorems
is that a square matrix A is invertible if and only if det A 6= 0. Moreover, determinants are used to
give a formula for A−1 which, in turn, yields a formula (called Cramer’s rule) for the solution of any
system of linear equations with an invertible coefficient matrix.

We begin with a remarkable theorem (due to Cauchy in 1812) about the determinant of a
product of matrices. The proof is given at the end of this section.

Theorem 3.2.1: Product Theorem
If A and B are n×n matrices, then det (AB) = det A det B.

The complexity of matrix multiplication makes the product theorem quite unexpected. Here is
an example where it reveals an important numerical identity.

Example 3.2.1

If A =

[
a b

−b a

]
and B =

[
c d

−d c

]
then AB =

[
ac−bd ad +bc

−(ad +bc) ac−bd

]
.

Hence det A det B = det (AB) gives the identity

(a2 +b2)(c2 +d2) = (ac−bd)2 +(ad +bc)2

Theorem 3.2.1 extends easily to det (ABC) = det A det B det C. In fact, induction gives

det (A1A2 · · ·Ak−1Ak) = det A1 det A2 · · · det Ak−1 det Ak

for any square matrices A1, . . . , Ak of the same size. In particular, if each Ai = A, we obtain

det (Ak) = (detA)k, for any k ≥ 1

We can now give the invertibility condition.

Theorem 3.2.2
An n×n matrix A is invertible if and only if det A 6= 0. When this is the case,
det (A−1) = 1

det A

Proof. If A is invertible, then AA−1 = I; so the product theorem gives

1 = det I = det (AA−1) = det A det A−1

Hence, det A 6= 0 and also det A−1 = 1
det A .



164 Determinants and Diagonalization

Conversely, if det A 6= 0, we show that A can be carried to I by elementary row operations
(and invoke Theorem 2.4.5). Certainly, A can be carried to its reduced row-echelon form R, so
R = Ek · · ·E2E1A where the Ei are elementary matrices (Theorem 2.5.1). Hence the product theorem
gives

det R = det Ek · · · det E2 det E1 det A

Since det E 6= 0 for all elementary matrices E, this shows det R 6= 0. In particular, R has no row of
zeros, so R = I because R is square and reduced row-echelon. This is what we wanted.

Example 3.2.2

For which values of c does A =

 1 0 −c
−1 3 1

0 2c −4

 have an inverse?

Solution. Compute det A by first adding c times column 1 to column 3 and then expanding
along row 1.

det A = det

 1 0 −c
−1 3 1

0 2c −4

= det

 1 0 0
−1 3 1− c

0 2c −4

= 2(c+2)(c−3)

Hence, det A = 0 if c =−2 or c = 3, and A has an inverse if c 6=−2 and c 6= 3.

Example 3.2.3

If a product A1A2 · · ·Ak of square matrices is invertible, show that each Ai is invertible.

Solution. We have det A1 det A2 · · · det Ak = det (A1A2 · · ·Ak) by the product theorem, and
det (A1A2 · · ·Ak) 6= 0 by Theorem 3.2.2 because A1A2 · · ·Ak is invertible. Hence

det A1 det A2 · · · det Ak 6= 0

so det Ai 6= 0 for each i. This shows that each Ai is invertible, again by Theorem 3.2.2.

Theorem 3.2.3
If A is any square matrix, det AT = det A.

Proof. Consider first the case of an elementary matrix E. If E is of type I or II, then ET = E; so
certainly det ET = det E. If E is of type III, then ET is also of type III; so det ET = 1 = det E by
Theorem 3.1.2. Hence, det ET = det E for every elementary matrix E.

Now let A be any square matrix. If A is not invertible, then neither is AT ; so det AT = 0 = det A
by Theorem 3.2.2. On the other hand, if A is invertible, then A = Ek · · ·E2E1, where the Ei are
elementary matrices (Theorem 2.5.2). Hence, AT = ET

1 ET
2 · · ·ET

k so the product theorem gives
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det AT = det ET
1 det ET

2 · · · det ET
k = det E1 det E2 · · · det Ek

= det Ek · · · det E2 det E1

= det A

This completes the proof.

Example 3.2.4

If det A = 2 and det B = 5, calculate det (A3B−1AT B2).

Solution. We use several of the facts just derived.

det (A3B−1AT B2) = det (A3) det (B−1) det (AT ) det (B2)

= (det A)3 1
det B det A(det B)2

= 23 · 1
5 ·2 ·5

2

= 80

Example 3.2.5

A square matrix is called orthogonal if A−1 = AT . What are the possible values of det A if
A is orthogonal?

Solution. If A is orthogonal, we have I = AAT . Take determinants to obtain

1 = det I = det (AAT ) = det A det AT = (det A)2

Since det A is a number, this means det A =±1.

Hence Theorems 2.6.4 and 2.6.5 imply that rotation about the origin and reflection about a line
through the origin in R2 have orthogonal matrices with determinants 1 and −1 respectively. In fact
they are the only such transformations of R2. We have more to say about this in Section 8.2.

Adjugates

In Section 2.4 we defined the adjugate of a 2 × 2 matrix A =

[
a b
c d

]
to be adj (A) =

[
d −b

−c a

]
.

Then we verified that A(adj A) = (det A)I = (adj A)A and hence that, if det A 6= 0, A−1 = 1
det A adj A.

We are now able to define the adjugate of an arbitrary square matrix and to show that this formula
for the inverse remains valid (when the inverse exists).

Recall that the (i, j)-cofactor ci j(A) of a square matrix A is a number defined for each position
(i, j) in the matrix. If A is a square matrix, the cofactor matrix of A is defined to be the matrix[
ci j(A)

]
whose (i, j)-entry is the (i, j)-cofactor of A.
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Definition 3.3 Adjugate of a Matrix

The adjugate4of A, denoted adj (A), is the transpose of this cofactor matrix; in symbols,

adj (A) =
[
ci j(A)

]T
This agrees with the earlier definition for a 2×2 matrix A as the reader can verify.

Example 3.2.6

Compute the adjugate of A =

 1 3 −2
0 1 5

−2 −6 7

 and calculate A(adj A) and (adj A)A.

Solution. We first find the cofactor matrix.

 c11(A) c12(A) c13(A)
c21(A) c22(A) c23(A)
c31(A) c32(A) c33(A)

=



∣∣∣∣ 1 5
−6 7

∣∣∣∣ −
∣∣∣∣ 0 5
−2 7

∣∣∣∣ ∣∣∣∣ 0 1
−2 −6

∣∣∣∣
−
∣∣∣∣ 3 −2
−6 7

∣∣∣∣ ∣∣∣∣ 1 −2
−2 7

∣∣∣∣ −
∣∣∣∣ 1 3
−2 −6

∣∣∣∣∣∣∣∣ 3 −2
1 5

∣∣∣∣ −
∣∣∣∣ 1 −2

0 5

∣∣∣∣ ∣∣∣∣ 1 3
0 1

∣∣∣∣


=

 37 −10 2
−9 3 0
17 −5 1


Then the adjugate of A is the transpose of this cofactor matrix.

adj A =

 37 −10 2
−9 3 0
17 −5 1

T

=

 37 −9 17
−10 3 −5

2 0 1


The computation of A(adj A) gives

A(adj A) =

 1 3 −2
0 1 5

−2 −6 7

 37 −9 17
−10 3 −5

2 0 1

=

 3 0 0
0 3 0
0 0 3

= 3I

and the reader can verify that also (adj A)A = 3I. Hence, analogy with the 2×2 case would
indicate that det A = 3; this is, in fact, the case.

The relationship A(adj A) = (det A)I holds for any square matrix A. To see why this is so,

4This is also called the classical adjoint of A, but the term “adjoint” has another meaning.
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consider the general 3×3 case. Writing ci j(A) = ci j for short, we have

adj A =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

T

=

 c11 c21 c31
c12 c22 c32
c13 c23 c33


If A =

[
ai j
]

in the usual notation, we are to verify that A(adj A) = (det A)I. That is,

A(adj A) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 c11 c21 c31
c12 c22 c32
c13 c23 c33

=

 det A 0 0
0 det A 0
0 0 det A


Consider the (1, 1)-entry in the product. It is given by a11c11 +a12c12 +a13c13, and this is just the
cofactor expansion of det A along the first row of A. Similarly, the (2, 2)-entry and the (3, 3)-entry
are the cofactor expansions of det A along rows 2 and 3, respectively.

So it remains to be seen why the off-diagonal elements in the matrix product A(adj A) are all
zero. Consider the (1, 2)-entry of the product. It is given by a11c21 + a12c22 + a13c23. This looks
like the cofactor expansion of the determinant of some matrix. To see which, observe that c21, c22,
and c23 are all computed by deleting row 2 of A (and one of the columns), so they remain the same
if row 2 of A is changed. In particular, if row 2 of A is replaced by row 1, we obtain

a11c21 +a12c22 +a13c23 = det

 a11 a12 a13
a11 a12 a13
a31 a32 a33

= 0

where the expansion is along row 2 and where the determinant is zero because two rows are identical.
A similar argument shows that the other off-diagonal entries are zero.

This argument works in general and yields the first part of Theorem 3.2.4. The second assertion
follows from the first by multiplying through by the scalar 1

det A .

Theorem 3.2.4: Adjugate Formula

If A is any square matrix, then

A(adj A) = (det A)I = (adj A)A

In particular, if det A 6= 0, the inverse of A is given by

A−1 = 1
det A adj A

It is important to note that this theorem is not an efficient way to find the inverse of the matrix
A. For example, if A were 10× 10, the calculation of adj A would require computing 102 = 100
determinants of 9×9 matrices! On the other hand, the matrix inversion algorithm would find A−1

with about the same effort as finding det A. Clearly, Theorem 3.2.4 is not a practical result: its
virtue is that it gives a formula for A−1 that is useful for theoretical purposes.
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Example 3.2.7

Find the (2, 3)-entry of A−1 if A =

 2 1 3
5 −7 1
3 0 −6

.

Solution. First compute

det A =

∣∣∣∣∣∣
2 1 3
5 −7 1
3 0 −6

∣∣∣∣∣∣=
∣∣∣∣∣∣

2 1 7
5 −7 11
3 0 0

∣∣∣∣∣∣= 3
∣∣∣∣ 1 7
−7 11

∣∣∣∣= 180

Since A−1 = 1
det A adj A = 1

180

[
ci j(A)

]T , the (2, 3)-entry of A−1 is the (3, 2)-entry of the

matrix 1
180

[
ci j(A)

]
; that is, it equals 1

180c32(A) = 1
180

(
−
∣∣∣∣ 2 3

5 1

∣∣∣∣)= 13
180 .

Example 3.2.8

If A is n×n, n ≥ 2, show that det (adj A) = (det A)n−1.

Solution. Write d = det A; we must show that det (adj A) = dn−1. We have A(adj A) = dI by
Theorem 3.2.4, so taking determinants gives d det (adj A) = dn. Hence we are done if d 6= 0.
Assume d = 0; we must show that det (adj A) = 0, that is, adj A is not invertible. If A 6= 0,
this follows from A(adj A) = dI = 0; if A = 0, it follows because then adj A = 0.

Cramer’s Rule

Theorem 3.2.4 has a nice application to linear equations. Suppose

Ax = b

is a system of n equations in n variables x1, x2, . . . , xn. Here A is the n×n coefficient matrix, and
x and b are the columns

x =


x1
x2
...

xn

 and b =


b1
b2
...

bn


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of variables and constants, respectively. If det A 6= 0, we left multiply by A−1 to obtain the solution
x = A−1b. When we use the adjugate formula, this becomes

x1
x2
...

xn

= 1
det A(adj A)b

= 1
det A


c11(A) c21(A) · · · cn1(A)
c12(A) c22(A) · · · cn2(A)

... ... ...
c1n(A) c2n(A) · · · cnn(A)




b1
b2
...

bn


Hence, the variables x1, x2, . . . , xn are given by

x1 =
1

det A [b1c11(A)+b2c21(A)+ · · ·+bncn1(A)]

x2 =
1

det A [b1c12(A)+b2c22(A)+ · · ·+bncn2(A)]
... ...

xn =
1

det A [b1c1n(A)+b2c2n(A)+ · · ·+bncnn(A)]

Now the quantity b1c11(A)+b2c21(A)+ · · ·+bncn1(A) occurring in the formula for x1 looks like the
cofactor expansion of the determinant of a matrix. The cofactors involved are c11(A), c21(A), . . . , cn1(A),
corresponding to the first column of A. If A1 is obtained from A by replacing the first column of A
by b, then ci1(A1) = ci1(A) for each i because column 1 is deleted when computing them. Hence,
expanding det (A1) by the first column gives

det A1 = b1c11(A1)+b2c21(A1)+ · · ·+bncn1(A1)

= b1c11(A)+b2c21(A)+ · · ·+bncn1(A)
= (det A)x1

Hence, x1 =
det A1
det A and similar results hold for the other variables.

Theorem 3.2.5: Cramer’s Rule5

If A is an invertible n×n matrix, the solution to the system

Ax = b

of n equations in the variables x1, x2, . . . , xn is given by

x1 =
det A1
det A , x2 =

det A2
det A , · · · , xn =

det An
det A

where, for each k, Ak is the matrix obtained from A by replacing column k by b.

5Gabriel Cramer (1704–1752) was a Swiss mathematician who wrote an introductory work on algebraic curves.
He popularized the rule that bears his name, but the idea was known earlier.
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Example 3.2.9

Find x1, given the following system of equations.

5x1 + x2 − x3 = 4
9x1 + x2 − x3 = 1
x1 − x2 + 5x3 = 2

Solution. Compute the determinants of the coefficient matrix A and the matrix A1
obtained from it by replacing the first column by the column of constants.

det A = det

 5 1 −1
9 1 −1
1 −1 5

=−16

det A1 = det

 4 1 −1
1 1 −1
2 −1 5

= 12

Hence, x1 =
det A1
det A =−3

4 by Cramer’s rule.

Cramer’s rule is not an efficient way to solve linear systems or invert matrices. True, it enabled
us to calculate x1 here without computing x2 or x3. Although this might seem an advantage, the
truth of the matter is that, for large systems of equations, the number of computations needed to
find all the variables by the gaussian algorithm is comparable to the number required to find one of
the determinants involved in Cramer’s rule. Furthermore, the algorithm works when the matrix of
the system is not invertible and even when the coefficient matrix is not square. Like the adjugate
formula, then, Cramer’s rule is not a practical numerical technique; its virtue is theoretical.

Polynomial Interpolation

Example 3.2.10

0 5 10 12 15

2

4

6

(5, 3)

(10, 5)
(15, 6)

Diameter

Age

A forester
wants to estimate the age (in years) of a tree by measuring the
diameter of the trunk (in cm). She obtains the following data:

Tree 1 Tree 2 Tree 3
Trunk Diameter 5 10 15
Age 3 5 6

Estimate the age of a tree with a trunk diameter of 12 cm.

Solution.
The forester decides to “fit” a quadratic polynomial

p(x) = r0 + r1x+ r2x2
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to the data, that is choose the coefficients r0, r1, and r2 so that p(5) = 3, p(10) = 5, and
p(15) = 6, and then use p(12) as the estimate. These conditions give three linear equations:

r0 + 5r1 + 25r2 = 3
r0 + 10r1 + 100r2 = 5
r0 + 15r1 + 225r2 = 6

The (unique) solution is r0 = 0, r1 =
7

10 , and r2 =− 1
50 , so

p(x) = 7
10x− 1

50x2 = 1
50x(35− x)

Hence the estimate is p(12) = 5.52.

As in Example 3.2.10, it often happens that two variables x and y are related but the actual
functional form y= f (x) of the relationship is unknown. Suppose that for certain values x1, x2, . . . , xn
of x the corresponding values y1, y2, . . . , yn are known (say from experimental measurements). One
way to estimate the value of y corresponding to some other value a of x is to find a polynomial6

p(x) = r0 + r1x+ r2x2 + · · ·+ rn−1xn−1

that “fits” the data, that is p(xi) = yi holds for each i = 1, 2, . . . , n. Then the estimate for y is p(a).
As we will see, such a polynomial always exists if the xi are distinct.

The conditions that p(xi) = yi are

r0 + r1x1 + r2x2
1 + · · ·+ rn−1xn−1

1 = y1

r0 + r1x2 + r2x2
2 + · · ·+ rn−1xn−1

2 = y2
... ... ... ... ...

r0 + r1xn + r2x2
n + · · ·+ rn−1xn−1

n = yn

In matrix form, this is 
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2... ... ... ...
1 xn x2

n · · · xn−1
n




r0
r1
...

rn−1

=


y1
y2
...

yn

 (3.3)

It can be shown (see Theorem 3.2.7) that the determinant of the coefficient matrix equals the
product of all terms (xi − x j) with i > j and so is nonzero (because the xi are distinct). Hence the
equations have a unique solution r0, r1, . . . , rn−1. This proves

6A polynomial is an expression of the form a0 + a1x+ a2x2 + · · ·+ anxn where the ai are numbers and x is a
variable. If an 6= 0, the integer n is called the degree of the polynomial, and an is called the leading coefficient. See
Appendix ??.



172 Determinants and Diagonalization

Theorem 3.2.6
Let n data pairs (x1, y1), (x2, y2), . . . , (xn, yn) be given, and assume that the xi are distinct.
Then there exists a unique polynomial

p(x) = r0 + r1x+ r2x2 + · · ·+ rn−1xn−1

such that p(xi) = yi for each i = 1, 2, . . . , n.

The polynomial in Theorem 3.2.6 is called the interpolating polynomial for the data.
We conclude by evaluating the determinant of the coefficient matrix in Equation 3.3. If a1, a2, . . . , an

are numbers, the determinant

det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2
1 a3 a2

3 · · · an−1
3... ... ... ...

1 an a2
n · · · an−1

n


is called a Vandermonde determinant.7 There is a simple formula for this determinant. If n = 2,
it equals (a2 −a1); if n = 3, it is (a3 −a2)(a3 −a1)(a2 −a1) by Example 3.1.8. The general result is
the product

∏
1≤ j<i≤n

(ai −a j)

of all factors (ai −a j) where 1 ≤ j < i ≤ n. For example, if n = 4, it is

(a4 −a3)(a4 −a2)(a4 −a1)(a3 −a2)(a3 −a1)(a2 −a1)

Theorem 3.2.7
Let a1, a2, . . . , an be numbers where n ≥ 2. Then the corresponding Vandermonde
determinant is given by

det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2
1 a3 a2

3 · · · an−1
3... ... ... ...

1 an a2
n · · · an−1

n

= ∏
1≤ j<i≤n

(ai −a j)

Proof. We may assume that the ai are distinct; otherwise both sides are zero. We proceed by
induction on n ≥ 2; we have it for n = 2, 3. So assume it holds for n−1. The trick is to replace an

7Alexandre Théophile Vandermonde (1735–1796) was a French mathematician who made contributions to the
theory of equations.
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by a variable x, and consider the determinant

p(x) = det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2... ... ... ...
1 an−1 a2

n−1 · · · an−1
n−1

1 x x2 · · · xn−1


Then p(x) is a polynomial of degree at most n− 1 (expand along the last row), and p(ai) = 0 for
each i = 1, 2, . . . , n− 1 because in each case there are two identical rows in the determinant. In
particular, p(a1) = 0, so we have p(x) = (x− a1)p1(x) by the factor theorem (see Appendix ??).
Since a2 6= a1, we obtain p1(a2) = 0, and so p1(x) = (x−a2)p2(x). Thus p(x) = (x−a1)(x−a2)p2(x).
As the ai are distinct, this process continues to obtain

p(x) = (x−a1)(x−a2) · · ·(x−an−1)d (3.4)

where d is the coefficient of xn−1 in p(x). By the cofactor expansion of p(x) along the last row we
get

d = (−1)n+n det


1 a1 a2

1 · · · an−2
1

1 a2 a2
2 · · · an−2

2... ... ... ...
1 an−1 a2

n−1 · · · an−2
n−1


Because (−1)n+n = 1 the induction hypothesis shows that d is the product of all factors (ai − a j)
where 1 ≤ j < i ≤ n−1. The result now follows from Equation 3.4 by substituting an for x in p(x).

Proof of Theorem 3.2.1. If A and B are n×n matrices we must show that

det (AB) = det A det B (3.5)

Recall that if E is an elementary matrix obtained by doing one row operation to In, then doing that
operation to a matrix C (Lemma 2.5.1) results in EC. By looking at the three types of elementary
matrices separately, Theorem 3.1.2 shows that

det (EC) = det E det C for any matrix C (3.6)

Thus if E1, E2, . . . , Ek are all elementary matrices, it follows by induction that

det (Ek · · ·E2E1C) = det Ek · · · det E2 det E1 det C for any matrix C (3.7)

Lemma. If A has no inverse, then det A = 0.
Proof. Let A → R where R is reduced row-echelon, say En · · ·E2E1A = R. Then R has a row of

zeros by Part (4) of Theorem 2.4.5, and hence det R = 0. But then Equation 3.7 gives det A = 0
because det E 6= 0 for any elementary matrix E. This proves the Lemma.

Now we can prove Equation 3.5 by considering two cases.
Case 1. A has no inverse. Then AB also has no inverse (otherwise A[B(AB)−1] = I) so A is invertible
by Corollary 2.4.2 to Theorem 2.4.5. Hence the above Lemma (twice) gives

det (AB) = 0 = 0 det B = det A det B
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proving Equation 3.5 in this case.
Case 2. A has an inverse. Then A is a product of elementary matrices by Theorem 2.5.2, say
A = E1E2 · · ·Ek. Then Equation 3.7 with C = I gives

det A = det (E1E2 · · ·Ek) = det E1 det E2 · · · det Ek

But then Equation 3.7 with C = B gives

det (AB) = det [(E1E2 · · ·Ek)B] = det E1 det E2 · · · det Ek det B = det A det B

and Equation 3.5 holds in this case too.

Exercises for 3.2

Exercise 3.2.1 Find the adjugate of each of the
following matrices. 5 1 3

−1 2 3
1 4 8

a)

 1 −1 2
3 1 0
0 −1 1

b)

 1 0 −1
−1 1 0

0 −1 1

c) 1
3

 −1 2 2
2 −1 2
2 2 −1

d)

b.

 1 −1 −2
−3 1 6
−3 1 4



d. 1
3

 −1 2 2
2 −1 2
2 2 −1

= A

Exercise 3.2.2 Use determinants to find which
real values of c make each of the following matrices
invertible. 1 0 3

3 −4 c
2 5 8

a)

 0 c −c
−1 2 1

c −c c

b)

 c 1 0
0 2 c

−1 c 5

c)

 4 c 3
c 2 c
5 c 4

d)

 1 2 −1
0 −1 c
2 c 1

e)

 1 c −1
c 1 1
0 1 c

f)

b. c 6= 0

d. any c

f. c 6=−1

Exercise 3.2.3 Let A, B, and C denote n×n ma-
trices and assume that det A = −1, det B = 2, and
det C = 3. Evaluate:

det (A3BCT B−1)a) det (B2C−1AB−1CT )b)

b. −2

Exercise 3.2.4 Let A and B be invertible n× n
matrices. Evaluate:

det (B−1AB)a) det (A−1B−1AB)b)

b. 1
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Exercise 3.2.5 If A is 3× 3 and det (2A−1) = −4
and det (A3(B−1)T ) =−4, find det A and det B.

Exercise 3.2.6 Let A =

 a b c
p q r
u v w

 and assume

that det A = 3. Compute:

a. det (2B−1) where B =

 4u 2a −p
4v 2b −q
4w 2c −r



b. det (2C−1) where C =

 2p −a+u 3u
2q −b+ v 3v
2r −c+w 3w



b. 4
9

Exercise 3.2.7 If det
[

a b
c d

]
=−2 calculate:

a. det

 2 −2 0
c+1 −1 2a
d −2 2 2b



b. det

 2b 0 4d
1 2 −2

a+1 2 2(c−1)


c. det (3A−1) where A =

[
3c a+ c
3d b+d

]

b. 16

Exercise 3.2.8 Solve each of the following by
Cramer’s rule:

2x+ y= 1
3x+ 7y=−2

a) 3x+ 4y= 9
2x− y=−1

b)

5x+ y− z=−7
2x− y− 2z= 6
3x + 2z=−7

c)
4x− y+ 3z= 1
6x+ 2y− z= 0
3x+ 3y+ 2z=−1

d)

b. 1
11

[
5

21

]

d. 1
79

 12
−37
−2


Exercise 3.2.9 Use Theorem 3.2.4 to find the
(2, 3)-entry of A−1 if:

A =

 3 2 1
1 1 2

−1 2 1

a) A =

 1 2 −1
3 1 1
0 4 7

b)

b. 4
51

Exercise 3.2.10 Explain what can be said about
det A if:

A2 = Aa) A2 = Ib)
A3 = Ac) PA = P and P is in-

vertible
d)

A2 = uA and A is n×
n

e) A = −AT and A is
n×n

f)

A2 + I = 0 and A is
n×n

g)

b. det A = 1, −1

d. det A = 1

f. det A = 0 if n is odd; nothing can be said if n
is even

Exercise 3.2.11 Let A be n×n. Show that uA =
(uI)A, and use this with Theorem 3.2.1 to deduce the
result in Theorem 3.1.3: det (uA) = un det A.

Exercise 3.2.12 If A and B are n× n matrices, if
AB = −BA, and if n is odd, show that either A or B
has no inverse.

Exercise 3.2.13 Show that det AB = det BA holds
for any two n×n matrices A and B.

Exercise 3.2.14 If Ak = 0 for some k ≥ 1, show
that A is not invertible.

Exercise 3.2.15 If A−1 = AT , describe the cofactor
matrix of A in terms of A.
dA where d = det A



176 Determinants and Diagonalization

Exercise 3.2.16 Show that no 3×3 matrix A ex-
ists such that A2 + I = 0. Find a 2×2 matrix A with
this property.

Exercise 3.2.17 Show that det (A+BT )= det (AT +
B) for any n×n matrices A and B.

Exercise 3.2.18 Let A and B be invertible n×n ma-
trices. Show that det A = det B if and only if A =UB
where U is a matrix with det U = 1.

Exercise 3.2.19 For each of the matrices in Exer-
cise 2, find the inverse for those values of c for which
it exists.

b. 1
c

 1 0 1
0 c 1

−1 c 1

 , c 6= 0

d. 1
2

 8− c2 −c c2 −6
c 1 −c

c2 −10 c 8− c2



f. 1
c3+1

 1− c c2 +1 −c−1
c2 −c c+1
−c 1 c2 −1

 , c 6=−1

Exercise 3.2.20 In each case either prove the
statement or give an example showing that it is false:

a. If adj A exists, then A is invertible.

b. If A is invertible and adj A = A−1, then det A =
1.

c. det (AB) = det (BT A).

d. If det A 6= 0 and AB = AC, then B =C.

e. If AT =−A, then det A =−1.

f. If adj A = 0, then A = 0.

g. If A is invertible, then adj A is invertible.

h. If A has a row of zeros, so also does adj A.

i. det (AT A)> 0 for all square matrices A.

j. det (I +A) = 1+ det A.

k. If AB is invertible, then A and B are invertible.

l. If det A = 1, then adj A = A.

m. If A is invertible and det A = d, then adj A =
dA−1.

b. T. det AB = det A det B = det B det A = det BA.

d. T. det A 6= 0 means A−1 exists, so AB = AC im-
plies that B =C.

f. F. If A =

 1 1 1
1 1 1
1 1 1

 then adj A = 0.

h. F. If A =

[
1 1
0 0

]
then adj A =

[
0 −1
0 1

]

j. F. If A =

[
−1 1

1 −1

]
then det (I + A) = −1

but 1+ det A = 1.

l. F. If A =

[
1 1
0 1

]
then det A = 1 but adj A =[

1 −1
0 1

]
6= A

Exercise 3.2.21 If A is 2×2 and det A = 0, show
that one column of A is a scalar multiple of the
other. [Hint: Definition 2.5 and Part (2) of The-
orem 2.4.5.]

Exercise 3.2.22 Find a polynomial p(x) of degree
2 such that:

a. p(0) = 2, p(1) = 3, p(3) = 8

b. p(0) = 5, p(1) = 3, p(2) = 5

b. 5−4x+2x2.

Exercise 3.2.23 Find a polynomial p(x) of degree
3 such that:

a. p(0) = p(1) = 1, p(−1) = 4, p(2) =−5

b. p(0) = p(1) = 1, p(−1) = 2, p(−2) =−3

b. 1− 5
3 x+ 1

2 x2 + 7
6 x3



3.2. Determinants and Matrix Inverses 177

Exercise 3.2.24 Given the following data pairs,
find the interpolating polynomial of degree 3 and es-
timate the value of y corresponding to x = 1.5.

a. (0, 1), (1, 2), (2, 5), (3, 10)

b. (0, 1), (1, 1.49), (2, −0.42), (3, −11.33)

c. (0, 2), (1, 2.03), (2, −0.40), (−1, 0.89)

b. 1−0.51x+2.1x2 −1.1x3;1.25, so y = 1.25

Exercise 3.2.25 If A =

 1 a b
−a 1 c
−b −c 1

 show that

det A = 1+a2 +b2 +c2. Hence, find A−1 for any a, b,
and c.

Exercise 3.2.26

a. Show that A =

 a p q
0 b r
0 0 c

 has an inverse if

and only if abc 6= 0, and find A−1 in that case.

b. Show that if an upper triangular matrix is in-
vertible, the inverse is also upper triangular.

b. Use induction on n where A is n × n. It is
clear if n = 1. If n > 1, write A =

[
a X
0 B

]
in

block form where B is (n−1)× (n−1). Then

A−1 =

[
a−1 −a−1XB−1

0 B−1

]
, and this is upper

triangular because B is upper triangular by in-
duction.

Exercise 3.2.27 Let A be a matrix each of whose
entries are integers. Show that each of the following
conditions implies the other.

1. A is invertible and A−1 has integer entries.

2. det A = 1 or −1.

Exercise 3.2.28 If A−1 =

 3 0 1
0 2 3
3 1 −1

 find adj A.

− 1
21

 3 0 1
0 2 3
3 1 −1


Exercise 3.2.29 If A is 3× 3 and det A = 2, find
det (A−1 +4 adj A).

Exercise 3.2.30 Show that det
[

0 A
B X

]
=

det A det B when A and B are 2×2. What if A and B

are 3×3? [Hint: Block multiply by
[

0 I
I 0

]
.]

Exercise 3.2.31 Let A be n×n, n ≥ 2, and assume
one column of A consists of zeros. Find the possible
values of rank (adj A).

Exercise 3.2.32 If A is 3×3 and invertible, com-
pute det (−A2(adj A)−1).

Exercise 3.2.33 Show that adj (uA) = un−1 adj A
for all n×n matrices A.

Exercise 3.2.34 Let A and B denote invertible
n×n matrices. Show that:

a. adj (adj A) = (det A)n−2A (here n ≥ 2) [Hint:
See Example 3.2.8.]

b. adj (A−1) = (adj A)−1

c. adj (AT ) = (adj A)T

d. adj (AB) = (adj B)(adj A) [Hint: Show that
AB adj (AB) = AB adj B adj A.]

b. Have (adj A)A = (det A)I; so taking inverses,
A−1 · (adj A)−1 = 1

det A I. On the other hand,
A−1 adj (A−1) = det (A−1)I = 1

det A I. Compar-
ison yields A−1(adj A)−1 = A−1 adj (A−1), and
part (b) follows.

d. Write det A = d, det B = e. By the
adjugate formula AB adj (AB) = deI, and
AB adj B adj A = A[eI] adj A = (eI)(dI) = deI.
Done as AB is invertible.
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3.3 Diagonalization and Eigenvalues

The world is filled with examples of systems that evolve in time—the weather in a region, the
economy of a nation, the diversity of an ecosystem, etc. Describing such systems is difficult in
general and various methods have been developed in special cases. In this section we describe one
such method, called diagonalization, which is one of the most important techniques in linear algebra.
A very fertile example of this procedure is in modelling the growth of the population of an animal
species. This has attracted more attention in recent years with the ever increasing awareness that
many species are endangered. To motivate the technique, we begin by setting up a simple model
of a bird population in which we make assumptions about survival and reproduction rates.

Example 3.3.1

Consider the evolution of the population of a species of birds. Because the number of males
and females are nearly equal, we count only females. We assume that each female remains a
juvenile for one year and then becomes an adult, and that only adults have offspring. We
make three assumptions about reproduction and survival rates:

1. The number of juvenile females hatched in any year is twice the number of adult
females alive the year before (we say the reproduction rate is 2).

2. Half of the adult females in any year survive to the next year (the adult survival
rate is 1

2).

3. One quarter of the juvenile females in any year survive into adulthood (the juvenile
survival rate is 1

4).

If there were 100 adult females and 40 juvenile females alive initially, compute the
population of females k years later.

Solution. Let ak and jk denote, respectively, the number of adult and juvenile females after
k years, so that the total female population is the sum ak + jk. Assumption 1 shows that
jk+1 = 2ak, while assumptions 2 and 3 show that ak+1 =

1
2ak +

1
4 jk. Hence the numbers ak

and jk in successive years are related by the following equations:

ak+1 =
1
2ak +

1
4 jk

jk+1 = 2ak

If we write vk =

[
ak
jk

]
and A =

[ 1
2

1
4

2 0

]
these equations take the matrix form

vk+1 = Avk, for each k = 0, 1, 2, . . .

Taking k = 0 gives v1 = Av0, then taking k = 1 gives v2 = Av1 = A2v0, and taking k = 2
gives v3 = Av2 = A3v0. Continuing in this way, we get

vk = Akv0, for each k = 0, 1, 2, . . .
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Since v0 =

[
a0
j0

]
=

[
100
40

]
is known, finding the population profile vk amounts to

computing Ak for all k ≥ 0. We will complete this calculation in Example 3.3.12 after some
new techniques have been developed.

Let A be a fixed n× n matrix. A sequence v0, v1, v2, . . . of column vectors in Rn is called a
linear dynamical system8 if v0 is known and the other vk are determined (as in Example 3.3.1)
by the conditions

vk+1 = Avk for each k = 0, 1, 2, . . .

These conditions are called a matrix recurrence for the vectors vk. As in Example 3.3.1, they
imply that

vk = Akv0 for all k ≥ 0

so finding the columns vk amounts to calculating Ak for k ≥ 0.
Direct computation of the powers Ak of a square matrix A can be time-consuming, so we adopt

an indirect method that is commonly used. The idea is to first diagonalize the matrix A, that is,
to find an invertible matrix P such that

P−1AP = D is a diagonal matrix (3.8)

This works because the powers Dk of the diagonal matrix D are easy to compute, and Equation
3.8 enables us to compute powers Ak of the matrix A in terms of powers Dk of D. Indeed, we can
solve Equation 3.8 for A to get A = PDP−1. Squaring this gives

A2 = (PDP−1)(PDP−1) = PD2P−1

Using this we can compute A3 as follows:

A3 = AA2 = (PDP−1)(PD2P−1) = PD3P−1

Continuing in this way we obtain Theorem 3.3.1 (even if D is not diagonal).

Theorem 3.3.1
If A = PDP−1 then Ak = PDkP−1 for each k = 1, 2, . . . .

Hence computing Ak comes down to finding an invertible matrix P as in equation Equation 3.8.
To do this it is necessary to first compute certain numbers (called eigenvalues) associated with the
matrix A.

8More precisely, this is a linear discrete dynamical system. Many models regard vt as a continuous function of
the time t, and replace our condition between bk+1 and Avk with a differential relationship viewed as functions of
time.
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Eigenvalues and Eigenvectors

Definition 3.4 Eigenvalues and Eigenvectors of a Matrix

If A is an n×n matrix, a number λ is called an eigenvalue of A if

Ax = λx for some column x 6= 0 in Rn

In this case, x is called an eigenvector of A corresponding to the eigenvalue λ , or a
λ -eigenvector for short.

Example 3.3.2

If A =

[
3 5
1 −1

]
and x =

[
5
1

]
then Ax = 4x so λ = 4 is an eigenvalue of A with

corresponding eigenvector x.

The matrix A in Example 3.3.2 has another eigenvalue in addition to λ = 4. To find it, we
develop a general procedure for any n×n matrix A.

By definition a number λ is an eigenvalue of the n×n matrix A if and only if Ax = λx for some
column x 6= 0. This is equivalent to asking that the homogeneous system

(λ I −A)x = 0

of linear equations has a nontrivial solution x 6= 0. By Theorem 2.4.5 this happens if and only if
the matrix λ I −A is not invertible and this, in turn, holds if and only if the determinant of the
coefficient matrix is zero:

det (λ I −A) = 0

This last condition prompts the following definition:

Definition 3.5 Characteristic Polynomial of a Matrix

If A is an n×n matrix, the characteristic polynomial cA(x) of A is defined by

cA(x) = det (xI −A)

Note that cA(x) is indeed a polynomial in the variable x, and it has degree n when A is an n× n
matrix (this is illustrated in the examples below). The above discussion shows that a number λ is
an eigenvalue of A if and only if cA(λ ) = 0, that is if and only if λ is a root of the characteristic
polynomial cA(x). We record these observations in
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Theorem 3.3.2
Let A be an n×n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.

2. The λ -eigenvectors x are the nonzero solutions to the homogeneous system

(λ I −A)x = 0

of linear equations with λ I −A as coefficient matrix.

In practice, solving the equations in part 2 of Theorem 3.3.2 is a routine application of gaussian
elimination, but finding the eigenvalues can be difficult, often requiring computers (see Section 8.5).
For now, the examples and exercises will be constructed so that the roots of the characteristic
polynomials are relatively easy to find (usually integers). However, the reader should not be misled
by this into thinking that eigenvalues are so easily obtained for the matrices that occur in practical
applications!

Example 3.3.3

Find the characteristic polynomial of the matrix A =

[
3 5
1 −1

]
discussed in Example 3.3.2,

and then find all the eigenvalues and their eigenvectors.

Solution. Since xI −A =

[
x 0
0 x

]
−
[

3 5
1 −1

]
=

[
x−3 −5
−1 x+1

]
we get

cA(x) = det
[

x−3 −5
−1 x+1

]
= x2 −2x−8 = (x−4)(x+2)

Hence, the roots of cA(x) are λ1 = 4 and λ2 =−2, so these are the eigenvalues of A. Note
that λ1 = 4 was the eigenvalue mentioned in Example 3.3.2, but we have found a new one:
λ2 =−2.
To find the eigenvectors corresponding to λ2 =−2, observe that in this case

(λ2I −A)x =

[
λ2 −3 −5
−1 λ2 +1

]
=

[
−5 −5
−1 −1

]

so the general solution to (λ2I−A)x = 0 is x = t
[
−1

1

]
where t is an arbitrary real number.

Hence, the eigenvectors x corresponding to λ 2 are x = t
[
−1

1

]
where t 6= 0 is arbitrary.

Similarly, λ1 = 4 gives rise to the eigenvectors x = t
[

5
1

]
, t 6= 0 which includes the

observation in Example 3.3.2.

Note that a square matrix A has many eigenvectors associated with any given eigenvalue λ .
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In fact every nonzero solution x of (λ I −A)x = 0 is an eigenvector. Recall that these solutions
are all linear combinations of certain basic solutions determined by the gaussian algorithm (see
Theorem 1.3.2). Observe that any nonzero multiple of an eigenvector is again an eigenvector,9 and
such multiples are often more convenient.10 Any set of nonzero multiples of the basic solutions of
(λ I −A)x = 0 will be called a set of basic eigenvectors corresponding to λ .

Example 3.3.4

Find the characteristic polynomial, eigenvalues, and basic eigenvectors for

A =

 2 0 0
1 2 −1
1 3 −2


Solution. Here the characteristic polynomial is given by

cA(x) = det

 x−2 0 0
−1 x−2 1
−1 −3 x+2

= (x−2)(x−1)(x+1)

so the eigenvalues are λ1 = 2, λ2 = 1, and λ3 =−1. To find all eigenvectors for λ1 = 2,
compute

λ1I −A =

 λ1 −2 0 0
−1 λ1 −2 1
−1 −3 λ1 +2

=

 0 0 0
−1 0 1
−1 −3 4


We want the (nonzero) solutions to (λ1I −A)x = 0. The augmented matrix becomes 0 0 0 0

−1 0 1 0
−1 −3 4 0

→

 1 0 −1 0
0 1 −1 0
0 0 0 0


using row operations. Hence, the general solution x to (λ1I −A)x = 0 is x = t

 1
1
1

 where t

is arbitrary, so we can use x1 =

 1
1
1

 as the basic eigenvector corresponding to λ1 = 2. As

the reader can verify, the gaussian algorithm gives basic eigenvectors x2 =

 0
1
1

 and

x3 =

 0
1
3
1

 corresponding to λ2 = 1 and λ3 =−1, respectively. Note that to eliminate

fractions, we could instead use 3x3 =

 0
1
3

 as the basic λ3-eigenvector.

9In fact, any nonzero linear combination of λ -eigenvectors is again a λ -eigenvector.
10Allowing nonzero multiples helps eliminate round-off error when the eigenvectors involve fractions.
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Example 3.3.5

If A is a square matrix, show that A and AT have the same characteristic polynomial, and
hence the same eigenvalues.

Solution. We use the fact that xI −AT = (xI −A)T . Then

cAT (x) = det
(
xI −AT)= det

[
(xI −A)T ]= det (xI −A) = cA(x)

by Theorem 3.2.3. Hence cAT (x) and cA(x) have the same roots, and so AT and A have the
same eigenvalues (by Theorem 3.3.2).

The eigenvalues of a matrix need not be distinct. For example, if A =

[
1 1
0 1

]
the characteristic

polynomial is (x− 1)2 so the eigenvalue 1 occurs twice. Furthermore, eigenvalues are usually not
computed as the roots of the characteristic polynomial. There are iterative, numerical methods (for
example the QR-algorithm in Section 8.5) that are much more efficient for large matrices.

A-Invariance

If A is a 2×2 matrix, we can describe the eigenvectors of A geometrically using the following concept.
A line L through the origin in R2 is called A-invariant if Ax is in L whenever x is in L. If we think
of A as a linear transformation R2 → R2, this asks that A carries L into itself, that is the image Ax
of each vector x in L is again in L.

Example 3.3.6

The x axis L =

{[
x
0

]
| x in R

}
is A-invariant for any matrix of the form

A =

[
a b
0 c

]
because

[
a b
0 c

][
x
0

]
=

[
ax
0

]
is L for all x =

[
x
0

]
in L

Lx

x

0 x

y
To see the connection with eigenvectors, let x 6= 0 be any nonzero

vector in R2 and let Lx denote the unique line through the origin con-
taining x (see the diagram). By the definition of scalar multiplication
in Section 2.6, we see that Lx consists of all scalar multiples of x, that
is

Lx = Rx = {tx | t in R}
Now suppose that x is an eigenvector of A, say Ax = λx for some λ

in R. Then if tx is in Lx then
A(tx) = t (Ax) = t(λx) = (tλ )x is again in Lx

That is, Lx is A-invariant. On the other hand, if Lx is A-invariant then Ax is in Lx (since x is in
Lx). Hence Ax = tx for some t in R, so x is an eigenvector for A (with eigenvalue t). This proves:
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Theorem 3.3.3
Let A be a 2×2 matrix, let x 6= 0 be a vector in R2, and let Lx be the line through the
origin in R2 containing x. Then

x is an eigenvector of A if and only if Lx is A-invariant

Example 3.3.7

1. If θ is not a multiple of π, show that A =

[
cosθ −sinθ

sinθ cosθ

]
has no real eigenvalue.

2. If m is real show that B = 1
1+m2

[
1−m2 2m

2m m2 −1

]
has a 1 as an eigenvalue.

Solution.

1. A induces rotation about the origin through the angle θ (Theorem 2.6.4). Since θ is
not a multiple of π, this shows that no line through the origin is A-invariant. Hence A
has no eigenvector by Theorem 3.3.3, and so has no eigenvalue.

2. B induces reflection Qm in the line through the origin with slope m by Theorem 2.6.5.
If x is any nonzero point on this line then it is clear that Qmx = x, that is Qmx = 1x.
Hence 1 is an eigenvalue (with eigenvector x).

If θ = π

2 in Example 3.3.7, then A =

[
0 −1
1 0

]
so cA(x) = x2 + 1. This polynomial has no

root in R, so A has no (real) eigenvalue, and hence no eigenvector. In fact its eigenvalues are the

complex numbers i and −i, with corresponding eigenvectors
[

1
−i

]
and

[
1
i

]
In other words, A

has eigenvalues and eigenvectors, just not real ones.
Note that every polynomial has complex roots,11 so every matrix has complex eigenvalues.

While these eigenvalues may very well be real, this suggests that we really should be doing linear
algebra over the complex numbers. Indeed, everything we have done (gaussian elimination, matrix
algebra, determinants, etc.) works if all the scalars are complex.

11This is called the Fundamental Theorem of Algebra and was first proved by Gauss in his doctoral dissertation.
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Diagonalization

An n×n matrix D is called a diagonal matrix if all its entries off the main diagonal are zero, that
is if D has the form

D =


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn

= diag (λ1, λ2, · · · , λn)

where λ1, λ2, . . . , λn are numbers. Calculations with diagonal matrices are very easy. Indeed, if
D= diag (λ1, λ2, . . . , λn) and E = diag (µ1, µ2, . . . , µn) are two diagonal matrices, their product DE
and sum D+E are again diagonal, and are obtained by doing the same operations to corresponding
diagonal elements:

DE = diag (λ1µ1, λ2µ2, . . . , λnµn)

D+E = diag (λ1 +µ1, λ2 +µ2, . . . , λn +µn)

Because of the simplicity of these formulas, and with an eye on Theorem 3.3.1 and the discussion
preceding it, we make another definition:

Definition 3.6 Diagonalizable Matrices

An n×n matrix A is called diagonalizable if

P−1AP is diagonal for some invertible n×n matrix P

Here the invertible matrix P is called a diagonalizing matrix for A.

To discover when such a matrix P exists, we let x1, x2, . . . , xn denote the columns of P and
look for ways to determine when such xi exist and how to compute them. To this end, write P in
terms of its columns as follows:

P = [x1, x2, · · · , xn]

Observe that P−1AP = D for some diagonal matrix D holds if and only if

AP = PD

If we write D = diag (λ1, λ2, . . . , λn), where the λi are numbers to be determined, the equation
AP = PD becomes

A [x1, x2, · · · , xn] = [x1, x2, · · · , xn]


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn


By the definition of matrix multiplication, each side simplifies as follows[

Ax1 Ax2 · · · Axn
]
=
[

λ1x1 λ2x2 · · · λnxn
]
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Comparing columns shows that Axi = λixi for each i, so

P−1AP = D if and only if Axi = λixi for each i

In other words, P−1AP = D holds if and only if the diagonal entries of D are eigenvalues of A and
the columns of P are corresponding eigenvectors. This proves the following fundamental result.

Theorem 3.3.4
Let A be an n×n matrix.

1. A is diagonalizable if and only if it has eigenvectors x1, x2, . . . , xn such that the
matrix P =

[
x1 x2 . . . xn

]
is invertible.

2. When this is the case, P−1AP = diag (λ1, λ2, . . . , λn) where, for each i, λi is the
eigenvalue of A corresponding to xi.

Example 3.3.8

Diagonalize the matrix A =

 2 0 0
1 2 −1
1 3 −2

 in Example 3.3.4.

Solution. By Example 3.3.4, the eigenvalues of A are λ1 = 2, λ2 = 1, and λ3 =−1, with

corresponding basic eigenvectors x1 =

 1
1
1

 , x2 =

 0
1
1

, and x3 =

 0
1
3

 respectively.

Since the matrix P =
[

x1 x2 x3
]
=

 1 0 0
1 1 1
1 1 3

 is invertible, Theorem 3.3.4 guarantees

that

P−1AP =

 λ1 0 0
0 λ2 0
0 0 λ3

=

 2 0 0
0 1 0
0 0 −1

= D

The reader can verify this directly—easier to check AP = PD.

In Example 3.3.8, suppose we let Q =
[

x2 x1 x3
]

be the matrix formed from the eigen-
vectors x1, x2, and x3 of A, but in a different order than that used to form P. Then Q−1AQ =
diag (λ2, λ1, λ3) is diagonal by Theorem 3.3.4, but the eigenvalues are in the new order. Hence we
can choose the diagonalizing matrix P so that the eigenvalues λi appear in any order we want along
the main diagonal of D.

In every example above each eigenvalue has had only one basic eigenvector. Here is a diagonal-
izable matrix where this is not the case.
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Example 3.3.9

Diagonalize the matrix A =

 0 1 1
1 0 1
1 1 0


Solution. To compute the characteristic polynomial of A first add rows 2 and 3 of xI −A to
row 1:

cA(x) = det

 x −1 −1
−1 x −1
−1 −1 x

= det

 x−2 x−2 x−2
−1 x −1
−1 −1 x


= det

 x−2 0 0
−1 x+1 0
−1 0 x+1

= (x−2)(x+1)2

Hence the eigenvalues are λ1 = 2 and λ2 =−1, with λ2 repeated twice (we say that λ2 has
multiplicity two). However, A is diagonalizable. For λ1 = 2, the system of equations

(λ1I −A)x = 0 has general solution x = t

 1
1
1

 as the reader can verify, so a basic

λ1-eigenvector is x1 =

 1
1
1

.

Turning to the repeated eigenvalue λ2 =−1, we must solve (λ2I −A)x = 0. By gaussian

elimination, the general solution is x = s

 −1
1
0

+ t

 −1
0
1

 where s and t are arbitrary.

Hence the gaussian algorithm produces two basic λ2-eigenvectors x2 =

 −1
1
0

 and

y2 =

 −1
0
1

 If we take P =
[

x1 x2 y2
]
=

 1 −1 −1
1 1 0
1 0 1

 we find that P is invertible.

Hence P−1AP = diag (2, −1, −1) by Theorem 3.3.4.

Example 3.3.9 typifies every diagonalizable matrix. To describe the general case, we need some
terminology.

Definition 3.7 Multiplicity of an Eigenvalue

An eigenvalue λ of a square matrix A is said to have multiplicity m if it occurs m times as
a root of the characteristic polynomial cA(x).

For example, the eigenvalue λ2 = −1 in Example 3.3.9 has multiplicity 2. In that example the
gaussian algorithm yields two basic λ2-eigenvectors, the same number as the multiplicity. This
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works in general.

Theorem 3.3.5
A square matrix A is diagonalizable if and only if every eigenvalue λ of multiplicity m yields
exactly m basic eigenvectors; that is, if and only if the general solution of the system
(λ I −A)x = 0 has exactly m parameters.

One case of Theorem 3.3.5 deserves mention.

Theorem 3.3.6
An n×n matrix with n distinct eigenvalues is diagonalizable.

The proofs of Theorem 3.3.5 and Theorem 3.3.6 require more advanced techniques and are given in
Chapter 5. The following procedure summarizes the method.

Diagonalization Algorithm

To diagonalize an n×n matrix A:

Step 1. Find the distinct eigenvalues λ of A.

Step 2. Compute a set of basic eigenvectors corresponding to each of these eigenvalues λ

as basic solutions of the homogeneous system (λ I −A)x = 0.

Step 3. The matrix A is diagonalizable if and only if there are n basic eigenvectors in all.

Step 4. If A is diagonalizable, the n×n matrix P with these basic eigenvectors as its
columns is a diagonalizing matrix for A, that is, P is invertible and P−1AP is diagonal.

The diagonalization algorithm is valid even if the eigenvalues are nonreal complex numbers. In this
case the eigenvectors will also have complex entries, but we will not pursue this here.

Example 3.3.10

Show that A =

[
1 1
0 1

]
is not diagonalizable.

Solution 1. The characteristic polynomial is cA(x) = (x−1)2, so A has only one eigenvalue
λ1 = 1 of multiplicity 2. But the system of equations (λ1I −A)x = 0 has general solution

t
[

1
0

]
, so there is only one parameter, and so only one basic eigenvector

[
1
2

]
. Hence A is

not diagonalizable.

Solution 2. We have cA(x) = (x−1)2 so the only eigenvalue of A is λ = 1. Hence, if A were

diagonalizable, Theorem 3.3.4 would give P−1AP =

[
1 0
0 1

]
= I for some invertible matrix
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P. But then A = PIP−1 = I, which is not the case. So A cannot be diagonalizable.

Diagonalizable matrices share many properties of their eigenvalues. The following example
illustrates why.

Example 3.3.11

If λ 3 = 5λ for every eigenvalue of the diagonalizable matrix A, show that A3 = 5A.

Solution. Let P−1AP = D = diag (λ1, . . . , λn). Because λ 3
i = 5λi for each i, we obtain

D3 = diag (λ 3
1 , . . . , λ

3
n ) = diag (5λ1, . . . , 5λn) = 5D

Hence A3 = (PDP−1)3 = PD3P−1 = P(5D)P−1 = 5(PDP−1) = 5A using Theorem 3.3.1. This is
what we wanted.

If p(x) is any polynomial and p(λ ) = 0 for every eigenvalue of the diagonalizable matrix A,
an argument similar to that in Example 3.3.11 shows that p(A) = 0. Thus Example 3.3.11 deals
with the case p(x) = x3 − 5x. In general, p(A) is called the evaluation of the polynomial p(x) at
the matrix A. For example, if p(x) = 2x3 −3x+5, then p(A) = 2A3 −3A+5I—note the use of the
identity matrix.

In particular, if cA(x) denotes the characteristic polynomial of A, we certainly have cA(λ ) = 0
for each eigenvalue λ of A (Theorem 3.3.2). Hence cA(A) = 0 for every diagonalizable matrix A.
This is, in fact, true for any square matrix, diagonalizable or not, and the general result is called
the Cayley-Hamilton theorem. It is proved in Section ?? and again in Section ??.

Linear Dynamical Systems

We began Section 3.3 with an example from ecology which models the evolution of the population
of a species of birds as time goes on. As promised, we now complete the example—Example 3.3.12
below.

The bird population was described by computing the female population profile vk =

[
ak
jk

]
of

the species, where ak and jk represent the number of adult and juvenile females present k years
after the initial values a0 and j0 were observed. The model assumes that these numbers are related
by the following equations:

ak+1 =
1
2ak +

1
4 jk

jk+1 = 2ak

If we write A =

[ 1
2

1
4

2 0

]
the columns vk satisfy vk+1 = Avk for each k = 0, 1, 2, . . . .

Hence vk = Akv0 for each k = 1, 2, . . . . We can now use our diagonalization techniques to determine
the population profile vk for all values of k in terms of the initial values.
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Example 3.3.12

Assuming that the initial values were a0 = 100 adult females and j0 = 40 juvenile females,
compute ak and jk for k = 1, 2, . . . .

Solution. The characteristic polynomial of the matrix A =

[ 1
2

1
4

2 0

]
is

cA(x) = x2 − 1
2x− 1

2 = (x−1)(x+ 1
2), so the eigenvalues are λ1 = 1 and λ2 =−1

2 and gaussian

elimination gives corresponding basic eigenvectors
[ 1

2
1

]
and

[
−1

4
1

]
. For convenience, we

can use multiples x1 =

[
1
2

]
and x2 =

[
−1

4

]
respectively. Hence a diagonalizing matrix is

P =

[
1 −1
2 4

]
and we obtain

P−1AP = D where D =

[
1 0
0 −1

2

]
This gives A = PDP−1 so, for each k ≥ 0, we can compute Ak explicitly:

Ak = PDkP−1 =

[
1 −1
2 4

][
1 0
0 (−1

2)
k

]
1
6

[
4 1

−2 4

]
= 1

6

[
4+2(−1

2)
k 1− (−1

2)
k

8−8(−1
2)

k 2+4(−1
2)

k

]

Hence we obtain[
ak
jk

]
= vk = Akv0 =

1
6

[
4+2(−1

2)
k 1− (−1

2)
k

8−8(−1
2)

k 2+4(−1
2)

k

][
100
40

]

= 1
6

[
440+160(−1

2)
k

880−640(−1
2)

k

]

Equating top and bottom entries, we obtain exact formulas for ak and jk:

ak =
220

3 + 80
3

(
−1

2

)k and jk = 440
3 + 320

3

(
−1

2

)k for k = 1, 2, · · ·

In practice, the exact values of ak and jk are not usually required. What is needed is a
measure of how these numbers behave for large values of k. This is easy to obtain here.
Since (−1

2)
k is nearly zero for large k, we have the following approximate values

ak ≈ 220
3 and jk ≈ 440

3 if k is large

Hence, in the long term, the female population stabilizes with approximately twice as many
juveniles as adults.
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Definition 3.8 Linear Dynamical System

If A is an n×n matrix, a sequence v0, v1, v2, . . . of columns in Rn is called a linear
dynamical system if v0 is specified and v1, v2, . . . are given by the matrix recurrence
vk+1 = Avk for each k ≥ 0. We call A the migration matrix of the system.

We have v1 = Av0, then v2 = Av1 = A2v0, and continuing we find

vk = Akv0 for each k = 1, 2, · · · (3.9)

Hence the columns vk are determined by the powers Ak of the matrix A and, as we have seen, these
powers can be efficiently computed if A is diagonalizable. In fact Equation 3.9 can be used to give
a nice “formula” for the columns vk in this case.

Assume that A is diagonalizable with eigenvalues λ1, λ2, . . . , λn and corresponding basic eigen-
vectors x1, x2, . . . , xn. If P =

[
x1 x2 . . . xn

]
is a diagonalizing matrix with the xi as columns,

then P is invertible and
P−1AP = D = diag (λ1, λ2, · · · , λn)

by Theorem 3.3.4. Hence A = PDP−1 so Equation 3.9 and Theorem 3.3.1 give

vk = Akv0 = (PDP−1)kv0 = (PDkP−1)v0 = PDk(P−1v0)

for each k = 1, 2, . . . . For convenience, we denote the column P−1v0 arising here as follows:

b = P−1v0 =


b1
b2
...

bn


Then matrix multiplication gives

vk = PDk(P−1v0)

=
[

x1 x2 · · · xn
]


λ k
1 0 · · · 0

0 λ k
2 · · · 0

... ... . . . ...
0 0 · · · λ k

n




b1
b2
...

bn



=
[

x1 x2 · · · xn
]


b1λ k
1

b2λ k
2...

b3λ k
n


= b1λ

k
1 x1 +b2λ

k
2 x2 + · · ·+bnλ

k
n xn (3.10)

for each k ≥ 0. This is a useful exact formula for the columns vk. Note that, in particular,

v0 = b1x1 +b2x2 + · · ·+bnxn
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However, such an exact formula for vk is often not required in practice; all that is needed is to
estimate vk for large values of k (as was done in Example 3.3.12). This can be easily done if A has
a largest eigenvalue. An eigenvalue λ of a matrix A is called a dominant eigenvalue of A if it has
multiplicity 1 and

|λ |> |µ| for all eigenvalues µ 6= λ

where |λ | denotes the absolute value of the number λ . For example, λ1 = 1 is dominant in Exam-
ple 3.3.12.

Returning to the above discussion, suppose that A has a dominant eigenvalue. By choosing the
order in which the columns xi are placed in P, we may assume that λ1 is dominant among the
eigenvalues λ1, λ2, . . . , λn of A (see the discussion following Example 3.3.8). Now recall the exact
expression for vk in Equation 3.10 above:

vk = b1λ
k
1 x1 +b2λ

k
2 x2 + · · ·+bnλ

k
n xn

Take λ k
1 out as a common factor in this equation to get

vk = λ
k
1

[
b1x1 +b2

(
λ2
λ1

)k
x2 + · · ·+bn

(
λn
λ1

)k
xn

]
for each k ≥ 0. Since λ1 is dominant, we have |λi| < |λ1| for each i ≥ 2, so each of the numbers
(λi/λ1)

k become small in absolute value as k increases. Hence vk is approximately equal to the first
term λ k

1 b1x1, and we write this as vk ≈ λ k
1 b1x1. These observations are summarized in the following

theorem (together with the above exact formula for vk).

Theorem 3.3.7
Consider the dynamical system v0, v1, v2, . . . with matrix recurrence

vk+1 = Avk for k ≥ 0

where A and v0 are given. Assume that A is a diagonalizable n×n matrix with eigenvalues
λ1, λ2, . . . , λn and corresponding basic eigenvectors x1, x2, . . . , xn, and let
P =

[
x1 x2 . . . xn

]
be the diagonalizing matrix. Then an exact formula for vk is

vk = b1λ
k
1 x1 +b2λ

k
2 x2 + · · ·+bnλ

k
n xn for each k ≥ 0

where the coefficients bi come from

b = P−1v0 =


b1
b2
...

bn


Moreover, if A has dominant12eigenvalue λ1, then vk is approximated by

vk = b1λ
k
1 x1 for sufficiently large k.
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Example 3.3.13

Returning to Example 3.3.12, we see that λ1 = 1 is the dominant eigenvalue, with
eigenvector x1 =

[
1
2

]
. Here P =

[
1 −1
2 4

]
and v0 =

[
100
40

]
so P−1v0 =

1
3

[
220
−80

]
.

Hence b1 =
220

3 in the notation of Theorem 3.3.7, so[
ak
jk

]
= vk ≈ b1λ

k
1 x1 =

220
3 1k

[
1
2

]
where k is large. Hence ak ≈ 220

3 and jk ≈ 440
3 as in Example 3.3.12.

This next example uses Theorem 3.3.7 to solve a “linear recurrence.” See also Section ??.

Example 3.3.14

Suppose a sequence x0, x1, x2, . . . is determined by insisting that

x0 = 1, x1 =−1, and xk+2 = 2xk − xk+1 for every k ≥ 0

Find a formula for xk in terms of k.

Solution. Using the linear recurrence xk+2 = 2xk − xk+1 repeatedly gives

x2 = 2x0 − x1 = 3, x3 = 2x1 − x2 =−5, x4 = 11, x5 =−21, . . .

so the xi are determined but no pattern is apparent. The idea is to find vk =

[
xk

xk+1

]
for

each k instead, and then retrieve xk as the top component of vk. The reason this works is
that the linear recurrence guarantees that these vk are a dynamical system:

vk+1 =

[
xk+1
xk+2

]
=

[
xk+1

2xk − xk+1

]
= Avk where A =

[
0 1
2 −1

]
The eigenvalues of A are λ1 =−2 and λ2 = 1 with eigenvectors x1 =

[
1

−2

]
and x2 =

[
1
1

]
,

so the diagonalizing matrix is P =

[
1 1

−2 1

]
.

Moreover, b = P−1
0 v0 =

1
3

[
2
1

]
so the exact formula for vk is[

xk
xk+1

]
= vk = b1λ

k
1 x1 +b2λ

k
2 x2 =

2
3(−2)k

[
1

−2

]
+ 1

31k
[

1
1

]
Equating top entries gives the desired formula for xk:

xk =
1
3

[
2(−2)k +1

]
for all k = 0, 1, 2, . . .

The reader should check this for the first few values of k.

12Similar results can be found in other situations. If for example, eigenvalues λ1 and λ2 (possibly equal) satisfy
|λ1|= |λ2|> |λi| for all i > 2, then we obtain vk ≈ b1λ k

1 x1 +b2λ k
2 x2 for large k.
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Graphical Description of Dynamical Systems

If a dynamical system vk+1 = Avk is given, the sequence v0, v1, v2, . . . is called the trajectory
of the system starting at v0. It is instructive to obtain a graphical plot of the system by writing
vk =

[
xk
yk

]
and plotting the successive values as points in the plane, identifying vk with the point

(xk, yk) in the plane. We give several examples which illustrate properties of dynamical systems.
For ease of calculation we assume that the matrix A is simple, usually diagonal.

Example 3.3.15

O
x

y
Let A =

[ 1
2 0
0 1

3

]
Then the eigenvalues are 1

2 and 1
3 , with

corresponding eigenvectors x1 =

[
1
0

]
and x2 =

[
0
1

]
.

The exact formula is

vk = b1
(1

2

)k
[

1
0

]
+b2

(1
3

)k
[

0
1

]
for k = 0, 1, 2, . . . by Theorem 3.3.7, where the coefficients
b1 and b2 depend on the initial point v0. Several trajectories
are plotted in the diagram and, for each choice of v0,
the trajectories converge toward the origin because both
eigenvalues are less than 1 in absolute value. For this reason,
the origin is called an attractor for the system.

Example 3.3.16

O x

y
Let A =

[ 3
2 0
0 4

3

]
. Here the eigenvalues are 3

2 and 4
3 , with

corresponding eigenvectors x1 =

[
1
0

]
and x2 =

[
0
1

]
as

before. The exact formula is

vk = b1
(3

2

)k
[

1
0

]
+b2

(4
3

)k
[

0
1

]
for k = 0, 1, 2, . . . . Since both eigenvalues are greater than
1 in absolute value, the trajectories diverge away from the
origin for every choice of initial point V0. For this reason,
the origin is called a repellor for the system.
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Example 3.3.17

O
x

y
Let A =

[
1 −1

2
−1

2 1

]
. Now the eigenvalues are 3

2 and 1
2 ,

with corresponding eigenvectors x1 =

[
−1

1

]
and x2 =

[
1
1

]
The exact formula is

vk = b1
(3

2

)k
[
−1

1

]
+b2

(1
2

)k
[

1
1

]
for k = 0, 1, 2, . . . . In this case 3

2 is the dominant eigenvalue

so, if b1 6= 0, we have vk ≈ b1
(3

2

)k
[
−1

1

]
for large k and

vk is approaching the line y =−x.
However, if b1 = 0, then vk = b2

(1
2

)k
[

1
1

]
and so approaches

the origin along the line y = x. In general the trajectories
appear as in the diagram, and the origin is called a saddle

point for the dynamical system in this case.

Example 3.3.18

Let A =

[
0 1

2
−1

2 0

]
. Now the characteristic polynomial is cA(x) = x2 + 1

4 , so the eigenvalues

are the complex numbers i
2 and − i

2 where i2 =−1. Hence A is not diagonalizable as a real

matrix. However, the trajectories are not difficult to describe. If we start with v0 =

[
1
1

]
then the trajectory begins as

v1 =

[
1
2

−1
2

]
, v2 =

[
−1

4

−1
4

]
, v3 =

[
−1

8
1
8

]
, v4 =

[
1

16
1

16

]
, v5 =

[
1

32

− 1
32

]
, v6 =

[
− 1

64

− 1
64

]
, . . .

1

1 v0

v1

v2

v3

O
x

y

The first five of these points are plotted in the diagram.
Here each trajectory spirals in toward the origin, so the
origin is an attractor. Note that the two (complex) eigenvalues
have absolute value less than 1 here. If they had absolute
value greater than 1, the trajectories would spiral out from
the origin.
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Google PageRank

Dominant eigenvalues are useful to the Google search engine for finding information on the Web.
If an information query comes in from a client, Google has a sophisticated method of establishing
the “relevance” of each site to that query. When the relevant sites have been determined, they
are placed in order of importance using a ranking of all sites called the PageRank. The relevant
sites with the highest PageRank are the ones presented to the client. It is the construction of the
PageRank that is our interest here.

The Web contains many links from one site to another. Google interprets a link from site j to
site i as a “vote” for the importance of site i. Hence if site i has more links to it than does site j,
then i is regarded as more “important” and assigned a higher PageRank. One way to look at this
is to view the sites as vertices in a huge directed graph (see Section 2.2). Then if site j links to site
i there is an edge from j to i, and hence the (i, j)-entry is a 1 in the associated adjacency matrix
(called the connectivity matrix in this context). Thus a large number of 1s in row i of this matrix
is a measure of the PageRank of site i.13

However this does not take into account the PageRank of the sites that link to i. Intuitively,
the higher the rank of these sites, the higher the rank of site i. One approach is to compute a
dominant eigenvector x for the connectivity matrix. In most cases the entries of x can be chosen
to be positive with sum 1. Each site corresponds to an entry of x, so the sum of the entries of sites
linking to a given site i is a measure of the rank of site i. In fact, Google chooses the PageRank of
a site so that it is proportional to this sum.14

Exercises for 3.3

Exercise 3.3.1 In each case find the character-
istic polynomial, eigenvalues, eigenvectors, and (if
possible) an invertible matrix P such that P−1AP is
diagonal.

A =

[
1 2
3 2

]
a) A =

[
2 −4

−1 −1

]
b)

A =

 7 0 −4
0 5 0
5 0 −2

c) A=

 1 1 −3
2 0 6
1 −1 5

d)

A=

 1 −2 3
2 6 −6
1 2 −1

e) A =

 0 1 0
3 0 1
2 0 0

f)

A=

 3 1 1
−4 −2 −5

2 2 5

g) A =

 2 1 1
0 1 0
1 −1 2

h)

A =

 λ 0 0
0 λ 0
0 0 µ

, λ 6= µi)

b. (x−3)(x+2);3;−2;
[

4
−1

]
,
[

1
1

]
;

P =

[
4 1

−1 1

]
; P−1AP =

[
3 0
0 −2

]
.

13For more on PageRank, visit https://en.wikipedia.org/wiki/PageRank.
14See the articles “Searching the web with eigenvectors” by Herbert S. Wilf, UMAP Journal 23(2), 2002, pages

101–103, and “The worlds largest matrix computation: Google’s PageRank is an eigenvector of a matrix of order 2.7
billion” by Cleve Moler, Matlab News and Notes, October 2002, pages 12–13.

https://en.wikipedia.org/wiki/PageRank
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d. (x−2)3;2;

 1
1
0

 ,

 −3
0
1

; No such P; Not di-

agonalizable.

f. (x + 1)2(x − 2);−1, −2;

 −1
1
2

 ,

 1
2
1

; No

such P; Not diagonalizable. Note that this
matrix and the matrix in Example 3.3.9 have
the same characteristic polynomial, but that
matrix is diagonalizable.

h. (x− 1)2(x− 3);1, 3;

 −1
0
1

 ,

 1
0
1

 No such

P; Not diagonalizable.

Exercise 3.3.2 Consider a linear dynamical sys-
tem vk+1 = Avk for k ≥ 0. In each case approximate
vk using Theorem 3.3.7.

a. A =

[
2 1
4 −1

]
, v0 =

[
1
2

]

b. A =

[
3 −2
2 −2

]
, v0 =

[
3

−1

]

c. A =

 1 0 0
1 2 3
1 4 1

 , v0 =

 1
1
1



d. A =

 1 3 2
−1 2 1

4 −1 −1

 , v0 =

 2
0
1



b. Vk =
7
3 2k
[

2
1

]

d. Vk =
3
2 3k

 1
0
1


Exercise 3.3.3 Show that A has λ = 0 as an eigen-
value if and only if A is not invertible.

Exercise 3.3.4 Let A denote an n×n matrix and
put A1 = A−αI, α in R. Show that λ is an eigen-
value of A if and only if λ −α is an eigenvalue of
A1. (Hence, the eigenvalues of A1 are just those of A

“shifted” by α.) How do the eigenvectors compare?

Ax = λx if and only if (A−αI)x = (λ −α)x. Same
eigenvectors.

Exercise 3.3.5 Show that the eigenvalues of[
cosθ −sinθ

sinθ cosθ

]
are eiθ and e−iθ .

(See Appendix ??)

Exercise 3.3.6 Find the characteristic polynomial
of the n× n identity matrix I. Show that I has ex-
actly one eigenvalue and find the eigenvectors.

Exercise 3.3.7 Given A =

[
a b
c d

]
show that:

a. cA(x) = x2 − tr Ax+ det A, where tr A = a+d is
called the trace of A.

b. The eigenvalues are 1
2

[
(a+d)±

√
(a−d)2 +4bc

]
.

Exercise 3.3.8 In each case, find P−1AP and then
compute An.

a. A =

[
6 −5
2 −1

]
, P =

[
1 5
1 2

]

b. A =

[
−7 −12

6 −10

]
, P =

[
−3 4

2 −3

]
[Hint:

(PDP−1)n = PDnP−1 for each n = 1, 2, . . . .]

b. P−1AP =

[
1 0
0 2

]
, so An = P

[
1 0
0 2n

]
P−1 =[

9−8 ·2n 12(1−2n)
6(2n −1) 9 ·2n −8

]
Exercise 3.3.9

a. If A =

[
1 3
0 2

]
and B =

[
2 0
0 1

]
verify that

A and B are diagonalizable, but AB is not.

b. If D =

[
1 0
0 −1

]
find a diagonalizable matrix

A such that D+A is not diagonalizable.

b. A =

[
0 1
0 2

]
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Exercise 3.3.10 If A is an n×n matrix, show that
A is diagonalizable if and only if AT is diagonaliz-
able.

Exercise 3.3.11 If A is diagonalizable, show that
each of the following is also diagonalizable.

a. An, n ≥ 1

b. kA, k any scalar.

c. p(A), p(x) any polynomial (Theorem 3.3.1)

d. U−1AU for any invertible matrix U .

e. kI +A for any scalar k.

b. and d. PAP−1 = D is diagonal, then
b. P−1(kA)P = kD is diagonal, and d.
Q(U−1AU)Q = D where Q = PU .

Exercise 3.3.12 Give an example of two diago-
nalizable matrices A and B whose sum A+B is not
diagonalizable.[

1 1
0 1

]
is not diagonalizable by Example 3.3.8.

But
[

1 1
0 1

]
=

[
2 1
0 −1

]
+

[
−1 0

0 2

]
where[

2 1
0 −1

]
has diagonalizing matrix P =

[
1 −1
0 3

]
and

[
−1 0

0 2

]
is already diagonal.

Exercise 3.3.13 If A is diagonalizable and 1 and
−1 are the only eigenvalues, show that A−1 = A.

Exercise 3.3.14 If A is diagonalizable and 0
and 1 are the only eigenvalues, show that A2 = A.

We have λ 2 = λ for every eigenvalue λ (as λ = 0, 1)
so D2 = D, and so A2 = A as in Example 3.3.9.

Exercise 3.3.15 If A is diagonalizable and λ ≥ 0
for each eigenvalue of A, show that A = B2 for some
matrix B.

Exercise 3.3.16 If P−1AP and P−1BP are both
diagonal, show that AB = BA. [Hint: Diagonal ma-
trices commute.]

Exercise 3.3.17 A square matrix A is called nilpo-
tent if An = 0 for some n ≥ 1. Find all nilpotent
diagonalizable matrices. [Hint: Theorem 3.3.1.]

Exercise 3.3.18 Let A be any n× n matrix and
r 6= 0 a real number.

a. Show that the eigenvalues of rA are precisely
the numbers rλ , where λ is an eigenvalue of
A.

b. Show that crA(x) = rncA
( x

r

)
.

b. crA(x) = det [xI − rA]
= rn det

[ x
r I −A

]
= rncA

[ x
r

]
Exercise 3.3.19

a. If all rows of A have the same sum s, show that
s is an eigenvalue.

b. If all columns of A have the same sum s, show
that s is an eigenvalue.

Exercise 3.3.20 Let A be an invertible n×n ma-
trix.

a. Show that the eigenvalues of A are nonzero.

b. Show that the eigenvalues of A−1 are precisely
the numbers 1/λ , where λ is an eigenvalue of
A.

c. Show that cA−1(x) = (−x)n

det A cA
(1

x

)
.

b. If λ 6= 0, Ax = λx if and only if A−1x = 1
λ

x.
The result follows.

Exercise 3.3.21 Suppose λ is an eigenvalue of a
square matrix A with eigenvector x 6= 0.

a. Show that λ 2 is an eigenvalue of A2 (with the
same x).

b. Show that λ 3 −2λ +3 is an eigenvalue of
A3 −2A+3I.

c. Show that p(λ ) is an eigenvalue of p(A) for
any nonzero polynomial p(x).
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b. (A3 − 2A − 3I)x = A3x − 2Ax + 3x = λ 3x −
2λx+3x = (λ 3 −2λ −3)x.

Exercise 3.3.22 If A is an n×n matrix, show that
cA2(x2) = (−1)ncA(x)cA(−x).

Exercise 3.3.23 An n×n matrix A is called nilpo-
tent if Am = 0 for some m ≥ 1.

a. Show that every triangular matrix with zeros
on the main diagonal is nilpotent.

b. If A is nilpotent, show that λ = 0 is the only
eigenvalue (even complex) of A.

c. Deduce that cA(x) = xn, if A is n×n and nilpo-
tent.

b. If Am = 0 and Ax = λx, x 6= 0, then A2x =
A(λx) = λAx = λ 2x. In general, Akx = λ kx
for all k ≥ 1. Hence, λ mx = Amx = 0x = 0, so
λ = 0 (because x 6= 0).

Exercise 3.3.24 Let A be diagonalizable with real
eigenvalues and assume that Am = I for some m ≥ 1.

a. Show that A2 = I.

b. If m is odd, show that A = I. [Hint: Theo-
rem ??]

a. If Ax = λx, then Akx = λ kx for each k. Hence
λ mx = Amx = x, so λ m = 1. As λ is real,
λ = ±1 by the Hint. So if P−1AP = D is di-
agonal, then D2 = I by Theorem 3.3.4. Hence
A2 = PD2P = I.

Exercise 3.3.25 Let A2 = I, and assume that A 6= I
and A 6=−I.

a. Show that the only eigenvalues of A are λ = 1
and λ =−1.

b. Show that A is diagonalizable. [Hint: Verify
that A(A+ I) = A+ I and A(A− I) = −(A− I),
and then look at nonzero columns of A+ I and
of A− I.]

c. If Qm : R2 → R2 is reflection in the line y = mx
where m 6= 0, use (b) to show that the matrix
of Qm is diagonalizable for each m.

d. Now prove (c) geometrically using Theo-
rem 3.3.3.

Exercise 3.3.26 Let A =

 2 3 −3
1 0 −1
1 1 −2

 and B = 0 1 0
3 0 1
2 0 0

. Show that cA(x) = cB(x) = (x+1)2(x−

2), but A is diagonalizable and B is not.

Exercise 3.3.27

a. Show that the only diagonalizable matrix A
that has only one eigenvalue λ is the scalar
matrix A = λ I.

b. Is
[

3 −2
2 −1

]
diagonalizable?

a. We have P−1AP = λ I by the diagonalization
algorithm, so A = P(λ I)P−1 = λPP−1 = λ I.

b. No. λ = 1 is the only eigenvalue.

Exercise 3.3.28 Characterize the diagonalizable
n×n matrices A such that A2 −3A+2I = 0 in terms
of their eigenvalues. [Hint: Theorem 3.3.1.]

Exercise 3.3.29 Let A =

[
B 0
0 C

]
where B and C

are square matrices.

a. If B and C are diagonalizable via Q and R (that
is, Q−1BQ and R−1CR are diagonal), show that

A is diagonalizable via
[

Q 0
0 R

]

b. Use (a) to diagonalize A if B =

[
5 3
3 5

]
and

C =

[
7 −1

−1 7

]
.
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Exercise 3.3.30 Let A =

[
B 0
0 C

]
where B and C

are square matrices.

a. Show that cA(x) = cB(x)cC(x).

b. If x and y are eigenvectors of B and C, respec-

tively, show that
[

x
0

]
and

[
0
y

]
are eigen-

vectors of A, and show how every eigenvector
of A arises from such eigenvectors.

Exercise 3.3.31 Referring to the model in Ex-
ample 3.3.1, determine if the population stabilizes,
becomes extinct, or becomes large in each case. De-
note the adult and juvenile survival rates as A and
J, and the reproduction rate as R.

R A J

a. 2 1
2

1
2

b. 3 1
4

1
4

c. 2 1
4

1
3

d. 3 3
5

1
5

b. λ1 = 1, stabilizes.

d. λ1 =
1

24(3+
√

69) = 1.13, diverges.

Exercise 3.3.32 In the model of Example 3.3.1,
does the final outcome depend on the initial popu-
lation of adult and juvenile females? Support your
answer.

Exercise 3.3.33 In Example 3.3.1, keep the same
reproduction rate of 2 and the same adult survival
rate of 1

2 , but suppose that the juvenile survival rate
is ρ. Determine which values of ρ cause the popula-
tion to become extinct or to become large.

Exercise 3.3.34 In Example 3.3.1, let the ju-
venile survival rate be 2

5 and let the reproduc-
tion rate be 2. What values of the adult survival
rate α will ensure that the population stabilizes?

Extinct if α < 1
5 , stable if α = 1

5 , diverges if α > 1
5 .
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Supplementary Exercises for Chapter 3

Exercise 3.1 Show that

det

 a+ px b+qx c+ rx
p+ux q+ vx r+wx
u+ax v+bx w+ cx

=(1+x3) det

 a b c
p q r
u v w


Exercise 3.2

a. Show that (Ai j)
T = (AT ) ji for all i, j, and all

square matrices A.

b. Use (a) to prove that det AT = det A. [Hint:
Induction on n where A is n×n.]

b. If A is 1×1, then AT =A. In general, det [Ai j] =
det
[
(Ai j)

T
]
= det

[
(AT ) ji

]
by (a) and induc-

tion. Write AT =
[
a′i j

]
where a′i j = a ji, and

expand det AT along column 1.

det AT =
n

∑
j=1

a′j1(−1) j+1 det [(AT ) j1]

=
n

∑
j=1

a1 j(−1)1+ j det [A1 j] = det A

where the last equality is the expansion of
det A along row 1.

Exercise 3.3 Show that det
[

0 In

Im 0

]
= (−1)nm

for all n ≥ 1 and m ≥ 1.

Exercise 3.4 Show that

det

 1 a a3

1 b b3

1 c c3

= (b−a)(c−a)(c−b)(a+b+ c)

Exercise 3.5 Let A =

[
R1
R2

]
be a 2 × 2 matrix

with rows R1 and R2. If det A = 5, find det B where

B =

[
3R1 +2R3
2R1 +5R2

]

Exercise 3.6 Let A =

[
3 −4
2 −3

]
and let vk = Akv0

for each k ≥ 0.

a. Show that A has no dominant eigenvalue.

b. Find vk if v0 equals:

i.
[

1
1

]
ii.
[

2
1

]
iii.

[
x
y

]
6=
[

1
1

]
or
[

2
1

]
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4.1 Vectors and Lines

In this chapter we study the geometry of 3-dimensional space. We view a point in 3-space as an
arrow from the origin to that point. Doing so provides a “picture” of the point that is truly worth
a thousand words. We used this idea earlier, in Section 2.6, to describe rotations, reflections, and
projections of the plane R2. We now apply the same techniques to 3-space to examine similar
transformations of R3. Moreover, the method enables us to completely describe all lines and planes
in space.

Vectors in R3

Introduce a coordinate system in 3-dimensional space in the usual way. First choose a point O
called the origin, then choose three mutually perpendicular lines through O, called the x, y, and z
axes, and establish a number scale on each axis with zero at the origin. Given a point P in 3-space
we associate three numbers x, y, and z with P, as described in Figure 4.1.1. These numbers are
called the coordinates of P, and we denote the point as (x, y, z), or P(x, y, z) to emphasize the label
P. The result is called a cartesian1 coordinate system for 3-space, and the resulting description of
3-space is called cartesian geometry.

O

P(x, y, z)

P0(x, y, 0)

v =

 x
y
z



x

y

z

Figure 4.1.1

As in the plane, we introduce vectors by identifying each point

P(x, y, z) with the vector v =

 x
y
z

 in R3, represented by the ar-

row from the origin to P as in Figure 4.1.1. Informally, we say that
the point P has vector v, and that vector v has point P. In this
way 3-space is identified with R3, and this identification will be made
throughout this chapter, often without comment. In particular, the
terms “vector” and “point” are interchangeable.2 The resulting de-
scription of 3-space is called vector geometry. Note that the origin

is 0 =

 0
0
0

.

1Named after René Descartes who introduced the idea in 1637.
2Recall that we defined Rn as the set of all ordered n-tuples of real numbers, and reserved the right to denote

them as rows or as columns.
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Length and Direction

We are going to discuss two fundamental geometric properties of vectors in R3: length and direction.
First, if v is a vector with point P, the length ‖v‖ of vector v is defined to be the distance from
the origin to P, that is the length of the arrow representing v. The following properties of length
will be used frequently.

Theorem 4.1.1

Let v =

 x
y
z

 be a vector.

1. ‖v‖=
√

x2 + y2 + z2. 3

2. v = 0 if and only if ‖v‖= 0

3. ‖av‖= |a|‖v‖ for all scalars a. 4

v
z

y

h
O

P

Q

R

i

x

x

y

z

Figure 4.1.2

Proof. Let v have point P(x, y, z).

1. In Figure 4.1.2, ‖v‖ is the hypotenuse of the right triangle OQP,
and so ‖v‖2 = h2 + z2 by Pythagoras’ theorem.5 But h is the
hypotenuse of the right triangle ORQ, so h2 = x2 + y2. Now (1)
follows by eliminating h2 and taking positive square roots.

2. If ‖v‖ = 0, then x2 + y2 + z2 = 0 by (1). Because squares of
real numbers are nonnegative, it follows that x = y = z = 0, and
hence that v = 0. The converse is because ‖0‖= 0.

3. We have av =
[

ax ay az
]T so (1) gives

‖av‖2 = (ax)2 +(ay)2 +(az)2 = a2‖v‖2

Hence ‖av‖=
√

a2‖v‖, and we are done because
√

a2 = |a| for any real number a.

Of course the R2-version of Theorem 4.1.1 also holds.

3When we write √
p we mean the positive square root of p.

4Recall that the absolute value |a| of a real number is defined by |a|=
{

a if a ≥ 0
−a if a < 0 .

5Pythagoras’ theorem states that if a and b are sides of right triangle with hypotenuse c, then a2 + b2 = c2. A
proof is given at the end of this section.
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Example 4.1.1

If v =

 2
−1

3

 then ‖v‖=
√

4+1+9 =
√

14. Similarly if v =

[
3

−4

]
in 2-space then

‖v‖=
√

9+16 = 5.

When we view two nonzero vectors as arrows emanating from the origin, it is clear geometrically
what we mean by saying that they have the same or opposite direction. This leads to a fundamental
new description of vectors.

Theorem 4.1.2
Let v 6= 0 and w 6= 0 be vectors in R3. Then v = w as matrices if and only if v and w have
the same direction and the same length.6

v

w
O

P

Q

x

y

z

Figure 4.1.3

Proof. If v = w, they clearly have the same direction and length. Con-
versely, let v and w be vectors with points P(x, y, z) and Q(x1, y1, z1)
respectively. If v and w have the same length and direction then, geomet-
rically, P and Q must be the same point (see Figure 4.1.3). Hence x = x1,

y = y1, and z = z1, that is v =

 x
y
z

=

 x1
y1
z1

= w.

A characterization of a vector in terms of its length and direction only is called an intrinsic
description of the vector. The point to note is that such a description does not depend on the choice
of coordinate system in R3. Such descriptions are important in applications because physical laws
are often stated in terms of vectors, and these laws cannot depend on the particular coordinate
system used to describe the situation.

Geometric Vectors

If A and B are distinct points in space, the arrow from A to B has length and direction.

−→
AB

O

A

B

x

y

z

Figure 4.1.4
6It is Theorem 4.1.2 that gives vectors their power in science and engineering because many physical quantities

are determined by their length and magnitude (and are called vector quantities). For example, saying that an
airplane is flying at 200 km/h does not describe where it is going; the direction must also be specified. The speed
and direction comprise the velocity of the airplane, a vector quantity.
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Hence:

Definition 4.1 Geometric Vectors
Suppose that A and B are any two points in R3. In Figure 4.1.4 the line segment from A to
B is denoted −→

AB and is called the geometric vector from A to B. Point A is called the tail
of −→AB, B is called the tip of −→AB, and the length of −→AB is denoted ‖−→AB‖.

O

A(3, 1)

B(2, 3)

P(1, 0)

Q(0, 2)

x

y

Figure 4.1.5

Note that if v is any vector in R3 with point P then v=
−→
OP is itself

a geometric vector where O is the origin. Referring to −→
AB as a “vector”

seems justified by Theorem 4.1.2 because it has a direction (from A to
B) and a length ‖−→AB‖. However there appears to be a problem because
two geometric vectors can have the same length and direction even if
the tips and tails are different. For example −→AB and −→

PQ in Figure 4.1.5
have the same length

√
5 and the same direction (1 unit left and 2

units up) so, by Theorem 4.1.2, they are the same vector! The best
way to understand this apparent paradox is to see −→

AB and −→
PQ as

different representations of the same7 underlying vector
[
−1

2

]
. Once

it is clarified, this phenomenon is a great benefit because, thanks to
Theorem 4.1.2, it means that the same geometric vector can be positioned anywhere in space; what
is important is the length and direction, not the location of the tip and tail. This ability to move
geometric vectors about is very useful as we shall soon see.

The Parallelogram Law

v
v+wwA

P

Q

P

Figure 4.1.6

We now give an intrinsic description of the sum of two vectors v and w in
R3, that is a description that depends only on the lengths and directions of
v and w and not on the choice of coordinate system. Using Theorem 4.1.2
we can think of these vectors as having a common tail A. If their tips are
P and Q respectively, then they both lie in a plane P containing A, P, and
Q, as shown in Figure 4.1.6. The vectors v and w create a parallelogram8

in P , shaded in Figure 4.1.6, called the parallelogram determined by v
and w.

If we now choose a coordinate system in the plane P with A as origin, then the parallelogram
law in the plane (Section 2.6) shows that their sum v+w is the diagonal of the parallelogram
they determine with tail A. This is an intrinsic description of the sum v+w because it makes no
reference to coordinates. This discussion proves:

7Fractions provide another example of quantities that can be the same but look different. For example 6
9 and 14

21
certainly appear different, but they are equal fractions—both equal 2

3 in “lowest terms”.
8Recall that a parallelogram is a four-sided figure whose opposite sides are parallel and of equal length.
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The Parallelogram Law

In the parallelogram determined by two vectors v and w, the vector v+w is the diagonal
with the same tail as v and w.

v

w
v+w

P
(a) w

v
v+w

(b)

v

w

w+v
(c)

Figure 4.1.7

Because a vector can be positioned with its tail at any point, the parallel-
ogram law leads to another way to view vector addition. In Figure 4.1.7(a)
the sum v+w of two vectors v and w is shown as given by the parallelogram
law. If w is moved so its tail coincides with the tip of v (Figure 4.1.7(b))
then the sum v+w is seen as “first v and then w. Similarly, moving the
tail of v to the tip of w shows in Figure 4.1.7(c) that v+w is “first w and
then v.” This will be referred to as the tip-to-tail rule, and it gives a
graphic illustration of why v+w = w+v.

Since −→
AB denotes the vector from a point A to a point B, the tip-to-tail

rule takes the easily remembered form
−→
AB+

−→
BC =

−→
AC

for any points A, B, and C. The next example uses this to derive a theorem
in geometry without using coordinates.

Example 4.1.2

Show that the diagonals of a parallelogram bisect each other.

A

B

C

D

EM

Solution. Let the parallelogram have vertices A, B, C, and D,
as shown; let E denote the intersection of the two diagonals;
and let M denote the midpoint of diagonal AC. We must
show that M = E and that this is the midpoint of diagonal
BD. This is accomplished by showing that −→

BM =
−−→
MD. (Then

the fact that these vectors have the same direction means that
M = E, and the fact that they have the same length means
that M = E is the midpoint of BD.) Now −→

AM =
−→
MC because

M is the midpoint of AC, and −→
BA =

−→
CD because the figure is a

parallelogram. Hence
−→
BM =

−→
BA+

−→
AM =

−→
CD+

−→
MC =

−→
MC+

−→
CD =

−−→
MD

where the first and last equalities use the tip-to-tail rule of vector addition.

u
v

w

u

v

w

u+v+w

Figure 4.1.8

One reason for the importance of the tip-to-tail rule is that it
means two or more vectors can be added by placing them tip-to-tail
in sequence. This gives a useful “picture” of the sum of several vectors,
and is illustrated for three vectors in Figure 4.1.8 where u+v+w is
viewed as first u, then v, then w.

There is a simple geometrical way to visualize the (matrix) dif-
ference v−w of two vectors. If v and w are positioned so that they
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have a common tail A (see Figure 4.1.9), and if B and C are their
respective tips, then the tip-to-tail rule gives w+

−→
CB = v. Hence v−w =

−→
CB is the vector from

the tip of w to the tip of v. Thus both v−w and v+w appear as diagonals in the parallelogram
determined by v and w (see Figure 4.1.9). We record this for reference.

w

v −→
CB

A

B

C

w

v

v−w v+w

Figure 4.1.9

Theorem 4.1.3
If v and w have a common tail, then v−w is the vector from
the tip of w to the tip of v.

One of the most useful applications of vector subtraction is that it
gives a simple formula for the vector from one point to another, and
for the distance between the points.

Theorem 4.1.4
Let P1(x1, y1, z1) and P2(x2, y2, z2) be two points. Then:

1. −→
P1P2 =

 x2 − x1
y2 − y1
z2 − z1

.

2. The distance between P1 and P2 is
√

(x2 − x1)2 +(y2 − y1)2 +(z2 − z1)2.

v1

−−→
P1P2

v2

P1

P2

O

Figure 4.1.10

Proof. If O is the origin, write

v1 =
−→
OP1 =

 x1
y1
z1

 and v2 =
−→
OP2 =

 x2
y2
z2


as in Figure 4.1.10.

Then Theorem 4.1.3 gives −→
P1P2 = v2 −v1, and (1) follows. But

the distance between P1 and P2 is ‖−→P1P2‖, so (2) follows from (1) and
Theorem 4.1.1.

Of course the R2-version of Theorem 4.1.4 is also valid: If P1(x1, y1) and P2(x2, y2) are points

in R2, then −→
P1P2 =

[
x2 − x1
y2 − y1

]
, and the distance between P1 and P2 is

√
(x2 − x1)2 +(y2 − y1)2.

Example 4.1.3

The distance between P1(2, −1, 3) and P2(1, 1, 4) is
√

(−1)2 +(2)2 +(1)2 =
√

6, and the
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vector from P1 to P2 is −→
P1P2 =

 −1
2
1

.

As for the parallelogram law, the intrinsic rule for finding the length and direction of a scalar
multiple of a vector in R3 follows easily from the same situation in R2.

Scalar Multiple Law

If a is a real number and v 6= 0 is a vector then:

1. The length of av is ‖av‖= |a|‖v‖.

2. If9av 6= 0, the direction of av is
{

the same as v if a > 0,
opposite to v if a < 0.

Proof.

1. This is part of Theorem 4.1.1.

2. Let O denote the origin in R3, let v have point P, and choose any plane containing O and P.
If we set up a coordinate system in this plane with O as origin, then v =

−→
OP so the result in

(2) follows from the scalar multiple law in the plane (Section 2.6).

Figure 4.1.11 gives several examples of scalar multiples of a vector v.

v
2v

1
2 v

(−2)v

(− 1
2 )v

Figure 4.1.11

O
P

L

−1
2p

1
2p

p 3
2p

Figure 4.1.12

Consider a line L through the origin, let P be any point on L other
than the origin O, and let p =

−→
OP. If t 6= 0, then tp is a point on L

because it has direction the same or opposite as that of p. Moreover
t > 0 or t < 0 according as the point tp lies on the same or opposite
side of the origin as P. This is illustrated in Figure 4.1.12.

A vector u is called a unit vector if ‖u‖= 1. Then i =

 1
0
0

,

j =

 0
1
0

, and k =

 0
0
1

 are unit vectors, called the coordinate

vectors. We discuss them in more detail in Section 4.2.

Example 4.1.4

If v 6= 0 show that 1
‖v‖v is the unique unit vector in the same direction as v.

9Since the zero vector has no direction, we deal only with the case av 6= 0.
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Solution. The vectors in the same direction as v are the scalar multiples av where a > 0.
But ‖av‖= |a|‖v‖= a‖v‖ when a > 0, so av is a unit vector if and only if a = 1

‖v‖ .

The next example shows how to find the coordinates of a point on the line segment between two
given points. The technique is important and will be used again below.

Example 4.1.5

Let p1 and p2 be the vectors of two points P1 and P2. If M is the point one third the way
from P1 to P2, show that the vector m of M is given by

m = 2
3p1 +

1
3p2

Conclude that if P1 = P1(x1, y1, z1) and P2 = P2(x2, y2, z2), then M has coordinates

M = M
(2

3x1 +
1
3x2, 2

3y1 +
1
3y2, 2

3z1 +
1
3z2
)

p1

m

p2

O

P1

M

P2

Solution. The vectors p1, p2, and m are shown in the diagram.
We have −−→

P1M = 1
3
−→
P1P2 because −−→

P1M is in the same direction as
−→
P1P2 and 1

3 as long. By Theorem 4.1.3 we have −→
P1P2 = p2 −p1,

so tip-to-tail addition gives

m = p1 +
−−→
P1M = p1 +

1
3(p2 −p1) =

2
3p1 +

1
3p2

as required. For the coordinates, we have p1 =

 x1
y1
z1

 and

p2 =

 x2
y2
z2

, so

m = 2
3

 x1
y1
z1

+ 1
3

 x2
y2
z2

=


2
3x1 +

1
3x2

2
3y1 +

1
3y2

2
3z1 +

1
3z2


by matrix addition. The last statement follows.

Note that in Example 4.1.5 m = 2
3p1 +

1
3p2 is a “weighted average” of p1 and p2 with more weight

on p1 because m is closer to p1.
The point M halfway between points P1 and P2 is called the midpoint between these points. In

the same way, the vector m of M is

m = 1
2p1 +

1
2p2 =

1
2(p1 +p2)
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as the reader can verify, so m is the “average” of p1 and p2 in this case.

Example 4.1.6

Show that the midpoints of the four sides of any quadrilateral are the vertices of a
parallelogram. Here a quadrilateral is any figure with four vertices and straight sides.

Solution. Suppose that the vertices of the quadrilateral are A, B, C, and D (in that order)
and that E, F , G, and H are the midpoints of the sides as shown in the diagram. It suffices
to show −→

EF =
−→
HG (because then sides EF and HG are parallel and of equal length).

A

B

C

D

E

F

G

H

Now the fact that E is the midpoint of AB means that−→
EB = 1

2
−→
AB. Similarly, −→BF = 1

2
−→
BC, so

−→
EF =

−→
EB+

−→
BF = 1

2
−→
AB+ 1

2
−→
BC = 1

2(
−→
AB+

−→
BC) = 1

2
−→
AC

A similar argument shows that −→
HG = 1

2
−→
AC too, so −→

EF =
−→
HG

as required.

Definition 4.2 Parallel Vectors in R3

Two nonzero vectors are called parallel if they have the same or opposite direction.

Many geometrical propositions involve this notion, so the following theorem will be referred to
repeatedly.

Theorem 4.1.5
Two nonzero vectors v and w are parallel if and only if one is a scalar multiple of the other.

Proof. If one of them is a scalar multiple of the other, they are parallel by the scalar multiple law.
Conversely, assume that v and w are parallel and write d = ‖v‖

‖w‖ for convenience. Then v and
w have the same or opposite direction. If they have the same direction we show that v = dw by
showing that v and dw have the same length and direction. In fact, ‖dw‖ = |d|‖w‖ = ‖v‖ by
Theorem 4.1.1; as to the direction, dw and w have the same direction because d > 0, and this is
the direction of v by assumption. Hence v = dw in this case by Theorem 4.1.2. In the other case,
v and w have opposite direction and a similar argument shows that v =−dw. We leave the details
to the reader.

Example 4.1.7

Given points P(2, −1, 4), Q(3, −1, 3), A(0, 2, 1), and B(1, 3, 0), determine if −→PQ and −→
AB

are parallel.
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Solution. By Theorem 4.1.3, −→PQ = (1, 0, −1) and −→
AB = (1, 1, −1). If −→PQ = t

−→
AB then

(1, 0, −1) = (t, t, −t), so 1 = t and 0 = t, which is impossible. Hence −→
PQ is not a scalar

multiple of −→AB, so these vectors are not parallel by Theorem 4.1.5.

Lines in Space

These vector techniques can be used to give a very simple way of describing straight lines in space.
In order to do this, we first need a way to specify the orientation of such a line, much as the slope
does in the plane.

Definition 4.3 Direction Vector of a Line
With this in mind, we call a nonzero vector d 6= 0 a direction vector for the line if it is
parallel to −→

AB for some pair of distinct points A and B on the line.

p0

P0P

p

d

Origin

P0
P

Figure 4.1.13

Of course it is then parallel to −→
CD for any distinct points C and D on

the line. In particular, any nonzero scalar multiple of d will also serve
as a direction vector of the line.

We use the fact that there is exactly one line that passes through a

particular point P0(x0, y0, z0) and has a given direction vector d=

 a
b
c

.

We want to describe this line by giving a condition on x, y, and z that

the point P(x, y, z) lies on this line. Let p0 =

 x0
y0
z0

 and p =

 x
y
z


denote the vectors of P0 and P, respectively (see Figure 4.1.13). Then

p = p0 +
−→
P0P

Hence P lies on the line if and only if −→P0P is parallel to d—that is, if and only if −→P0P = td for some
scalar t by Theorem 4.1.5. Thus p is the vector of a point on the line if and only if p = p0 + td for
some scalar t. This discussion is summed up as follows.

Vector Equation of a Line

The line parallel to d 6= 0 through the point with vector p0 is given by

p = p0 + td t any scalar

In other words, the point P with vector p is on this line if and only if a real number t exists
such that p = p0 + td.
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In component form the vector equation becomes x
y
z

=

 x0
y0
z0

+ t

 a
b
c


Equating components gives a different description of the line.

Parametric Equations of a Line

The line through P0(x0, y0, z0) with direction vector d =

 a
b
c

 6= 0 is given by

x = x0 + ta
y = y0 + tb t any scalar
z = z0 + tc

In other words, the point P(x, y, z) is on this line if and only if a real number t exists such
that x = x0 + ta, y = y0 + tb, and z = z0 + tc.

Example 4.1.8

Find the equations of the line through the points P0(2, 0, 1) and P1(4, −1, 1).

Solution. Let d =
−→
P0P1 =

 2
1
0

 denote the vector from P0 to P1. Then d is parallel to the

line (P0 and P1 are on the line), so d serves as a direction vector for the line. Using P0 as the
point on the line leads to the parametric equations

x = 2+2t
y =−t t a parameter
z = 1

Note that if P1 is used (rather than P0), the equations are

x = 4+2s
y =−1− s s a parameter
z = 1

These are different from the preceding equations, but this is merely the result of a change of
parameter. In fact, s = t −1.
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Example 4.1.9

Find the equations of the line through P0(3, −1, 2) parallel to the line with equations

x =−1+2t
y = 1+ t
z =−3+4t

Solution. The coefficients of t give a direction vector d =

 2
1
4

 of the given line. Because

the line we seek is parallel to this line, d also serves as a direction vector for the new line. It
passes through P0, so the parametric equations are

x = 3+2t
y =−1+ t
z = 2+4t

Example 4.1.10

Determine whether the following lines intersect and, if so, find the point of intersection.

x = 1−3t x =−1+ s
y = 2+5t y = 3−4s
z = 1+ t z = 1− s

Solution. Suppose P(x, y, z) with vector p lies on both lines. Then 1−3t
2+5t
1+ t

=

 x
y
z

=

 −1+ s
3−4s
1− s

 for some t and s,

where the first (second) equation is because P lies on the first (second) line. Hence the lines
intersect if and only if the three equations

1−3t =−1+ s
2+5t = 3−4s
1+ t = 1− s

have a solution. In this case, t = 1 and s =−1 satisfy all three equations, so the lines do
intersect and the point of intersection is

p =

 1−3t
2+5t
1+ t

=

 −2
7
2


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using t = 1. Of course, this point can also be found from p =

 −1+ s
3−4s
1− s

 using s =−1.

Example 4.1.11

Show that the line through P0(x0, y0) with slope m has direction vector d =

[
1
m

]
and

equation y− y0 = m(x− x0). This equation is called the point-slope formula.

P0(x0, y0)

P1(x1, y1)

x0 x1 = x0 +1O
x

y
Solution. Let P1(x1, y1) be the point on the line one
unit to the right of P0 (see the diagram). Hence x1 = x0 +1.
Then d =

−→
P0P1 serves as direction vector of the line, and

d =

[
x1 − x0
y1 − y0

]
=

[
1

y1 − y0

]
. But the slope m can be

computed as follows:

m = y1−y0
x1−x0

= y1−y0
1 = y1 − y0

Hence d =

[
1
m

]
and the parametric equations are x = x0 + t,

y = y0 +mt. Eliminating t gives y− y0 = mt = m(x− x0), as asserted.

Note that the vertical line through P0(x0, y0) has a direction vector d =

[
0
1

]
that is not of the

form
[

1
m

]
for any m. This result confirms that the notion of slope makes no sense in this case.

However, the vector method gives parametric equations for the line:

x = x0

y = y0 + t

Because y is arbitrary here (t is arbitrary), this is usually written simply as x = x0.

Pythagoras’ Theorem

c

b

a

A

B

C

Dp

q

Figure 4.1.14

The Pythagorean theorem was known earlier, but Pythagoras (c. 550
b.c.) is credited with giving the first rigorous, logical, deductive proof
of the result. The proof we give depends on a basic property of similar
triangles: ratios of corresponding sides are equal.
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Theorem 4.1.6: Pythagoras’ Theorem

Given a right-angled triangle with hypotenuse c and sides a and b, then a2 +b2 = c2.

Proof. Let A, B, and C be the vertices of the triangle as in Figure 4.1.14. Draw a perpendicular line
from C to the point D on the hypotenuse, and let p and q be the lengths of BD and DA respectively.
Then DBC and CBA are similar triangles so p

a = a
c . This means a2 = pc. In the same way, the

similarity of DCA and CBA gives q
b = b

c , whence b2 = qc. But then

a2 +b2 = pc+qc = (p+q)c = c2

because p+q = c. This proves Pythagoras’ theorem10.

Exercises for 4.1

Exercise 4.1.1 Compute ‖v‖ if v equals: 2
−1

2

a)

 1
−1

2

b)

 1
0

−1

c)

 −1
0
2

d)

2

 1
−1

2

e) −3

 1
1
2

f)

b.
√

6

d.
√

5

f. 3
√

6

Exercise 4.1.2 Find a unit vector in the direction
of:  7

−1
5

a)

 −2
−1

2

b)

b. 1
3

 −2
−1

2


Exercise 4.1.3

a. Find a unit vector in the direction from 3
−1

4

 to

 1
3
5

.

b. If u 6= 0, for which values of a is au a unit
vector?

Exercise 4.1.4 Find the distance between the fol-
lowing pairs of points. 3

−1
0

 and

 2
−1

1

a)

 2
−1

2

 and

 2
0
1

b)

 −3
5
2

 and

 1
3
3

c)

 4
0

−2

 and

 3
2
0

d)

b.
√

2

d. 3
10There is an intuitive geometrical proof of Pythagoras’ theorem in Example ??.



218 Vector Geometry

Exercise 4.1.5 Use vectors to show that the line
joining the midpoints of two sides of a triangle is
parallel to the third side and half as long.

Exercise 4.1.6 Let A, B, and C denote the three
vertices of a triangle.

a. If E is the midpoint of side BC, show that
−→
AE = 1

2(
−→
AB+

−→
AC)

b. If F is the midpoint of side AC, show that
−→
FE = 1

2
−→
AB

b. −→
FE =

−→
FC +

−→
CE = 1

2
−→
AC + 1

2
−→
CB = 1

2(
−→
AC +

−→
CB) =

1
2
−→
AB

Exercise 4.1.7 Determine whether u and v are
parallel in each of the following cases.

a. u =

 −3
−6

3

; v =

 5
10
−5



b. u =

 3
−6

3

; v =

 −1
2

−1



c. u =

 1
0
1

; v =

 −1
0
1



d. u =

 2
0

−1

; v =

 −8
0
4



b. Yes

d. Yes

Exercise 4.1.8 Let p and q be the vectors of points
P and Q, respectively, and let R be the point whose
vector is p+q. Express the following in terms of p
and q.

−→
QPa) −→

QRb)
−→
RPc) −→

RO where O is the origind)

b. p

d. −(p+q).

Exercise 4.1.9 In each case, find −→
PQ and ‖−→PQ‖.

a. P(1, −1, 3), Q(3, 1, 0)

b. P(2, 0, 1), Q(1, −1, 6)

c. P(1, 0, 1), Q(1, 0, −3)

d. P(1, −1, 2), Q(1, −1, 2)

e. P(1, 0, −3), Q(−1, 0, 3)

f. P(3, −1, 6), Q(1, 1, 4)

b.

 −1
−1

5

,
√

27

d.

 0
0
0

, 0

f.

 −2
2
2

,
√

12

Exercise 4.1.10 In each case, find a point Q such
that −→

PQ has (i) the same direction as v; (ii) the op-
posite direction to v.

a. P(−1, 2, 2), v =

 1
3
1



b. P(3, 0, −1), v =

 2
−1

3



b. (i) Q(5, −1, 2) (ii) Q(1, 1, −4).
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Exercise 4.1.11 Let u =

 3
−1

0

, v =

 4
0
1

, and

w =

 −1
1
5

. In each case, find x such that:

a. 3(2u+x)+w = 2x−v

b. 2(3v−x) = 5w+u−3x

b. x = u−6v+5w =

 −26
4

19



Exercise 4.1.12 Let u =

 1
1
2

, v =

 0
1
2

, and

w =

 1
0

−1

. In each case, find numbers a, b, and c

such that x = au+bv+ cw.

x =

 2
−1

6

a) x =

 1
3
0

b)

b.

 a
b
c

=

 −5
8
6



Exercise 4.1.13 Let u =

 3
−1

0

, v =

 4
0
1

, and

z =

 1
1
1

. In each case, show that there are no

numbers a, b, and c such that:

a. au+bv+ cz =

 1
2
1



b. au+bv+ cz =

 5
6

−1



b. If it holds then

 3a+4b+ c
−a+ c
b+ c

=

 x1
x2
x3

. 3 4 1 x1
−1 0 1 x2

0 1 1 x3

 →

 0 4 4 x1 +3x2
−1 0 1 x2

0 1 1 x3

 If

there is to be a solution then x1 + 3x2 = 4x3
must hold. This is not satisfied.

Exercise 4.1.14 Given P1(2, 1, −2) and
P2(1, −2, 0). Find the coordinates of the point P:

a. 1
5 the way from P1 to P2

b. 1
4 the way from P2 to P1

b. 1
4

 5
−5
−2


Exercise 4.1.15 Find the two points trisecting the
segment between P(2, 3, 5) and Q(8, −6, 2).

Exercise 4.1.16 Let P1(x1, y1, z1) and P2(x2, y2, z2)
be two points with vectors p1 and p2, respectively.
If r and s are positive integers, show that the point
P lying r

r+s the way from P1 to P2 has vector

p =
( s

r+s

)
p1 +

( r
r+s

)
p2

Exercise 4.1.17 In each case, find the point Q:

a. −→
PQ =

 2
0

−3

 and P = P(2, −3, 1)

b. −→
PQ =

 −1
4
7

 and P = P(1, 3, −4)

b. Q(0, 7, 3).

Exercise 4.1.18 Let u=

 2
0

−4

 and v=

 2
1

−2

.

In each case find x:
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a. 2u−‖v‖v = 3
2(u−2x)

b. 3u+7v = ‖u‖2(2x+v)

b. x = 1
40

 −20
−13

14


Exercise 4.1.19 Find all vectors u that are paral-

lel to v =

 3
−2

1

 and satisfy ‖u‖= 3‖v‖.

Exercise 4.1.20 Let P, Q, and R be the vertices of
a parallelogram with adjacent sides PQ and PR. In
each case, find the other vertex S.

a. P(3, −1, −1), Q(1, −2, 0), R(1, −1, 2)

b. P(2, 0, −1), Q(−2, 4, 1), R(3, −1, 0)

b. S(−1, 3, 2).

Exercise 4.1.21 In each case either prove the
statement or give an example showing that it is false.

a. The zero vector 0 is the only vector of length
0.

b. If ‖v−w‖= 0, then v = w.

c. If v =−v, then v = 0.

d. If ‖v‖= ‖w‖, then v = w.

e. If ‖v‖= ‖w‖, then v =±w.

f. If v = tw for some scalar t, then v and w have
the same direction.

g. If v, w, and v+w are nonzero, and v and
v+w parallel, then v and w are parallel.

h. ‖−5v‖=−5‖v‖, for all v.

i. If ‖v‖= ‖2v‖, then v = 0.

j. ‖v+w‖= ‖v‖+‖w‖, for all v and w.

b. T. ‖v−w‖= 0 implies that v−w = 0.

d. F. ‖v‖= ‖−v‖ for all v but v=−v only holds
if v = 0.

f. F. If t < 0 they have the opposite direction.

h. F. ‖−5v‖= 5‖v‖ for all v, so it fails if v 6= 0.

j. F. Take w =−v where v 6= 0.

Exercise 4.1.22 Find the vector and parametric
equations of the following lines.

a. The line parallel to

 2
−1

0

 and passing

through P(1, −1, 3).

b. The line passing through P(3, −1, 4) and
Q(1, 0, −1).

c. The line passing through P(3, −1, 4) and
Q(3, −1, 5).

d. The line parallel to

 1
1
1

 and passing

through P(1, 1, 1).

e. The line passing through P(1, 0, −3) and
parallel to the line with parametric equations
x =−1+2t, y = 2− t, and z = 3+3t.

f. The line passing through P(2, −1, 1) and
parallel to the line with parametric equations
x = 2− t, y = 1, and z = t.

g. The lines through P(1, 0, 1) that meet the line

with vector equation p =

 1
2
0

+ t

 2
−1

2

 at

points at distance 3 from P0(1, 2, 0).

b.

 3
−1

4

+ t

 2
−1

5

; x = 3 + 2t, y = −1 − t,

z = 4+5t
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d.

 1
1
1

+ t

 1
1
1

; x = y = z = 1+ t

f.

 2
−1

1

+ t

 −1
0
1

; x = 2− t, y =−1, z = 1+ t

Exercise 4.1.23 In each case, verify that the
points P and Q lie on the line.

a. x = 3−4t P(−1, 3, 0), Q(11, 0, 3)
y = 2+ t
z = 1− t

b. x = 4− t P(2, 3, −3), Q(−1, 3, −9)
y = 3
z = 1−2t

b. P corresponds to t = 2; Q corresponds to t = 5.

Exercise 4.1.24 Find the point of intersection (if
any) of the following pairs of lines.

a. x = 3+ t x = 4+2s
y = 1−2t y = 6+3s
z = 3+3t z = 1+ s

b.
x = 1− t x = 2s
y = 2+2t y = 1+ s
z =−1+3t z = 3

c.

 x
y
z

 =

 3
−1

2

 + t

 1
1

−1

  x
y
z

 = 1
1

−2

+ s

 2
0
3



d.

 x
y
z

=

 4
−1

5

+t

 1
0
1

  x
y
z

=

 2
−7
12

+
s

 0
−2

3



b. No intersection

d. P(2, −1, 3); t =−2, s =−3

Exercise 4.1.25 Show that if a line passes through
the origin, the vectors of points on the line are all
scalar multiples of some fixed nonzero vector.

Exercise 4.1.26 Show that every line parallel to
the z axis has parametric equations x = x0, y = y0,
z = t for some fixed numbers x0 and y0.

Exercise 4.1.27 Let d =

 a
b
c

 be a vector where

a, b, and c are all nonzero. Show that the equa-
tions of the line through P0(x0, y0, z0) with direction
vector d can be written in the form

x−x0
a = y−y0

b = z−z0
c

This is called the symmetric form of the equa-
tions.

Exercise 4.1.28 A parallelogram has sides AB, BC,
CD, and DA. Given A(1, −1, 2), C(2, 1, 0), and the
midpoint M(1, 0, −3) of AB, find −→

BD.

Exercise 4.1.29 Find all points C on the line
through A(1, −1, 2) and B = (2, 0, 1) such that
‖−→AC‖= 2‖−→BC‖.
P(3, 1, 0) or P(5

3 , −1
3 , 4

3)

Exercise 4.1.30 Let A, B, C, D, E, and F be the
vertices of a regular hexagon, taken in order. Show
that −→

AB+
−→
AC+

−→
AD+

−→
AE +

−→
AF = 3

−→
AD.

Exercise 4.1.31

a. Let P1, P2, P3, P4, P5, and P6 be six points
equally spaced on a circle with centre C. Show
that

−→
CP1 +

−→
CP2 +

−→
CP3 +

−→
CP4 +

−→
CP5 +

−→
CP6 = 0

b. Show that the conclusion in part (a) holds for
any even set of points evenly spaced on the
circle.

c. Show that the conclusion in part (a) holds for
three points.

d. Do you think it works for any finite set of
points evenly spaced around the circle?
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b. −→
CPk =−−→

CPn+k if 1 ≤ k ≤ n, where there are 2n
points.

Exercise 4.1.32 Consider a quadrilateral with ver-
tices A, B, C, and D in order (as shown in the dia-
gram).

A B

CD

If the diagonals AC and BD bisect each other,
show that the quadrilateral is a parallelogram. (This
is the converse of Example 4.1.2.) [Hint: Let E be
the intersection of the diagonals. Show that −→AB=

−→
DC

by writing −→
AB =

−→
AE +

−→
EB.]

Exercise 4.1.33 Consider the parallelogram ABCD
(see diagram), and let E be the midpoint of side AD.

A

B

C

D

E

F

Show that BE and AC trisect each other; that
is, show that the intersection point is one-third of
the way from E to B and from A to C. [Hint:
If F is one-third of the way from A to C, show
that 2

−→
EF =

−→
FB and argue as in Example 4.1.2.]

−→
DA = 2

−→
EA and 2

−→
AF =

−→
FC, so 2

−→
EF = 2(

−→
EF +

−→
AF) =

−→
DA+

−→
FC =

−→
CB+

−→
FC =

−→
FC+

−→
CB =

−→
FB. Hence −→

EF =
1
2
−→
FB. So F is the trisection point of both AC and

EB.

Exercise 4.1.34 The line from a vertex of a trian-
gle to the midpoint of the opposite side is called a
median of the triangle. If the vertices of a triangle
have vectors u, v, and w, show that the point on
each median that is 1

3 the way from the midpoint to
the vertex has vector 1

3(u+v+w). Conclude that
the point C with vector 1

3(u+v+w) lies on all three
medians. This point C is called the centroid of the
triangle.

Exercise 4.1.35 Given four noncoplanar points
in space, the figure with these points as vertices
is called a tetrahedron. The line from a vertex
through the centroid (see previous exercise) of the
triangle formed by the remaining vertices is called a
median of the tetrahedron. If u, v, w, and x are
the vectors of the four vertices, show that the point
on a median one-fourth the way from the centroid
to the vertex has vector 1

4(u+v+w+x). Conclude
that the four medians are concurrent.
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4.2 Projections and Planes

P

Q

Figure 4.2.1

Any student of geometry soon realizes that the notion of perpendicular
lines is fundamental. As an illustration, suppose a point P and a plane
are given and it is desired to find the point Q that lies in the plane
and is closest to P, as shown in Figure 4.2.1. Clearly, what is required
is to find the line through P that is perpendicular to the plane and
then to obtain Q as the point of intersection of this line with the
plane. Finding the line perpendicular to the plane requires a way
to determine when two vectors are perpendicular. This can be done
using the idea of the dot product of two vectors.

The Dot Product and Angles

Definition 4.4 Dot Product in R3

Given vectors v =

 x1
y1
z1

 and w =

 x2
y2
z2

, their dot product v ·w is a number defined

v ·w = x1x2 + y1y2 + z1z2 = vT w

Because v ·w is a number, it is sometimes called the scalar product of v and w.11

Example 4.2.1

If v =

 2
−1

3

 and w =

 1
4

−1

, then v ·w = 2 ·1+(−1) ·4+3 · (−1) =−5.

The next theorem lists several basic properties of the dot product.

Theorem 4.2.1
Let u, v, and w denote vectors in R3 (or R2).

1. v ·w is a real number.

2. v ·w = w ·v.

3. v ·0 = 0 = 0 ·v.

4. v ·v = ‖v‖2.

11Similarly, if v =

[
x1
y1

]
and w =

[
x2
y2

]
in R2, then v ·w = x1x2 + y1y2.
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5. (kv) ·w = k(w ·v) = v · (kw) for all scalars k.

6. u · (v±w) = u ·v±u ·w

Proof. (1), (2), and (3) are easily verified, and (4) comes from Theorem 4.1.1. The rest are
properties of matrix arithmetic (because w ·v = vT w), and are left to the reader.

The properties in Theorem 4.2.1 enable us to do calculations like

3u · (2v−3w+4z) = 6(u ·v)−9(u ·w)+12(u ·z)

and such computations will be used without comment below. Here is an example.

Example 4.2.2

Verify that ‖v−3w‖2 = 1 when ‖v‖= 2, ‖w‖= 1, and v ·w = 2.

Solution. We apply Theorem 4.2.1 several times:

‖v−3w‖2 = (v−3w) · (v−3w)

= v · (v−3w)−3w · (v−3w)

= v ·v−3(v ·w)−3(w ·v)+9(w ·w)

= ‖v‖2 −6(v ·w)+9‖w‖2

= 4−12+9 = 1

There is an intrinsic description of the dot product of two nonzero vectors in R3. To understand
it we require the following result from trigonometry.

Law of Cosines
If a triangle has sides a, b, and c, and if θ is the interior angle opposite c then

c2 = a2 +b2 −2abcosθ

a
c

b

p

θ q b−q

Figure 4.2.2

Proof. We prove it when is θ acute, that is 0 ≤ θ < π

2 ; the obtuse
case is similar. In Figure 4.2.2 we have p = asinθ and q = acosθ .
Hence Pythagoras’ theorem gives

c2 = p2 +(b−q)2 = a2 sin2
θ +(b−acosθ)2

= a2(sin2
θ + cos2

θ)+b2 −2abcosθ

The law of cosines follows because sin2
θ +cos2 θ = 1 for any angle θ .
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v

w

θ

θ obtuse

v

w
θ

θ acute

Figure 4.2.3

Note that the law of cosines reduces to Pythagoras’ theorem if θ is a
right angle (because cos π

2 = 0).
Now let v and w be nonzero vectors positioned with a common

tail as in Figure 4.2.3. Then they determine a unique angle θ in the
range

0 ≤ θ ≤ π

This angle θ will be called the angle between v and w. Fig-
ure 4.2.3 illustrates when θ is acute (less than π

2 ) and obtuse (greater
than π

2 ). Clearly v and w are parallel if θ is either 0 or π. Note that
we do not define the angle between v and w if one of these vectors is
0.

The next result gives an easy way to compute the angle between two nonzero vectors using the
dot product.

Theorem 4.2.2
Let v and w be nonzero vectors. If θ is the angle between v and w, then

v ·w = ‖v‖‖w‖cosθ

v

w

v−w
θ

Figure 4.2.4

Proof. We calculate ‖v−w‖2 in two ways. First apply the law of
cosines to the triangle in Figure 4.2.4 to obtain:

‖v−w‖2 = ‖v‖2 +‖w‖2 −2‖v‖‖w‖cosθ

On the other hand, we use Theorem 4.2.1:

‖v−w‖2 = (v−w) · (v−w)

= v ·v−v ·w−w ·v+w ·w
= ‖v‖2 −2(v ·w)+‖w‖2

Comparing these we see that −2‖v‖‖w‖cosθ =−2(v ·w), and the result follows.

If v and w are nonzero vectors, Theorem 4.2.2 gives an intrinsic description of v ·w because
‖v‖, ‖w‖, and the angle θ between v and w do not depend on the choice of coordinate system.
Moreover, since ‖v‖ and ‖w‖ are nonzero (v and w are nonzero vectors), it gives a formula for the
cosine of the angle θ :

cosθ = v·w
‖v‖‖w‖ (4.1)

Since 0 ≤ θ ≤ π, this can be used to find θ .
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Example 4.2.3

Compute the angle between u =

 −1
1
2

 and v =

 2
1

−1

.

2π

3

(
−1
2 ,

√
3

2

)

−1
2

O
x

y
Solution. Compute cosθ = v·w

‖v‖‖w‖ =
−2+1−2√

6
√

6
=−1

2 . Now
recall that cosθ and sinθ are defined so that (cosθ , sinθ )
is the point on the unit circle determined by the angle θ

(drawn counterclockwise, starting from the positive x axis). In
the present case, we know that cosθ =−1

2 and that 0 ≤ θ ≤ π.
Because cos π

3 = 1
2 , it follows that θ = 2π

3 (see the diagram).

If v and w are nonzero, equation (4.1) shows that cosθ has the same sign as v ·w, so

v ·w > 0 if and only if θ is acute (0 ≤ θ < π

2 )
v ·w < 0 if and only if θ is obtuse (π

2 < θ ≤ 0)
v ·w = 0 if and only if θ = π

2

In this last case, the (nonzero) vectors are perpendicular. The following terminology is used in
linear algebra:

Definition 4.5 Orthogonal Vectors in R3

Two vectors v and w are said to be orthogonal if v = 0 or w = 0 or the angle between
them is π

2 .

Since v ·w = 0 if either v = 0 or w = 0, we have the following theorem:

Theorem 4.2.3
Two vectors v and w are orthogonal if and only if v ·w = 0.

Example 4.2.4

Show that the points P(3, −1, 1), Q(4, 1, 4), and R(6, 0, 4) are the vertices of a right
triangle.

Solution. The vectors along the sides of the triangle are

−→
PQ =

 1
2
3

 ,
−→
PR =

 3
1
3

 , and −→
QR =

 2
−1

0


Evidently −→

PQ ·−→QR = 2−2+0 = 0, so −→
PQ and −→

QR are orthogonal vectors. This means sides
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PQ and QR are perpendicular—that is, the angle at Q is a right angle.

Example 4.2.5 demonstrates how the dot product can be used to verify geometrical theorems
involving perpendicular lines.

Example 4.2.5

A parallelogram with sides of equal length is called a rhombus. Show that the diagonals of
a rhombus are perpendicular.

v

u
u−v

u+v

Solution. Let u and v denote vectors along two adjacent
sides of a rhombus, as shown in the diagram. Then the
diagonals are u−v and u+v, and we compute

(u−v) · (u+v) = u · (u+v)−v · (u+v)
= u ·u+u ·v−v ·u−v ·v
= ‖u‖2 −‖v‖2

= 0

because ‖u‖= ‖v‖ (it is a rhombus). Hence u−v and u+v are orthogonal.

Projections

In applications of vectors, it is frequently useful to write a vector as the sum of two orthogonal
vectors. Here is an example.

Example 4.2.6

Suppose a ten-kilogram block is placed on a flat surface inclined 30◦ to the horizontal as in
the diagram. Neglecting friction, how much force is required to keep the block from sliding
down the surface?

30◦

30◦

w

w1

w2

Solution. Let w denote the weight (force due to gravity)
exerted on the block. Then ‖w‖ = 10 kilograms and the
direction of w is vertically down as in the diagram. The
idea is to write w as a sum w = w1 +w2 where w1 is parallel
to the inclined surface and w2 is perpendicular to the surface.
Since there is no friction, the force required is −w1 because

the force w2 has no effect parallel to the surface. As the angle between w and w2 is 30◦ in
the diagram, we have ‖w1‖

‖w‖ = sin30◦ = 1
2 . Hence ‖w1‖= 1

2‖w‖= 1
210 = 5. Thus the required

force has a magnitude of 5 kilograms weight directed up the surface.
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u

u1
Q

P

P1

d
u−u1

(a)

u

u1
Q

P

P1

d

u−u1

(b)
Figure 4.2.5

If a nonzero vector d is specified, the key idea in Example 4.2.6 is
to be able to write an arbitrary vector u as a sum of two vectors,

u = u1 +u2

where u1 is parallel to d and u2 = u−u1 is orthogonal to d. Suppose
that u and d 6= 0 emanate from a common tail Q (see Figure 4.2.5).
Let P be the tip of u, and let P1 denote the foot of the perpendicular
from P to the line through Q parallel to d.

Then u1 =
−→
QP1 has the required properties:

1. u1 is parallel to d.

2. u2 = u−u1 is orthogonal to d.

3. u = u1 +u2.

Definition 4.6 Projection in R3

The vector u1 =
−→
QP1 in Figure 4.2.5 is called the projection of u on d. It is denoted

u1 = projd u

In Figure 4.2.5(a) the vector u1 = projd u has the same direction as d; however, u1 and d have
opposite directions if the angle between u and d is greater than π

2 (Figure 4.2.5(b)). Note that the
projection u1 = projd u is zero if and only if u and d are orthogonal.

Calculating the projection of u on d 6= 0 is remarkably easy.

Theorem 4.2.4
Let u and d 6= 0 be vectors.

1. The projection of u on d is given by projd u = u·d
‖d‖2 d.

2. The vector u− projd u is orthogonal to d.

Proof. The vector u1 = projd u is parallel to d and so has the form u1 = td for some scalar t. The
requirement that u−u1 and d are orthogonal determines t. In fact, it means that (u−u1) ·d = 0
by Theorem 4.2.3. If u1 = td is substituted here, the condition is

0 = (u− td) ·d = u ·d− t(d ·d) = u ·d− t‖d‖2

It follows that t = u·d
‖d‖2 , where the assumption that d 6= 0 guarantees that ‖d‖2 6= 0.
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Example 4.2.7

Find the projection of u =

 2
−3

1

 on d =

 1
−1

3

 and express u = u1 +u2 where u1 is

parallel to d and u2 is orthogonal to d.

Solution. The projection u1 of u on d is

u1 = projd u = u·d
‖d‖2 d = 2+3+3

12+(−1)2+32

 1
−1

3

= 8
11

 1
−1

3



Hence u2 = u−u1 =
1
11

 14
−25
−13

, and this is orthogonal to d by Theorem 4.2.4

(alternatively, observe that d ·u2 = 0). Since u = u1 +u2, we are done.

Example 4.2.8

u
u1

u−u1

Q

P(1, 3, −2)

P0(2, 0, −1)

d

Find the shortest distance (see diagram) from the point P(1, 3, −2)

to the line through P0(2, 0, −1) with direction vector d =

 1
−1

0

.

Also find the point Q that lies on the line and is closest to P.

Solution. Let u =

 1
3

−2

−
 2

0
−1

=

 −1
3

−1

 denote the vector from P0 to P, and let u1

denote the projection of u on d. Thus

u1 =
u·d
‖d‖2 d = −1−3+0

12+(−1)2+02 d =−2d =

 −2
2
0


by Theorem 4.2.4. We see geometrically that the point Q on the line is closest to P, so the
distance is

‖−→QP‖= ‖u−u1‖=

∥∥∥∥∥∥
 1

1
−1

∥∥∥∥∥∥=√
3

To find the coordinates of Q, let p0 and q denote the vectors of P0 and Q, respectively.

Then p0 =

 2
0

−1

 and q = p0 +u1 =

 0
2

−1

. Hence Q(0, 2, −1) is the required point. It

can be checked that the distance from Q to P is
√

3, as expected.
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Planes

It is evident geometrically that among all planes that are perpendicular to a given straight line there
is exactly one containing any given point. This fact can be used to give a very simple description
of a plane. To do this, it is necessary to introduce the following notion:

Definition 4.7 Normal Vector in a Plane
A nonzero vector n is called a normal for a plane if it is orthogonal to every vector in the
plane.

n

P0

P

Figure 4.2.6

For example, the coordinate vector k is a normal for the x-y plane.
Given a point P0 = P0(x0, y0, z0) and a nonzero vector n, there

is a unique plane through P0 with normal n, shaded in Figure 4.2.6.
A point P = P(x, y, z) lies on this plane if and only if the vector
−→
P0P is orthogonal to n—that is, if and only if n · −→P0P = 0. Because
−→
P0P =

 x− x0
y− y0
z− z0

 this gives the following result:

Scalar Equation of a Plane

The plane through P0(x0, y0, z0) with normal n =

 a
b
c

 6= 0 as a normal vector is given by

a(x− x0)+b(y− y0)+ c(z− z0) = 0

In other words, a point P(x, y, z) is on this plane if and only if x, y, and z satisfy this
equation.

Example 4.2.9

Find an equation of the plane through P0(1, −1, 3) with n =

 3
−1

2

 as normal.

Solution. Here the general scalar equation becomes

3(x−1)− (y+1)+2(z−3) = 0

This simplifies to 3x− y+2z = 10.
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If we write d = ax0+by0+cz0, the scalar equation shows that every plane with normal n=

 a
b
c


has a linear equation of the form

ax+by+ cz = d (4.2)

for some constant d. Conversely, the graph of this equation is a plane with n =

 a
b
c

 as a normal

vector (assuming that a, b, and c are not all zero).

Example 4.2.10

Find an equation of the plane through P0(3, −1, 2) that is parallel to the plane with
equation 2x−3y = 6.

Solution. The plane with equation 2x−3y = 6 has normal n =

 2
−3

0

. Because the two

planes are parallel, n serves as a normal for the plane we seek, so the equation is 2x−3y = d
for some d by Equation 4.2. Insisting that P0(3, −1, 2) lies on the plane determines d; that
is, d = 2 ·3−3(−1) = 9. Hence, the equation is 2x−3y = 9.

Consider points P0(x0, y0, z0) and P(x, y, z) with vectors p0 =

 x0
y0
z0

 and p =

 x
y
z

. Given a

nonzero vector n, the scalar equation of the plane through P0(x0, y0, z0) with normal n =

 a
b
c


takes the vector form:

Vector Equation of a Plane

The plane with normal n 6= 0 through the point with vector p0 is given by

n · (p−p0) = 0

In other words, the point with vector p is on the plane if and only if p satisfies this
condition.

Moreover, Equation 4.2 translates as follows:

Every plane with normal n has vector equation n ·p = d for some number d.

This is useful in the second solution of Example 4.2.11.



232 Vector Geometry

Example 4.2.11

Find the shortest distance from the point P(2, 1, −3) to the plane with equation
3x− y+4z = 1. Also find the point Q on this plane closest to P.

u

P0(0, −1, 0)
Q(x, y, z)

P(2, 1, −3)u1

n
Solution 1. The plane in question has normal n =

 3
−1

4

.

Choose any point P0 on the plane—say P0(0, −1, 0)—and
let Q(x, y, z) be the point on the plane closest to P (see the

diagram). The vector from P0 to P is u =

 2
2

−3

. Now erect

n with its tail at P0. Then −→
QP = u1 and u1 is the projection of

u on n:

u1 =
n·u
‖n‖2 n = −8

26

 3
−1

4

= −4
13

 3
−1

4


Hence the distance is ‖−→QP‖= ‖u1‖= 4

√
26

13 . To calculate the point Q, let q =

 x
y
z

 and

p0 =

 0
−1

0

 be the vectors of Q and P0. Then

q = p0 +u−u1 =

 0
−1

0

+
 2

2
−3

+ 4
13

 3
−1

4

=


38
13
9

13
−23
13


This gives the coordinates of Q(38

13 , 9
13 , −23

13 ).

Solution 2. Let q =

 x
y
z

 and p =

 2
1

−3

 be the vectors of Q and P. Then Q is on the

line through P with direction vector n, so q = p+ tn for some scalar t. In addition, Q lies on
the plane, so n ·q = 1. This determines t:

1 = n ·q = n · (p+ tn) = n ·p+ t‖n‖2 =−7+ t(26)

This gives t = 8
26 = 4

13 , so x
y
z

= q = p+ tn =

 2
1

−3

+ 4
13

 3
−1

4

+ 1
13

 38
9

−23


as before. This determines Q (in the diagram), and the reader can verify that the required
distance is ‖−→QP‖= 4

13

√
26, as before.
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The Cross Product

If P, Q, and R are three distinct points in R3 that are not all on some line, it is clear geometrically
that there is a unique plane containing all three. The vectors −→

PQ and −→
PR both lie in this plane, so

finding a normal amounts to finding a nonzero vector orthogonal to both −→
PQ and −→

PR. The cross
product provides a systematic way to do this.

Definition 4.8 Cross Product

Given vectors v1 =

 x1
y1
z1

 and v2 =

 x2
y2
z2

, define the cross product v1 ×v2 by

v1 ×v2 =

 y1z2 − z1y2
−(x1z2 − z1x2)

x1y2 − y1x2



x

y

z

i jk

O

Figure 4.2.7

(Because it is a vector, v1 ×v2 is often called the vector product.)
There is an easy way to remember this definition using the coordi-
nate vectors:

i =

 1
0
0

 , j =

 0
1
0

 , and k =

 0
0
1


They are vectors of length 1 pointing along the positive x, y, and z
axes, respectively, as in Figure 4.2.7. The reason for the name is that
any vector can be written as x

y
z

= xi+ yj+ zk

With this, the cross product can be described as follows:

Determinant Form of the Cross Product

If v1 =

 x1
y1
z1

 and v2 =

 x2
y2
z2

 are two vectors, then

v1 ×v2 = det

 i x1 x2
j y1 y2
k z1 z2

=

∣∣∣∣ y1 y2
z1 z2

∣∣∣∣ i− ∣∣∣∣ x1 x2
z1 z2

∣∣∣∣ j+ ∣∣∣∣ x1 x2
y1 y2

∣∣∣∣k
where the determinant is expanded along the first column.
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Example 4.2.12

If v =

 2
−1

4

 and w =

 1
3
7

, then

v1 ×v2 = det

 i 2 1
j −1 3
k 4 7

=

∣∣∣∣ −1 3
4 7

∣∣∣∣ i− ∣∣∣∣ 2 1
4 7

∣∣∣∣ j+ ∣∣∣∣ 2 1
−1 3

∣∣∣∣k
=−19i−10j+7k

=

 −19
−10

7



Observe that v×w is orthogonal to both v and w in Example 4.2.12. This holds in general
as can be verified directly by computing v · (v×w) and w · (v×w), and is recorded as the first
part of the following theorem. It will follow from a more general result which, together with the
second part, will be proved in Section 4.3 where a more detailed study of the cross product will be
undertaken.

Theorem 4.2.5
Let v and w be vectors in R3.

1. v×w is a vector orthogonal to both v and w.

2. If v and w are nonzero, then v×w = 0 if and only if v and w are parallel.

It is interesting to contrast Theorem 4.2.5(2) with the assertion (in Theorem 4.2.3) that

v ·w = 0 if and only if v and w are orthogonal.

Example 4.2.13

Find the equation of the plane through P(1, 3, −2), Q(1, 1, 5), and R(2, −2, 3).

Solution. The vectors −→
PQ =

 0
−2

7

 and −→
PR =

 1
−5

5

 lie in the plane, so

−→
PQ×−→

PR = det

 i 0 1
j −2 −5
k 7 5

= 25i+7j+2k =

 25
7
2


is a normal for the plane (being orthogonal to both −→

PQ and −→
PR). Hence the plane has

equation
25x+7y+2z = d for some number d.
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Since P(1, 3, −2) lies in the plane we have 25 ·1+7 ·3+2(−2) = d. Hence d = 42 and the
equation is 25x+7y+2z = 42. Incidentally, the same equation is obtained (verify) if −→QP and
−→
QR, or −→

RP and −→
RQ, are used as the vectors in the plane.

Example 4.2.14

Find the shortest distance between the nonparallel lines x
y
z

=

 1
0

−1

+ t

 2
0
1

 and

 x
y
z

=

 3
1
0

+ s

 1
1

−1


Then find the points A and B on the lines that are closest together.

Solution. Direction vectors for the two lines are d1 =

 2
0
1

 and d2 =

 1
1

−1

, so

n = d1 ×d2 = det

 i 2 1
j 0 1
k 1 −1

=

 −1
3
2



u

P2
n

B

A
P1

is perpendicular to both lines. Consider the plane shaded
in the diagram containing the first line with n as normal.
This plane contains P1(1, 0, −1) and is parallel to the second
line. Because P2(3, 1, 0) is on the second line, the distance in
question is just the shortest distance between P2(3, 1, 0) and

this plane. The vector u from P1 to P2 is u =
−→
P1P2 =

 2
1
1


and so, as in Example 4.2.11, the distance is the length of the projection of u on n.

distance =
∥∥∥ u·n
‖n‖2 n

∥∥∥= |u·n|
‖n‖ = 3√

14
= 3

√
14

14

Note that it is necessary that n = d1 ×d2 be nonzero for this calculation to be possible. As
is shown later (Theorem 4.3.4), this is guaranteed by the fact that d1 and d2 are not
parallel.
The points A and B have coordinates A(1+2t, 0, t −1) and B(3+ s, 1+ s, −s) for some

s and t, so −→
AB =

 2+ s−2t
1+ s

1− s− t

. This vector is orthogonal to both d1 and d2, and the

conditions −→AB ·d1 = 0 and −→
AB ·d2 = 0 give equations 5t − s = 5 and t −3s = 2. The solution is

s = −5
14 and t = 13

14 , so the points are A(40
14 , 0, −1

14 ) and B(37
14 , 9

14 , 5
14). We have ‖−→AB‖= 3

√
14

14 ,
as before.
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Exercises for 4.2

Exercise 4.2.1 Compute u ·v where:

a. u =

 2
−1

3

, v =

 −1
1
1



b. u =

 1
2

−1

, v = u

c. u =

 1
1

−3

, v =

 2
−1

1



d. u =

 3
−1

5

, v =

 6
−7
−5



e. u =

 x
y
z

, v =

 a
b
c



f. u =

 a
b
c

, v = 0

b. 6

d. 0

f. 0

Exercise 4.2.2 Find the angle between the follow-
ing pairs of vectors.

a. u =

 1
0
3

, v =

 2
0
1



b. u =

 3
−1

0

, v =

 −6
2
0



c. u =

 7
−1

3

, v =

 1
4

−1



d. u =

 2
1

−1

, v =

 3
6
3



e. u =

 1
−1

0

, v =

 0
1
1



f. u =

 0
3
4

, v =

 5
√

2
−7
−1



b. π or 180◦

d. π

3 or 60◦

f. 2π

3 or 120◦

Exercise 4.2.3 Find all real numbers x such that:

a.

 2
−1

3

 and

 x
−2

1

 are orthogonal.

b.

 2
−1

1

 and

 1
x
2

 are at an angle of π

3 .

b. 1 or −17

Exercise 4.2.4 Find all vectors v =

 x
y
z

 orthog-

onal to both:

a. u1 =

 −1
−3

2

, u2 =

 0
1
1



b. u1 =

 3
−1

2

, u2 =

 2
0
1



c. u1 =

 2
0

−1

, u2 =

 −4
0
2


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d. u1 =

 2
−1

3

, u2 =

 0
0
0



b. t

 −1
1
2



d. s

 1
2
0

+ t

 0
3
1


Exercise 4.2.5 Find two orthogonal vectors that

are both orthogonal to v =

 1
2
0

.

Exercise 4.2.6 Consider the triangle with vertices
P(2, 0, −3), Q(5, −2, 1), and R(7, 5, 3).

a. Show that it is a right-angled triangle.

b. Find the lengths of the three sides and verify
the Pythagorean theorem.

b. 29+57 = 86

Exercise 4.2.7 Show that the triangle with ver-
tices A(4, −7, 9), B(6, 4, 4), and C(7, 10, −6) is not
a right-angled triangle.

Exercise 4.2.8 Find the three internal angles of
the triangle with vertices:

a. A(3, 1, −2), B(3, 0, −1), and C(5, 2, −1)

b. A(3, 1, −2), B(5, 2, −1), and C(4, 3, −3)

b. A = B =C = π

3 or 60◦

Exercise 4.2.9 Show that the line through
P0(3, 1, 4) and P1(2, 1, 3) is perpendicular to the
line through P2(1, −1, 2) and P3(0, 5, 3).

Exercise 4.2.10 In each case, compute the projec-
tion of u on v.

a. u =

 5
7
1

, v =

 2
−1

3



b. u =

 3
−2

1

, v =

 4
1
1



c. u =

 1
−1

2

, v =

 3
−1

1



d. u =

 3
−2
−1

, v =

 −6
4
2



b. 11
18v

d. −1
2v

Exercise 4.2.11 In each case, write u = u1 +u2,
where u1 is parallel to v and u2 is orthogonal to v.

a. u =

 2
−1

1

, v =

 1
−1

3



b. u =

 3
1
0

, v =

 −2
1
4



c. u =

 2
−1

0

, v =

 3
1

−1



d. u =

 3
−2

1

, v =

 −6
4

−1



b. 5
21

 2
−1
−4

+ 1
21

 53
26
20



d. 27
53

 6
−4

1

+ 1
53

 −3
2

26


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Exercise 4.2.12 Calculate the distance from the
point P to the line in each case and find the point Q
on the line closest to P.

a. P(3, 2−1)

line:

 x
y
z

=

 2
1
3

+ t

 3
−1
−2


b. P(1, −1, 3)

line:

 x
y
z

=

 1
0

−1

+ t

 3
1
4



b. 1
26

√
5642, Q(71

26 , 15
26 , 34

26)

Exercise 4.2.13 Compute u×v where:

a. u =

 1
2
3

, v =

 1
1
2



b. u =

 3
−1

0

, v =

 −6
2
0



c. u =

 3
−2

1

, v =

 1
1

−1



d. u =

 2
0

−1

, v =

 1
4
7



b.

 0
0
0



b.

 4
−15

8


Exercise 4.2.14 Find an equation of each of the
following planes.

a. Passing through A(2, 1, 3), B(3, −1, 5), and
C(1, 2, −3).

b. Passing through A(1, −1, 6), B(0, 0, 1), and
C(4, 7, −11).

c. Passing through P(2, −3, 5) and parallel to
the plane with equation 3x−2y− z = 0.

d. Passing through P(3, 0, −1) and parallel to
the plane with equation 2x− y+ z = 3.

e. Containing P(3, 0, −1) and the line x
y
z

=

 0
0
2

+ t

 1
0
1

 .

f. Containing P(2, 1, 0) and the line

 x
y
z

 = 3
−1

2

+ t

 1
0

−1

 .

g. Containing the lines

 x
y
z

 =

 1
−1

2

 +

t

 1
1
1

 and x
y
z

=

 0
0
2

+ t

 1
−1

0

.

h. Containing the lines

 x
y
z

 =

 3
1
0

 +

t

 1
−1

3

 and

 x
y
z

=

 0
−2

5

+ t

 2
1

−1

.

i. Each point of which is equidistant from
P(2, −1, 3) and Q(1, 1, −1).

j. Each point of which is equidistant from
P(0, 1, −1) and Q(2, −1, −3).

b. −23x+32y+11z = 11

d. 2x− y+ z = 5

f. 2x+3y+2z = 7

h. 2x−7y−3z =−1
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j. x− y− z = 3

Exercise 4.2.15 In each case, find a vector equa-
tion of the line.

a. Passing through P(3, −1, 4) and perpendicu-
lar to the plane 3x−2y− z = 0.

b. Passing through P(2, −1, 3) and perpendicu-
lar to the plane 2x+ y = 1.

c. Passing through P(0, 0, 0) and perpendicu-

lar to the lines

 x
y
z

=

 1
1
0

+t

 2
0

−1

 and x
y
z

=

 2
1

−3

+ t

 1
−1

5

.

d. Passing through P(1, 1, −1), and perpendicu-

lar to the lines

 x
y
z

=

 2
0
1

+t

 1
1

−2

 and x
y
z

=

 5
5

−2

+ t

 1
2

−3

.

e. Passing through P(2, 1, −1), intersecting the

line

 x
y
z

 =

 1
2

−1

+ t

 3
0
1

, and perpen-

dicular to that line.

f. Passing through P(1, 1, 2), intersecting the

line

 x
y
z

=

 2
1
0

+ t

 1
1
1

, and perpendic-

ular to that line.

b.

 x
y
z

=

 2
−1

3

+ t

 2
1
0



d.

 x
y
z

=

 1
1

−1

+ t

 1
1
1



f.

 x
y
z

=

 1
1
2

+ t

 4
1

−5



Exercise 4.2.16 In each case, find the shortest
distance from the point P to the plane and find the
point Q on the plane closest to P.

a. P(2, 3, 0); plane with equation 5x+ y+ z = 1.

b. P(3, 1, −1); plane with equation 2x+y−z= 6.

b.
√

6
3 , Q(7

3 , 2
3 , −2

3 )

Exercise 4.2.17

a. Does the line through P(1, 2, −3) with di-

rection vector d =

 1
2

−3

 lie in the plane

2x− y− z = 3? Explain.

b. Does the plane through P(4, 0, 5), Q(2, 2, 1),
and R(1, −1, 2) pass through the origin? Ex-
plain.

b. Yes. The equation is 5x−3y−4z = 0.

Exercise 4.2.18 Show that every plane contain-
ing P(1, 2, −1) and Q(2, 0, 1) must also contain
R(−1, 6, −5).

Exercise 4.2.19 Find the equations of the line of
intersection of the following planes.

a. 2x−3y+2z = 5 and x+2y− z = 4.

b. 3x+ y−2z = 1 and x+ y+ z = 5.

b. (−2, 7, 0)+ t(3, −5, 2)

Exercise 4.2.20 In each case, find all points of
intersection of the given plane and the line x

y
z

=

 1
−2

3

+ t

 2
5

−1

.
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x−3y+2z = 4a) 2x− y− z = 5b)
3x− y+ z = 8c) −x−4y−3z = 6d)

b. None

d. P(13
19 , −78

19 , 65
19)

Exercise 4.2.21 Find the equation of all planes:

a. Perpendicular to the line x
y
z

=

 2
−1

3

+ t

 2
1
3

.

b. Perpendicular to the line x
y
z

=

 1
0

−1

+ t

 3
0
2

.

c. Containing the origin.

d. Containing P(3, 2, −4).

e. Containing P(1, 1, −1) and Q(0, 1, 1).

f. Containing P(2, −1, 1) and Q(1, 0, 0).

g. Containing the line x
y
z

=

 2
1
0

+ t

 1
−1

0

.

h. Containing the line x
y
z

=

 3
0
2

+ t

 1
−2
−1

.

b. 3x+2z = d, d arbitrary

d. a(x−3)+b(y−2)+c(z+4) = 0; a, b, and c not
all zero

f. ax+by+(b−a)z = a; a and b not both zero

h. ax+by+(a−2b)z = 5a−4b; a and b not both
zero

Exercise 4.2.22 If a plane contains two distinct
points P1 and P2, show that it contains every point
on the line through P1 and P2.

Exercise 4.2.23 Find the shortest distance be-
tween the following pairs of parallel lines.

a.

 x
y
z

=

 2
−1

3

+ t

 1
−1

4

 ; x
y
z

=

 1
0
1

+ t

 1
−1

4



b.

 x
y
z

=

 3
0
2

+ t

 3
1
0

 ; x
y
z

=

 −1
2
2

+ t

 3
1
0



b.
√

10

Exercise 4.2.24 Find the shortest distance be-
tween the following pairs of nonparallel lines and find
the points on the lines that are closest together.

a.

 x
y
z

=

 3
0
1

+ s

 2
1

−3

 ; x
y
z

=

 1
1

−1

+ t

 1
0
1



b.

 x
y
z

=

 1
−1

0

+ s

 1
1
1

 ; x
y
z

=

 2
−1

3

+ t

 3
1
0



c.

 x
y
z

=

 3
1

−1

+ s

 1
1

−1

 ; x
y
z

=

 1
2
0

+ t

 1
0
2


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d.

 x
y
z

=

 1
2
3

+ s

 2
0

−1

 ; x
y
z

=

 3
−1

0

+ t

 1
1
0



b.
√

14
2 , A(3, 1, 2), B(7

2 , −1
2 , 3)

d.
√

6
6 , A(19

3 , 2, 1
3), B(37

6 , 13
6 , 0)

Exercise 4.2.25 Show that two lines in the plane
with slopes m1 and m2 are perpendicular if and only
if
m1m2 =−1. [Hint: Example 4.1.11.]

Exercise 4.2.26

a. Show that, of the four diagonals of a cube, no
pair is perpendicular.

b. Show that each diagonal is perpendicular to
the face diagonals it does not meet.

b. Consider the diagonal d =

 a
a
a

 The six

face diagonals in question are ±

 a
0

−a

,

±

 0
a

−a

, ±

 a
−a

0

. All of these are orthog-

onal to d. The result works for the other di-
agonals by symmetry.

Exercise 4.2.27 Given a rectangular solid with
sides of lengths 1, 1, and

√
2, find the angle between

a diagonal and one of the longest sides.

Exercise 4.2.28 Consider a rectangular solid with
sides of lengths a, b, and c. Show that it has two or-
thogonal diagonals if and only if the sum of two of a2,
b2, and c2 equals the third.
The four diagonals are (a, b, c), (−a, b, c), (a, −b, c)
and (a, b, −c) or their negatives. The dot products

are ±(−a2+b2+c2), ±(a2−b2+c2), and ±(a2+b2−
c2).

Exercise 4.2.29 Let A, B, and C(2, −1, 1) be the

vertices of a triangle where −→
AB is parallel to

 1
−1

1

,

−→
AC is parallel to

 2
0

−1

, and angle C = 90◦ . Find

the equation of the line through B and C.

Exercise 4.2.30 If the diagonals of a parallelogram
have equal length, show that the parallelogram is a
rectangle.

Exercise 4.2.31 Given v =

 x
y
z

 in component

form, show that the projections of v on i, j, and k
are xi, yj, and zk, respectively.

Exercise 4.2.32

a. Can u ·v=−7 if ‖u‖= 3 and ‖v‖= 2? Defend
your answer.

b. Find u · v if u =

 2
−1

2

, ‖v‖ = 6, and the

angle between u and v is 2π

3 .

Exercise 4.2.33 Show (u+v) · (u−v) = ‖u‖2 −
‖v‖2 for any vectors u and v.

Exercise 4.2.34

a. Show ‖u+v‖2+‖u−v‖2 = 2(‖u‖2+‖v‖2) for
any vectors u and v.

b. What does this say about parallelograms?

b. The sum of the squares of the lengths of the
diagonals equals the sum of the squares of the
lengths of the four sides.

Exercise 4.2.35 Show that if the diagonals of a
parallelogram are perpendicular, it is necessarily a
rhombus. [Hint: Example 4.2.5.]

Exercise 4.2.36 Let A and B be the end points of
a diameter of a circle (see the diagram). If C is any
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point on the circle, show that AC and BC are per-
pendicular. [Hint: Express −→

AB · (−→AB×−→
AC) = 0 and

−→
BC in terms of u =

−→
OA and v =

−→
OC, where O is the

centre.]

O
A B

C

Exercise 4.2.37 Show that u and v are orthogo-
nal, if and only if ‖u+v‖2 = ‖u‖2 +‖v‖2.

Exercise 4.2.38 Let u, v, and w be pairwise or-
thogonal vectors.

a. Show that ‖u+v+w‖2 = ‖u‖2+‖v‖2+‖w‖2.

b. If u, v, and w are all the same length, show
that they all make the same angle with u+
v+w.

b. The angle θ between u and (u+v+w) is given
by cosθ = u·(u+v+w)

‖u‖‖u+v+w‖ =
‖u‖√

‖u‖2+‖v‖2+‖w‖2 =
1√
3

because ‖u‖ = ‖v‖ = ‖w‖. Similar remarks
apply to the other angles.

Exercise 4.2.39

a. Show that n =

[
a
b

]
is orthogonal to every

vector along the line ax+by+ c = 0.

b. Show that the shortest distance from P0(x0, y0)

to the line is |ax0+by0+c|√
a2+b2 . [Hint: If P1 is on the

line, project u =
−→
P1P0 on n.]

b. Let p0, p1 be the vectors of P0, P1, so u =
p0 −p1. Then u ·n = p0 ·n – p1 ·n = (ax0 +
by0)− (ax1 + by1) = ax0 + by0 + c. Hence the
distance is ∥∥∥( u·n

‖n‖2

)
n
∥∥∥= |u·n|

‖n‖

as required.

Exercise 4.2.40 Assume u and v are nonzero vec-
tors that are not parallel. Show that w = ‖u‖v+
‖v‖u is a nonzero vector that bisects the angle be-
tween u and v.

Exercise 4.2.41 Let α, β , and γ be the angles a
vector v 6= 0 makes with the positive x, y, and z axes,
respectively. Then cosα, cosβ , and cosγ are called
the direction cosines of the vector v.

a. If v =

 a
b
c

, show that cosα = a
‖v‖ , cosβ =

b
‖v‖ , and cosγ = c

‖v‖ .

b. Show that cos2 α + cos2 β + cos2 γ = 1.

b. This follows from (a) because ‖v‖2 = a2+b2+
c2.

Exercise 4.2.42 Let v 6= 0 be any nonzero vec-
tor and suppose that a vector u can be written as
u=p+q, where p is parallel to v and q is orthogonal
to v. Show that p must equal the projection of u on
v. [Hint: Argue as in the proof of Theorem 4.2.4.]

Exercise 4.2.43 Let v 6= 0 be a nonzero vector
and let a 6= 0 be a scalar. If u is any vector, show
that the projection of u on v equals the projection
of u on av.

Exercise 4.2.44

a. Show that the Cauchy-Schwarz inequality
|u ·v| ≤ ‖u‖‖v‖ holds for all vectors u and v.
[Hint: |cosθ | ≤ 1 for all angles θ .]

b. Show that |u ·v|= ‖u‖‖v‖ if and only if u and
v are parallel. [Hint: When is cosθ =±1?]

c. Show that |x1x2 + y1y2 + z1z2|
≤
√

x2
1 + y2

1 + z2
1

√
x2

2 + y2
2 + z2

2 holds for all num-
bers x1, x2, y1, y2, z1, and z2.

d. Show that |xy+ yz+ zx| ≤ x2 + y2 + z2 for all x,
y, and z.
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e. Show that (x+ y+ z)2 ≤ 3(x2 + y2 + z2) holds
for all x, y, and z.

d. Take

 x1
y1
z1

=

 x
y
z

 and

 x2
y2
z2

=

 y
z
x

 in

(c).

Exercise 4.2.45 Prove that the triangle inequal-
ity ‖u+v‖ ≤ ‖u‖+‖v‖ holds for all vectors u and
v. [Hint: Consider the triangle with u and v as two
sides.]
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4.3 More on the Cross Product

The cross product v×w of two R3-vectors v =

 x1
y1
z1

 and w =

 x2
y2
z2

 was defined in Section 4.2

where we observed that it can be best remembered using a determinant:

v×w = det

 i x1 x2
j y1 y2
k z1 z2

=

∣∣∣∣ y1 y2
z1 z2

∣∣∣∣ i− ∣∣∣∣ x1 x2
z1 z2

∣∣∣∣ j+ ∣∣∣∣ x1 x2
y1 y2

∣∣∣∣k (4.3)

Here i =

 1
0
0

, j =

 0
1
0

, and k =

 1
0
0

 are the coordinate vectors, and the determinant is

expanded along the first column. We observed (but did not prove) in Theorem 4.2.5 that v×w is
orthogonal to both v and w. This follows easily from the next result.

Theorem 4.3.1

If u =

 x0
y0
z0

, v =

 x1
y1
z1

, and w =

 x2
y2
z2

, then u · (v×w) = det

 x0 x1 x2
y0 y1 y2
z0 z1 z2

.

Proof. Recall that u ·(v×w) is computed by multiplying corresponding components of u and v×w
and then adding. Using equation (4.3), the result is:

u · (v×w) = x0

(∣∣∣∣ y1 y2
z1 z2

∣∣∣∣)+ y0

(
−
∣∣∣∣ x1 x2

z1 z2

∣∣∣∣)+ z0

(∣∣∣∣ x1 x2
y1 y2

∣∣∣∣)= det

 x0 x1 x2
y0 y1 y2
z0 z1 z2


where the last determinant is expanded along column 1.

The result in Theorem 4.3.1 can be succinctly stated as follows: If u, v, and w are three vectors
in R3, then

u · (v×w) = det
[

u v w
]

where
[

u v w
]

denotes the matrix with u, v, and w as its columns. Now it is clear that v×w
is orthogonal to both v and w because the determinant of a matrix is zero if two columns are
identical.

Because of (4.3) and Theorem 4.3.1, several of the following properties of the cross product
follow from properties of determinants (they can also be verified directly).

Theorem 4.3.2
Let u, v, and w denote arbitrary vectors in R3.
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1. u×v is a vector.

2. u×v is orthogonal to both u and v.

3. u×0 = 0 = 0×u.

4. u×u = 0.

5. u×v =−(v×u).

6. (ku)×v = k(u×v) = u× (kv) for any
scalar k.

7. u× (v+w) = (u×v)+(u×w).

8. (v+w)×u = (v×u)+(w×u).

Proof. (1) is clear; (2) follows from Theorem 4.3.1; and (3) and (4) follow because the determinant
of a matrix is zero if one column is zero or if two columns are identical. If two columns are
interchanged, the determinant changes sign, and this proves (5). The proofs of (6), (7), and (8) are
left as Exercise 4.3.15.

We now come to a fundamental relationship between the dot and cross products.

Theorem 4.3.3: Lagrange Identity12

If u and v are any two vectors in R3, then

‖u×v‖2 = ‖u‖2‖v‖2 − (u ·v)2

Proof. Given u and v, introduce a coordinate system and write u =

 x1
y1
z1

 and v =

 x2
y2
z2

 in

component form. Then all the terms in the identity can be computed in terms of the components.
The detailed proof is left as Exercise 4.3.14.

An expression for the magnitude of the vector u×v can be easily obtained from the Lagrange
identity. If θ is the angle between u and v, substituting u ·v = ‖u‖‖v‖cosθ into the Lagrange
identity gives

‖u×v‖2 = ‖u‖2‖v‖2 −‖u‖2‖v‖2 cos2
θ = ‖u‖2‖v‖2 sin2

θ

using the fact that 1− cos2 θ = sin2
θ . But sinθ is nonnegative on the range 0 ≤ θ ≤ π, so taking

the positive square root of both sides gives

‖u×v‖= ‖u‖‖v‖sinθ

12Joseph Louis Lagrange (1736–1813) was born in Italy and spent his early years in Turin. At the age of 19 he
solved a famous problem by inventing an entirely new method, known today as the calculus of variations, and went
on to become one of the greatest mathematicians of all time. His work brought a new level of rigour to analysis and
his Mécanique Analytique is a masterpiece in which he introduced methods still in use. In 1766 he was appointed to
the Berlin Academy by Frederik the Great who asserted that the “greatest mathematician in Europe” should be at
the court of the “greatest king in Europe.” After the death of Frederick, Lagrange went to Paris at the invitation of
Louis XVI. He remained there throughout the revolution and was made a count by Napoleon.
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u

v

‖u‖sinθ

θ

Figure 4.3.1

This expression for ‖u×v‖ makes no reference to a coordi-
nate system and, moreover, it has a nice geometrical interpreta-
tion. The parallelogram determined by the vectors u and v has
base length ‖v‖ and altitude ‖u‖sinθ (see Figure 4.3.1). Hence
the area of the parallelogram formed by u and v is

(‖u‖sinθ)‖v‖= ‖u×v‖

This proves the first part of Theorem 4.3.4.

Theorem 4.3.4
If u and v are two nonzero vectors and θ is the angle between u and v, then

1. ‖u×v‖= ‖u‖‖v‖sinθ = the area of the parallelogram determined by u and v.

2. u and v are parallel if and only if u×v = 0.

Proof of (2). By (1), u×v = 0 if and only if the area of the parallelogram is zero. By Figure 4.3.1
the area vanishes if and only if u and v have the same or opposite direction—that is, if and only if
they are parallel.

Example 4.3.1

P

Q

R

Find the area of the triangle with vertices P(2, 1, 0),
Q(3, −1, 1), and R(1, 0, 1).

Solution. We have −→
RP =

 1
1

−1

 and −→
RQ =

 2
−1

0

. The

area of the triangle is half the area of the parallelogram (see
the diagram), and so equals 1

2‖
−→
RP×−→

RQ‖. We have

−→
RP×−→

RQ = det

 i 1 2
j 1 −1
k −1 0

=

 −1
−2
−3


so the area of the triangle is 1

2‖
−→
RP×−→

RQ‖= 1
2

√
1+4+9 = 1

2

√
14.

v

u×v

h
w

u

Figure 4.3.2

If three vectors u, v, and w are given, they determine a “squashed”
rectangular solid called a parallelepiped (Figure 4.3.2), and it is
often useful to be able to find the volume of such a solid. The base of
the solid is the parallelogram determined by u and v, so it has area
A = ‖u×v‖ by Theorem 4.3.4. The height of the solid is the length
h of the projection of w on u×v. Hence

h =
∣∣∣w·(u×v)
‖u×v‖2

∣∣∣‖u×v‖= |w·(u×v)|
‖u×v‖ = |w·(u×v)|

A
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Thus the volume of the parallelepiped is hA = |w · (u×v)|. This proves

Theorem 4.3.5
The volume of the parallelepiped determined by three vectors w, u, and v (Figure 4.3.2) is
given by |w · (u×v)|.

Example 4.3.2

Find the volume of the parallelepiped determined by the vectors

w =

 1
2

−1

 , u =

 1
1
0

 , v =

 −2
0
1



Solution. By Theorem 4.3.1, w · (u×v) = det

 1 1 −2
2 1 0

−1 0 1

=−3. Hence the volume is

|w · (u×v)|= |−3|= 3 by Theorem 4.3.5.

y

z
x

O

Left-hand system

y

z

x
O

Right-hand system

Figure 4.3.3

We can now give an intrinsic description of the cross product u×v.
Its magnitude ‖u×v‖= ‖u‖‖v‖sinθ is coordinate-free. If u×v 6= 0,
its direction is very nearly determined by the fact that it is orthogonal
to both u and v and so points along the line normal to the plane
determined by u and v. It remains only to decide which of the two
possible directions is correct.

Before this can be done, the basic issue of how coordinates are as-
signed must be clarified. When coordinate axes are chosen in space,
the procedure is as follows: An origin is selected, two perpendicular
lines (the x and y axes) are chosen through the origin, and a positive
direction on each of these axes is selected quite arbitrarily. Then the
line through the origin normal to this x-y plane is called the z axis,
but there is a choice of which direction on this axis is the positive one.
The two possibilities are shown in Figure 4.3.3, and it is a standard
convention that cartesian coordinates are always right-hand coor-

dinate systems. The reason for this terminology is that, in such a system, if the z axis is grasped
in the right hand with the thumb pointing in the positive z direction, then the fingers curl around
from the positive x axis to the positive y axis (through a right angle).

Suppose now that u and v are given and that θ is the angle between them (so 0 ≤ θ ≤ π). Then
the direction of ‖u×v‖ is given by the right-hand rule.



248 Vector Geometry

Right-hand Rule

If the vector u×v is grasped in the right hand and the fingers curl around from u to v
through the angle θ , the thumb points in the direction for u×v.

vθ

c
O

a
b

u

x

y

z

Figure 4.3.4

To indicate why this is true, introduce coordinates in R3 as follows:
Let u and v have a common tail O, choose the origin at O, choose the
x axis so that u points in the positive x direction, and then choose
the y axis so that v is in the x-y plane and the positive y axis is on
the same side of the x axis as v. Then, in this system, u and v have

component form u =

 a
0
0

 and v =

 b
c
0

 where a > 0 and c > 0.

The situation is depicted in Figure 4.3.4. The right-hand rule asserts
that u×v should point in the positive z direction. But our definition
of u×v gives

u×v = det

 i a b
j 0 c
k 0 0

=

 0
0
ac

= (ac)k

and (ac)k has the positive z direction because ac > 0.

Exercises for 4.3

Exercise 4.3.1 If i, j, and k are the coordinate
vectors, verify that i× j = k, j×k = i, and k× i = j.
Exercise 4.3.2 Show that u× (v×w) need not
equal (u×v)×w by calculating both when

u =

 1
1
1

 , v =

 1
1
0

 , and w =

 0
0
1


Exercise 4.3.3 Find two unit vectors orthogonal
to both u and v if:

a. u =

 1
2
2

, v =

 2
−1

2



b. u =

 1
2

−1

, v =

 3
1
2



b. ±
√

3
3

 1
−1
−1

.

Exercise 4.3.4 Find the area of the triangle with
the following vertices.

a. A(3, −1, 2), B(1, 1, 0), and C(1, 2, −1)

b. A(3, 0, 1), B(5, 1, 0), and C(7, 2, −1)

c. A(1, 1, −1), B(2, 0, 1), and C(1, −1, 3)

d. A(3, −1, 1), B(4, 1, 0), and C(2, −3, 0)

b. 0

d.
√

5
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Exercise 4.3.5 Find the volume of the paral-
lelepiped determined by w, u, and v when:

a. w =

 2
1
1

, v =

 1
0
2

, and u =

 2
1

−1



b. w =

 1
0
3

, v =

 2
1

−3

, and u =

 1
1
1



b. 7

Exercise 4.3.6 Let P0 be a point with vector p0,
and let ax+ by+ cz = d be the equation of a plane

with normal n =

 a
b
c

.

a. Show that the point on the plane closest to P0
has vector p given by

p = p0 +
d−(p0·n)

‖n‖2 n.

[Hint: p = p0 + tn for some t, and p ·n = d.]

b. Show that the shortest distance from P0 to the
plane is |d−(p0·n)|

‖n‖ .

c. Let P′
0 denote the reflection of P0 in the plane—

that is, the point on the opposite side of the
plane such that the line through P0 and P′

0
is perpendicular to the plane. Show that
p0 +2 d−(p0·n)

‖n‖2 n is the vector of P′
0.

b. The distance is ‖p−p0‖; use part (a.).

Exercise 4.3.7 Simplify (au+bv)× (cu+dv).

Exercise 4.3.8 Show that the shortest distance
from a point P to the line through P0 with direction
vector d is ‖−→P0P×d‖

‖d‖ .

Exercise 4.3.9 Let u and v be nonzero, nonorthog-
onal vectors. If θ is the angle between them, show
that tanθ = ‖u×v‖

u·v .

Exercise 4.3.10 Show that points A, B, and
C are all on one line if and only if −→

AB ×−→
AC = 0

‖−→AB ×−→
AC‖ is the area of the parallelogram deter-

mined by A, B, and C.

Exercise 4.3.11 Show that points A, B, C, and D
are all on one plane if and only if −→AB · (−→AB×−→

AC) = 0

Exercise 4.3.12 Use Theorem 4.3.5 to confirm
that, if u, v, and w are mutually perpendicular, the
(rectangular) parallelepiped they determine has vol-
ume ‖u‖‖v‖‖w‖.
Because u and v×w are parallel, the angle θ be-
tween them is 0 or π. Hence cos(θ) = ±1, so
the volume is |u · (v × w)| = ‖u‖‖v × w‖cos(θ) =
‖u‖‖(v×w)‖. But the angle between v and w is
π

2 so ‖v×w‖ = ‖v‖‖w‖cos(π

2 ) = ‖v‖‖w‖. The re-
sult follows.

Exercise 4.3.13 Show that the volume of the
parallelepiped determined by u, v, and u × v is
‖u×v‖2.

Exercise 4.3.14 Complete the proof of Theo-
rem 4.3.3.

Exercise 4.3.15 Prove the following properties in
Theorem 4.3.2.

Property 6a) Property 7b)
Property 8c)

b. If u =

 u1
u2
u3

, v =

 v1
v2
v3

 and w =

 w1
w2
w3

,

then u× (v+w) = det

 i u1 v1 +w1
j u2 v2 +w2
k u3 v3 +w3


= det

 i u1 v1
j u2 v2
k u3 v3

+ det

 i u1 w1
j u2 w2
k u3 w3


= (u×v)+ (u×w) where we used Exercise
4.3.21.

Exercise 4.3.16

a. Show that w · (u×v) = u · (v×w) = v× (w×
u) holds for all vectors w, u, and v.
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b. Show that v−w and (u×v)+(v×w)+(w×
u) are orthogonal.

b. (v−w) · [(u×v)+ (v×w)+ (w×u)] = (v−
w) · (u×v)+(v−w) · (v×w)+(v−w) · (w×
u) =−w · (u×v)+0+v · (w×u) = 0.

Exercise 4.3.17 Show u× (v×w) = (u ·w)v−
(u×v)w. [Hint: First do it for u = i, j, and k; then
write u = xi+ yj+ zk and use Theorem 4.3.2.]

Exercise 4.3.18 Prove the Jacobi identity:

u× (v×w)+v× (w×u)+w× (u×v) = 0

[Hint: The preceding exercise.]

Exercise 4.3.19 Show that

(u×v) · (w×z) = det
[

u ·w u ·z
v ·w v ·z

]
[Hint: Exercises 4.3.16 and 4.3.17.]

Exercise 4.3.20 Let P, Q, R, and S be four points,
not all on one plane, as in the diagram. Show that
the volume of the pyramid they determine is

1
6 |
−→
PQ · (−→PR×−→

PS)|.

[Hint: The volume of a cone with base area A and
height h as in the diagram below right is 1

3 Ah.]

P

Q

R

S

h

Exercise 4.3.21 Consider a triangle with vertices
A, B, and C, as in the diagram below. Let α, β , and
γ denote the angles at A, B, and C, respectively, and
let a, b, and c denote the lengths of the sides oppo-
site A, B, and C, respectively. Write u =

−→
AB, v =

−→
BC,

and w =
−→
CA.

c a

bα

β

γ
A

B

C

a. Deduce that u+v+w = 0.

b. Show that u×v=w×u=v×w. [Hint: Com-
pute u× (u+v+w) and v× (u+v+w).]

c. Deduce the law of sines:

sinα

a = sinβ

b = sinγ

c

Exercise 4.3.22 Show that the (shortest) distance
between two planes n ·p = d1 and n ·p = d2 with n
as normal is |d2−d1|

‖n‖ .
Let p1 and p2 be vectors of points in the planes,
so p1 ·n = d1 and p2 ·n = d2. The distance is the
length of the projection of p2 −p1 along n; that is
|(p2−p1)·n|

‖n‖ = |d1−d2|
‖n‖ .

Exercise 4.3.23 Let A and B be points other than
the origin, and let a and b be their vectors. If a and
b are not parallel, show that the plane through A,
B, and the origin is given by

{P(x, y, z) |

 x
y
z

= sa+ tb for some s and t}

Exercise 4.3.24 Let A be a 2×3 matrix of rank 2
with rows r1 and r2. Show that

P = {XA | X = [xy];x, y arbitrary}

is the plane through the origin with normal r1×r2.

Exercise 4.3.25 Given the cube with vertices
P(x, y, z), where each of x, y, and z is either 0 or
2, consider the plane perpendicular to the diagonal
through P(0, 0, 0) and P(2, 2, 2) and bisecting it.

a. Show that the plane meets six of the edges of
the cube and bisects them.

b. Show that the six points in (a) are the vertices
of a regular hexagon.
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4.4 Linear Operators on R3

Recall that a transformation T : Rn → Rm is called linear if T (x+y) = T (x)+T (y) and T (ax) =
aT (x) holds for all x and y in Rn and all scalars a. In this case we showed (in Theorem 2.6.2) that
there exists an m×n matrix A such that T (x) = Ax for all x in Rn, and we say that T is the matrix
transformation induced by A.

Definition 4.9 Linear Operator on Rn

A linear transformation
T : Rn → Rn

is called a linear operator on Rn.

In Section 2.6 we investigated three important linear operators on R2: rotations about the origin,
reflections in a line through the origin, and projections on this line.

In this section we investigate the analogous operators on R3: Rotations about a line through
the origin, reflections in a plane through the origin, and projections onto a plane or line through
the origin in R3. In every case we show that the operator is linear, and we find the matrices of all
the reflections and projections.

To do this we must prove that these reflections, projections, and rotations are actually linear
operators on R3. In the case of reflections and rotations, it is convenient to examine a more general
situation. A transformation T : R3 →R3 is said to be distance preserving if the distance between
T (v) and T (w) is the same as the distance between v and w for all v and w in R3; that is,

‖T (v)−T (w)‖= ‖v−w‖ for all v and w in R3 (4.4)

Clearly reflections and rotations are distance preserving, and both carry 0 to 0, so the following
theorem shows that they are both linear.

Theorem 4.4.1
If T : R3 → R3 is distance preserving, and if T (0) = 0, then T is linear.

w

v+wv

T (w)

T (v+w)

T (v)

x

y

z

Figure 4.4.1

Proof. Since T (0)= 0, taking w= 0 in (4.4) shows that ‖T (v)‖= ‖v‖
for all v in R3, that is T preserves length. Also, ‖T (v)−T (w)‖2 =
‖v−w‖2 by (4.4). Since ‖v−w‖2 = ‖v‖2 − 2v ·w+ ‖w‖2 always
holds, it follows that T (v) ·T (w) = v ·w for all v and w. Hence (by
Theorem 4.2.2) the angle between T (v) and T (w) is the same as the
angle between v and w for all (nonzero) vectors v and w in R3.

With this we can show that T is linear. Given nonzero vectors v
and w in R3, the vector v+w is the diagonal of the parallelogram
determined by v and w. By the preceding paragraph, the effect of T
is to carry this entire parallelogram to the parallelogram determined
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by T (v) and T (w), with diagonal T (v+w). But this diagonal is
T (v)+T (w) by the parallelogram law (see Figure 4.4.1).

In other words, T (v+w) = T (v)+T (w). A similar argument shows that T (av) = aT (v) for all
scalars a, proving that T is indeed linear.

Distance-preserving linear operators are called isometries, and we return to them in Section ??.

Reflections and Projections

In Section 2.6 we studied the reflection Qm : R2 →R2 in the line y = mx and projection Pm : R2 →R2

on the same line. We found (in Theorems 2.6.5 and 2.6.6) that they are both linear and

Qm has matrix 1
1+m2

[
1−m2 2m

2m m2 −1

]
and Pm has matrix 1

1+m2

[
1 m
m m2

]
.

L
PL(v)

0

v

QL(v)

Figure 4.4.2

We now look at the analogues in R3.
Let L denote a line through the origin in R3. Given a vector v in

R3, the reflection QL(v) of v in L and the projection PL(v) of v on L
are defined in Figure 4.4.2. In the same figure, we see that

PL(v) = v+ 1
2 [QL(v)−v] = 1

2 [QL(v)+v] (4.5)

so the fact that QL is linear (by Theorem 4.4.1) shows that PL is also linear.13

However, Theorem 4.2.4 gives us the matrix of PL directly. In fact, if d=

 a
b
c

 6= 0 is a direction

vector for L, and we write v =

 x
y
z

, then

PL(v) = v·d
‖d‖2 d = ax+by+cz

a2+b2+c2

 a
b
c

= 1
a2+b2+c2

 a2 ab ac
ab b2 bc
ac bc c2

 x
y
z


as the reader can verify. Note that this shows directly that PL is a matrix transformation and so
gives another proof that it is linear.

Theorem 4.4.2

Let L denote the line through the origin in R3 with direction vector d =

 a
b
c

 6= 0. Then

13Note that Theorem 4.4.1 does not apply to PL since it does not preserve distance.
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PL and QL are both linear and

PL has matrix 1
a2+b2+c2

 a2 ab ac
ab b2 bc
ac bc c2



QL has matrix 1
a2+b2+c2

 a2 −b2 − c2 2ab 2ac
2ab b2 −a2 − c2 2bc
2ac 2bc c2 −a2 −b2



Proof. It remains to find the matrix of QL. But (4.5) implies that QL(v) = 2PL(v)−v for each v

in R3, so if v =

 x
y
z

 we obtain (with some matrix arithmetic):

QL(v) =

 2
a2+b2+c2

 a2 ab ac
ab b2 bc
ac bc c2

−
 1 0 0

0 1 0
0 0 1


 x

y
z


= 1

a2+b2+c2

 a2 −b2 − c2 2ab 2ac
2ab b2 −a2 − c2 2bc
2ac 2bc c2 −a2 −b2

 x
y
z


as required.

M

v

O PM(v)

QM(v)

Figure 4.4.3

In R3 we can reflect in planes as well as lines. Let M denote a
plane through the origin in R3. Given a vector v in R3, the reflection
QM(v) of v in M and the projection PM(v) of v on M are defined in
Figure 4.4.3. As above, we have

PM(v) = v+ 1
2 [QM(v)−v] = 1

2 [QM(v)+v]

so the fact that QM is linear (again by Theorem 4.4.1) shows that PM
is also linear.

Again we can obtain the matrix directly. If n is a normal for the plane M, then Figure 4.4.3
shows that

PM(v) = v− projn v = v− v·n
‖n‖2 n for all vectors v.

If n =

 a
b
c

 6= 0 and v =

 x
y
z

, a computation like the above gives

PM(v) =

 1 0 0
0 1 0
0 0 1

 x
y
z

− ax+by+cz
a2+b2+c2

 a
b
c


= 1

a2+b2+c2

 b2 + c2 −ab −ac
−ab a2 + c2 −bc
−ac −bc b2 + c2

 x
y
z


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This proves the first part of

Theorem 4.4.3

Let M denote the plane through the origin in R3 with normal n =

 a
b
c

 6= 0. Then PM and

QM are both linear and

PM has matrix 1
a2+b2+c2

 b2 + c2 −ab −ac
−ab a2 + c2 −bc
−ac −bc a2 +b2



QM has matrix 1
a2+b2+c2

 b2 + c2 −a2 −2ab −2ac
−2ab a2 + c2 −b2 −2bc
−2ac −2bc a2 +b2 − c2


Proof. It remains to compute the matrix of QM. Since QM(v) = 2PM(v)−v for each v in R3, the
computation is similar to the above and is left as an exercise for the reader.

Rotations

In Section 2.6 we studied the rotation Rθ : R2 → R2 counterclockwise about the origin through the
angle θ . Moreover, we showed in Theorem 2.6.4 that Rθ is linear and has matrix

[
cosθ −sinθ

sinθ cosθ

]
.

One extension of this is given in the following example.

Example 4.4.1

Let Rz, θ : R3 → R3 denote rotation of R3 about the z axis through an angle θ from the
positive x axis toward the positive y axis. Show that Rz, θ is linear and find its matrix.

θ

θ

i
j

k

Rz(i)

Rz(j)

x

y

z

Figure 4.4.4

Solution. First R is distance preserving and so is linear
by Theorem 4.4.1. Hence we apply Theorem 2.6.2 to obtain
the matrix of Rz, θ .

Let i =

 1
0
0

, j =

 0
1
0

, and k =

 0
0
1

 denote the standard

basis of R3; we must find Rz, θ (i), Rz, θ (j), and Rz, θ (k).
Clearly Rz, θ (k) = k. The effect of Rz, θ on the x-y plane
is to rotate it counterclockwise through the angle θ . Hence
Figure 4.4.4 gives

Rz, θ (i) =

 cosθ

sinθ

0

 , Rz, θ (j) =

 −sinθ

cosθ

0


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so, by Theorem 2.6.2, Rz, θ has matrix

[
Rz, θ (i) Rz, θ (j) Rz, θ (k)

]
=

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1



Example 4.4.1 begs to be generalized. Given a line L through the origin in R3, every rotation
about L through a fixed angle is clearly distance preserving, and so is a linear operator by Theo-
rem 4.4.1. However, giving a precise description of the matrix of this rotation is not easy and will
have to wait until more techniques are available.

Transformations of Areas and Volumes

Origin

sv

v

Figure 4.4.5

Let v be a nonzero vector in R3. Each vector in the same direction
as v whose length is a fraction s of the length of v has the form sv
(see Figure 4.4.5).

With this, scrutiny of Figure 4.4.6 shows that a vector u is in the
parallelogram determined by v and w if and only if it has the form
u = sv+ tw where 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1. But then, if T : R3 → R3

is a linear transformation, we have

T (sv+ tw) = T (sv)+T (tw) = sT (v)+ tT (w)

O

sv
v

sv+
tw

tw w

Figure 4.4.6

Hence T (sv+ tw) is in the parallelogram determined by T (v) and
T (w). Conversely, every vector in this parallelogram has the form
T (sv+ tw) where sv+ tw is in the parallelogram determined by v
and w. For this reason, the parallelogram determined by T (v) and
T (w) is called the image of the parallelogram determined by v and
w. We record this discussion as:

v

w
u

O

T (v)

T (w)

T (u)

O

Figure 4.4.7

Theorem 4.4.4
If T : R3 → R3 (or R2 → R2) is a linear operator, the image of
the parallelogram determined by vectors v and w is the
parallelogram determined by T (v) and T (w).

This result is illustrated in Figure 4.4.7, and was used in Exam-
ples 2.2.15 and 2.2.16 to reveal the effect of expansion and shear
transformations.

We now describe the effect of a linear transformation T : R3 →R3

on the parallelepiped determined by three vectors u, v, and w in
R3 (see the discussion preceding Theorem 4.3.5). If T has matrix A,
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Theorem 4.4.4 shows that this parallelepiped is carried to the paral-
lelepiped determined by T (u) = Au, T (v) = Av, and T (w) = Aw. In
particular, we want to discover how the volume changes, and it turns

out to be closely related to the determinant of the matrix A.

Theorem 4.4.5
Let vol (u, v, w) denote the volume of the parallelepiped determined by three vectors u, v,
and w in R3, and let area (p, q) denote the area of the parallelogram determined by two
vectors p and q in R2. Then:

1. If A is a 3×3 matrix, then vol (Au, Av, Aw) = | det (A)| · vol (u, v, w).

2. If A is a 2×2 matrix, then area (Ap, Aq) = | det (A)| · area (p, q).

Proof.

1. Let
[

u v w
]

denote the 3×3 matrix with columns u, v, and w. Then

vol (Au, Av, Aw) = |Au · (Av×Aw)|

by Theorem 4.3.5. Now apply Theorem 4.3.1 twice to get

Au · (Av×Aw) = det
[

Au Av Aw
]
= det (A

[
u v w

]
)

= det (A) det
[

u v w
]

= det (A)(u · (v×w))

where we used Definition 2.9 and the product theorem for determinants. Finally (1) follows
from Theorem 4.3.5 by taking absolute values.

k

p1

q1 2. Given p =

[
x
y

]
in R2, p1 =

 x
y
0

 in R3. By the diagram,

area (p, q) = vol (p1, q1, k) where k is the (length 1) coor-
dinate vector along the z axis. If A is a 2× 2 matrix, write
A1 =

[
A 0
0 1

]
in block form, and observe that (Av)1 = (A1v1)

for all v in R2 and A1k = k. Hence part (1) of this theorem
shows

area (Ap, Aq) = vol (A1p1, A1q1, A1k)
= | det (A1)| vol (p1, q1, k)
= | det (A)| area (p, q)

as required.
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Define the unit square and unit cube to be the square and cube corresponding to the coor-
dinate vectors in R2 and R3, respectively. Then Theorem 4.4.5 gives a geometrical meaning to the
determinant of a matrix A:

• If A is a 2 × 2 matrix, then | det (A)| is the area of the image of the unit square under
multiplication by A;

• If A is a 3× 3 matrix, then | det (A)| is the volume of the image of the unit cube under
multiplication by A.

These results, together with the importance of areas and volumes in geometry, were among the
reasons for the initial development of determinants.

Exercises for 4.4

Exercise 4.4.1 In each case show that that T is
either projection on a line, reflection in a line, or ro-
tation through an angle, and find the line or angle.

a. T
[

x
y

]
= 1

5

[
x+2y
2x+4y

]

b. T
[

x
y

]
= 1

2

[
x− y
y− x

]

c. T
[

x
y

]
= 1√

2

[
−x− y
x− y

]

d. T
[

x
y

]
= 1

5

[
−3x+4y
4x+3y

]

e. T
[

x
y

]
=

[
−y
−x

]

f. T
[

x
y

]
= 1

2

[
x−

√
3y√

3x+ y

]

b. A =

[
1 −1

−1 1

]
, projection on y =−x.

d. A = 1
5

[
−3 4

4 3

]
, reflection in y = 2x.

f. A = 1
2

[
1 −

√
3√

3 1

]
, rotation through π

3 .

Exercise 4.4.2 Determine the effect of the follow-
ing transformations.

a. Rotation through π

2 , followed by projection on
the y axis, followed by reflection in the line
y = x.

b. Projection on the line y = x followed by pro-
jection on the line y =−x.

c. Projection on the x axis followed by reflection
in the line y = x.

b. The zero transformation.

Exercise 4.4.3 In each case solve the problem by
finding the matrix of the operator.

a. Find the projection of v =

 1
−2

3

 on the

plane with equation 3x−5y+2z = 0.

b. Find the projection of v =

 0
1

−3

 on the

plane with equation 2x− y+4z = 0.
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c. Find the reflection of v=

 1
−2

3

 in the plane

with equation x− y+3z = 0.

d. Find the reflection of v=

 0
1

−3

 in the plane

with equation 2x+ y−5z = 0.

e. Find the reflection of v =

 2
5

−1

 in the line

with equation

 x
y
z

= t

 1
1

−2

.

f. Find the projection of v =

 1
−1

7

 on the line

with equation

 x
y
z

= t

 3
0
4

.

g. Find the projection of v =

 1
1

−3

 on the line

with equation

 x
y
z

= t

 2
0

−3

.

h. Find the reflection of v =

 2
−5

0

 in the line

with equation

 x
y
z

= t

 1
1

−3

.

b. 1
21

 17 2 −8
2 20 4

−8 4 5

 0
1

−3



d. 1
30

 22 −4 20
−4 28 10
20 10 −20

 0
1

−3



f. 1
25

 9 0 12
0 0 0

12 0 16

 1
−1

7



h. 1
11

 −9 2 −6
2 −9 −6

−6 −6 7

 2
−5

0


Exercise 4.4.4

a. Find the rotation of v =

 2
3

−1

 about the z

axis through θ = π

4 .

b. Find the rotation of v =

 1
0
3

 about the z

axis through θ = π

6 .

b. 1
2

 √
3 −1 0
1

√
3 0

0 0 1

 1
0
3


Exercise 4.4.5 Find the matrix of the rotation in
R3 about the x axis through the angle θ (from the
positive y axis to the positive z axis).

Exercise 4.4.6 Find the matrix of the ro-
tation about the y axis through the angle θ

(from the positive x axis to the positive z axis). cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ


Exercise 4.4.7 If A is 3×3, show that the image
of the line in R3 through p0 with direction vector
d is the line through Ap0 with direction vector Ad,
assuming that Ad 6= 0. What happens if Ad = 0?

Exercise 4.4.8 If A is 3× 3 and invertible, show
that the image of the plane through the origin with
normal n is the plane through the origin with nor-
mal n1 = Bn where B = (A−1)T . [Hint: Use the fact
that v ·w = vT w to show that n1 · (Ap) = n ·p for
each p in R3.]

Exercise 4.4.9 Let L be the line through the origin

in R2 with direction vector d =

[
a
b

]
6= 0.

a. If PL denotes projection on L, show that PL has

matrix 1
a2+b2

[
a2 ab
ab b2

]
.
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b. If QL denotes reflection in L, show that QL has

matrix 1
a2+b2

[
a2 −b2 2ab

2ab b2 −a2

]
.

a. Write v =

[
x
y

]
.

PL(v) =
(

v·d
‖d‖2

)
d = ax+by

a2+b2

[
a
b

]
= 1

a2+b2

[
a2x+aby
abx+b2y

]
= 1

a2+b2

[
a2 +ab
ab+b2

][
x
y

]

Exercise 4.4.10 Let n be a nonzero vector in R3,
let L be the line through the origin with direction
vector n, and let M be the plane through the origin
with normal n. Show that PL(v) = QL(v)+PM(v) for
all v in R3. [In this case, we say that PL = QL+PM.]

Exercise 4.4.11 If M is the plane through the ori-

gin in R3 with normal n =

 a
b
c

, show that QM has

matrix

1
a2+b2+c2

 b2 + c2 −a2 −2ab −2ac
−2ab a2 + c2 −b2 −2bc
−2ac −2bc a2 +b2 − c2


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Supplementary Exercises for Chapter 4

Exercise 4.1 Suppose that u and v are nonzero
vectors. If u and v are not parallel, and au+ bv =
a1u+b1v, show that a = a1 and b = b1.

Exercise 4.2 Consider a triangle with vertices A,
B, and C. Let E and F be the midpoints of sides AB
and AC, respectively, and let the medians EC and FB
meet at O. Write −→

EO = s
−→
EC and −→

FO = t
−→
FB, where s

and t are scalars. Show that s = t = 1
3 by expressing

−→
AO two ways in the form a

−→
EO+ b

−→
AC, and applying

Exercise 4.1. Conclude that the medians of a trian-
gle meet at the point on each that is one-third of
the way from the midpoint to the vertex (and so are
concurrent).

Exercise 4.3 A river flows at 1 km/h and a swim-
mer moves at 2 km/h (relative to the water). At
what angle must he swim to go straight across?
What is his resulting speed?

Exercise 4.4 A wind is blowing from the south at
75 knots, and an airplane flies heading east at 100
knots. Find the resulting velocity of the airplane.

125 knots in a direction θ degrees east of north,
where cosθ = 0.6 (θ = 53◦ or 0.93 radians).

Exercise 4.5 An airplane pilot flies at 300 km/h
in a direction 30◦ south of east. The wind is blowing
from the south at 150 km/h.

a. Find the resulting direction and speed of the
airplane.

b. Find the speed of the airplane if the wind is
from the west (at 150 km/h).

Exercise 4.6 A rescue boat has a top speed of
13 knots. The captain wants to go due east as fast
as possible in water with a current of 5 knots due
south. Find the velocity vector v = (x, y) that she
must achieve, assuming the x and y axes point east
and north, respectively, and find her resulting speed.

(12, 5). Actual speed 12 knots.

Exercise 4.7 A boat goes 12 knots heading north.
The current is 5 knots from the west. In what di-
rection does the boat actually move and at what
speed?

Exercise 4.8 Show that the distance from a point
A (with vector a) to the plane with vector equation
n ·p = d is 1

‖n‖ |n ·a−d|.

Exercise 4.9 If two distinct points lie in a plane,
show that the line through these points is contained
in the plane.
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Exercise 4.10 The line through a vertex of a tri-
angle, perpendicular to the opposite side, is called
an altitude of the triangle. Show that the three
altitudes of any triangle are concurrent. (The inter-
section of the altitudes is called the orthocentre of

the triangle.) [Hint: If P is the intersection of two of
the altitudes, show that the line through P and the
remaining vertex is perpendicular to the remaining
side.]
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5.1 Subspaces and Spanning

In Section 2.2 we introduced the set Rn of all n-tuples (called vectors), and began our investigation of
the matrix transformations Rn →Rm given by matrix multiplication by an m×n matrix. Particular
attention was paid to the euclidean plane R2 where certain simple geometric transformations were
seen to be matrix transformations. Then in Section 2.6 we introduced linear transformations, showed
that they are all matrix transformations, and found the matrices of rotations and reflections in R2.
We returned to this in Section 4.4 where we showed that projections, reflections, and rotations of
R2 and R3 were all linear, and where we related areas and volumes to determinants.

In this chapter we investigate Rn in full generality, and introduce some of the most important
concepts and methods in linear algebra. The n-tuples in Rn will continue to be denoted x, y, and
so on, and will be written as rows or columns depending on the context.

Subspaces of Rn

Definition 5.1 Subspace of Rn

A set1U of vectors in Rn is called a subspace of Rn if it satisfies the following properties:

S1. The zero vector 0 ∈U .

S2. If x ∈U and y ∈U , then x+y ∈U .

S3. If x ∈U , then ax ∈U for every real number a.

We say that the subset U is closed under addition if S2 holds, and that U is closed under
scalar multiplication if S3 holds.

Clearly Rn is a subspace of itself, and this chapter is about these subspaces and their properties.
The set U = {0}, consisting of only the zero vector, is also a subspace because 0+0 = 0 and a0 = 0
for each a in R; it is called the zero subspace. Any subspace of Rn other than {0} or Rn is called
a proper subspace.

y

z

x

n

M

We saw in Section 4.2 that every plane M through the origin in
R3 has equation ax+ by+ cz = 0 where a, b, and c are not all zero.

Here n =

 a
b
c

 is a normal for the plane and

M = {v in R3 | n ·v = 0}

1We use the language of sets. Informally, a set X is a collection of objects, called the elements of the set. The
fact that x is an element of X is denoted x ∈ X . Two sets X and Y are called equal (written X = Y ) if they have the
same elements. If every element of X is in the set Y , we say that X is a subset of Y , and write X ⊆ Y . Hence X ⊆ Y
and Y ⊆ X both hold if and only if X = Y .
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where v =

 x
y
z

 and n · v denotes the dot product introduced in

Section 2.2 (see the diagram).2 Then M is a subspace of R3. Indeed
we show that M satisfies S1, S2, and S3 as follows:

S1. 0 ∈ M because n ·0 = 0;

S2. If v ∈ M and v1 ∈ M , then n · (v+v1) = n ·v+n ·v1 = 0+0 = 0 , so v+v1 ∈ M;

S3. If v ∈ M , then n · (av) = a(n ·v) = a(0) = 0 , so av ∈ M.

This proves the first part of

Example 5.1.1

y

z

x

d
L

Planes and lines through the origin in R3 are all subspaces
of R3.

Solution. We dealt with planes above. If L is a line through
the origin with direction vector d, then L = {td | t ∈ R}
(see the diagram). We leave it as an exercise to verify that L

satisfies S1, S2, and S3.

Example 5.1.1 shows that lines through the origin in R2 are subspaces; in fact, they are the only
proper subspaces of R2 (Exercise 5.1.24). Indeed, we shall see in Example 5.2.14 that lines and
planes through the origin in R3 are the only proper subspaces of R3. Thus the geometry of lines
and planes through the origin is captured by the subspace concept. (Note that every line or plane
is just a translation of one of these.)

Subspaces can also be used to describe important features of an m×n matrix A. The null space
of A, denoted null A, and the image space of A, denoted im A, are defined by

null A = {x ∈ Rn | Ax = 0} and im A = {Ax | x ∈ Rn}

In the language of Chapter 2, null A consists of all solutions x in Rn of the homogeneous system
Ax = 0, and im A is the set of all vectors y in Rm such that Ax = y has a solution x. Note that x is
in null A if it satisfies the condition Ax = 0, while im A consists of vectors of the form Ax for some
x in Rn. These two ways to describe subsets occur frequently.

2We are using set notation here. In general {q | p} means the set of all objects q with property p.
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Example 5.1.2

If A is an m×n matrix, then:

1. null A is a subspace of Rn.

2. im A is a subspace of Rm.

Solution.

1. The zero vector 0 ∈ Rn lies in null A because A0 = 0.3If x and x1 are in null A, then
x+x1 and ax are in null A because they satisfy the required condition:

A(x+x1) = Ax+Ax1 = 0+0 = 0 and A(ax) = a(Ax) = a0 = 0

Hence null A satisfies S1, S2, and S3, and so is a subspace of Rn.

2. The zero vector 0 ∈ Rm lies in im A because 0 = A0. Suppose that y and y1 are in
im A, say y = Ax and y1 = Ax1 where x and x1 are in Rn. Then

y+y1 = Ax+Ax1 = A(x+x1) and ay = a(Ax) = A(ax)

show that y+y1 and ay are both in im A (they have the required form). Hence im A
is a subspace of Rm.

There are other important subspaces associated with a matrix A that clarify basic properties of
A. If A is an n×n matrix and λ is any number, let

Eλ (A) = {x ∈ Rn | Ax = λx}

A vector x is in Eλ (A) if and only if (λ I −A)x = 0, so Example 5.1.2 gives:

Example 5.1.3

Eλ (A) = null (λ I −A) is a subspace of Rn for each n×n matrix A and number λ .

Eλ (A) is called the eigenspace of A corresponding to λ . The reason for the name is that, in the
terminology of Section 3.3, λ is an eigenvalue of A if Eλ (A) 6= {0}. In this case the nonzero vectors
in Eλ (A) are called the eigenvectors of A corresponding to λ .

The reader should not get the impression that every subset of Rn is a subspace. For example:

U1 =

{[
x
y

]∣∣∣∣x ≥ 0
}

satisfies S1 and S2, but not S3;

U2 =

{[
x
y

]∣∣∣∣x2 = y2
}

satisfies S1 and S3, but not S2;

Hence neither U1 nor U2 is a subspace of R2. (However, see Exercise 5.1.20.)
3We are using 0 to represent the zero vector in both Rm and Rn. This abuse of notation is common and causes

no confusion once everybody knows what is going on.
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Spanning Sets

Let v and w be two nonzero, nonparallel vectors in R3 with their tails at the origin. The plane
M through the origin containing these vectors is described in Section 4.2 by saying that n = v×w
is a normal for M, and that M consists of all vectors p such that n ·p = 0.4 While this is a very
useful way to look at planes, there is another approach that is at least as useful in R3 and, more
importantly, works for all subspaces of Rn for any n ≥ 1.

0
v

av

w bw

p

M

The idea is as follows: Observe that, by the diagram, a vector p
is in M if and only if it has the form

p = av+bw

for certain real numbers a and b (we say that p is a linear combination
of v and w). Hence we can describe M as

M = {ax+bw | a, b ∈ R}.5

and we say that {v, w} is a spanning set for M. It is this notion of a spanning set that provides a
way to describe all subspaces of Rn.

As in Section 1.3, given vectors x1, x2, . . . , xk in Rn, a vector of the form

t1x1 + t2x2 + · · ·+ tkxk where the ti are scalars

is called a linear combination of the xi, and ti is called the coefficient of xi in the linear
combination.

Definition 5.2 Linear Combinations and Span in Rn

The set of all such linear combinations is called the span of the xi and is denoted

span{x1, x2, . . . , xk}= {t1x1 + t2x2 + · · ·+ tkxk | ti in R}

If V = span{x1, x2, . . . , xk}, we say that V is spanned by the vectors x1, x2, . . . , xk, and
that the vectors x1, x2, . . . , xk span the space V .

Here are two examples:
span{x}= {tx | t ∈ R}

which we write as span{x}= Rx for simplicity.

span{x, y}= {rx+ sy | r, s ∈ R}

In particular, the above discussion shows that, if v and w are two nonzero, nonparallel vectors in
R3, then

M = span{v, w}
4The vector n = v×w is nonzero because v and w are not parallel.
5In particular, this implies that any vector p orthogonal to v×w must be a linear combination p = av+bw of v

and w for some a and b. Can you prove this directly?
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is the plane in R3 containing v and w. Moreover, if d is any nonzero vector in R3 (or R2), then
L = span{v}= {td | t ∈ R}= Rd

is the line with direction vector d. Hence lines and planes can both be described in terms of spanning
sets.

Example 5.1.4

Let x = (2, −1, 2, 1) and y = (3, 4, −1, 1) in R4. Determine whether p = (0, −11, 8, 1) or
q = (2, 3, 1, 2) are in U = span{x, y}.

Solution. The vector p is in U if and only if p = sx+ ty for scalars s and t. Equating
components gives equations

2s+3t = 0, −s+4t =−11, 2s− t = 8, and s+ t = 1

This linear system has solution s = 3 and t =−2, so p is in U . On the other hand, asking
that q = sx+ ty leads to equations

2s+3t = 2, −s+4t = 3, 2s− t = 1, and s+ t = 2

and this system has no solution. So q does not lie in U .

Theorem 5.1.1: Span Theorem

Let U = span{x1, x2, . . . , xk} in Rn. Then:

1. U is a subspace of Rn containing each xi.

2. If W is a subspace of Rn and each xi ∈W , then U ⊆W .

Proof.
1. The zero vector 0 is in U because 0 = 0x1 +0x2 + · · ·+0xk is a linear combination of the xi.

If x = t1x1 + t2x2 + · · ·+ tkxk and y = s1x1 + s2x2 + · · ·+ skxk are in U , then x+y and ax are
in U because

x+y = (t1 + s1)x1 +(t2 + s2)x2 + · · ·+(tk + sk)xk, and
ax = (at1)x1 +(at2)x2 + · · ·+(atk)xk

Finally each xi is in U (for example, x2 = 0x1+1x2+ · · ·+0xk) so S1, S2, and S3 are satisfied
for U , proving (1).

2. Let x = t1x1 + t2x2 + · · ·+ tkxk where the ti are scalars and each xi ∈ W . Then each tixi ∈ W
because W satisfies S3. But then x ∈W because W satisfies S2 (verify). This proves (2).

Condition (2) in Theorem 5.1.1 can be expressed by saying that span{x1, x2, . . . , xk} is the
smallest subspace of Rn that contains each xi. This is useful for showing that two subspaces U and
W are equal, since this amounts to showing that both U ⊆ W and W ⊆ U . Here is an example of
how it is used.



5.1. Subspaces and Spanning 269

Example 5.1.5

If x and y are in Rn, show that span{x, y}= span{x+y, x−y}.

Solution. Since both x+y and x−y are in span{x, y}, Theorem 5.1.1 gives

span{x+y, x−y} ⊆ span{x, y}

But x = 1
2(x+y)+ 1

2(x−y) and y = 1
2(x+y)− 1

2(x−y) are both in span{x+y, x−y}, so

span{x, y} ⊆ span{x+y, x−y}

again by Theorem 5.1.1. Thus span{x, y}= span{x+y, x−y}, as desired.

It turns out that many important subspaces are best described by giving a spanning set. Here
are three examples, beginning with an important spanning set for Rn itself. Column j of the
n× n identity matrix In is denoted e j and called the jth coordinate vector in Rn, and the set

{e1, e2, . . . , en} is called the standard basis of Rn. If x =


x1
x2

...
xn

 is any vector in Rn, then

x = x1e1 + x2e2 + · · ·+ xnen, as the reader can verify. This proves:

Example 5.1.6

Rn = span{e1, e2, . . . , en} where e1, e2, . . . , en are the columns of In.

If A is an m×n matrix A, the next two examples show that it is a routine matter to find spanning
sets for null A and im A.

Example 5.1.7

Given an m×n matrix A, let x1, x2, . . . , xk denote the basic solutions to the system Ax = 0
given by the gaussian algorithm. Then

null A = span{x1, x2, . . . , xk}

Solution. If x ∈ null A, then Ax = 0 so Theorem 1.3.2 shows that x is a linear combination
of the basic solutions; that is, null A ⊆ span{x1, x2, . . . , xk}. On the other hand, if x is in
span{x1, x2, . . . , xk}, then x = t1x1 + t2x2 + · · ·+ tkxk for scalars ti, so

Ax = t1Ax1 + t2Ax2 + · · ·+ tkAxk = t10+ t20+ · · ·+ tk0 = 0

This shows that x ∈ null A, and hence that span{x1, x2, . . . , xk} ⊆ null A. Thus we have
equality.
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Example 5.1.8

Let c1, c2, . . . , cn denote the columns of the m×n matrix A. Then

im A = span{c1, c2, . . . , cn}

Solution. If {e1, e2, . . . , en} is the standard basis of Rn, observe that[
Ae1 Ae2 · · · Aen

]
= A

[
e1 e2 · · · en

]
= AIn = A =

[
c1 c2 · · ·cn

]
.

Hence ci = Aei is in im A for each i, so span{c1, c2, . . . , cn} ⊆ im A.

Conversely, let y be in im A, say y = Ax for some x in Rn. If x =


x1
x2
...

xn

, then

Definition 2.5 gives

y = Ax = x1c1 + x2c2 + · · ·+ xncn is in span{c1, c2, . . . , cn}

This shows that im A ⊆ span{c1, c2, . . . , cn}, and the result follows.

Exercises for 5.1

We often write vectors in Rn as rows.
Exercise 5.1.1 In each case determine whether U
is a subspace of R3. Support your answer.

a. U = {(1, s, t) | s and t in R}.

b. U = {(0, s, t) | s and t in R}.

c. U = {(r, s, t) | r, s, and t in R,
− r+3s+2t = 0}.

d. U = {(r, 3s, r−2) | r and s in R}.

e. U = {(r, 0, s) | r2 + s2 = 0, r and s in R}.

f. U = {(2r, −s2, t) | r, s, and t in R}.

b. Yes

d. No

f. No.

Exercise 5.1.2 In each case determine if x lies in
U = span{y, z}. If x is in U , write it as a linear
combination of y and z; if x is not in U , show why
not.

a. x = (2, −1, 0, 1), y = (1, 0, 0, 1), and
z = (0, 1, 0, 1).

b. x = (1, 2, 15, 11), y = (2, −1, 0, 2), and
z = (1, −1, −3, 1).

c. x = (8, 3, −13, 20), y = (2, 1, −3, 5), and
z = (−1, 0, 2, −3).

d. x = (2, 5, 8, 3), y = (2, −1, 0, 5), and
z = (−1, 2, 2, −3).
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b. No

d. Yes, x = 3y+4z.

Exercise 5.1.3 In each case determine if the given
vectors span R4. Support your answer.

a. {(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)}.

b. {(1, 3, −5, 0), (−2, 1, 0, 0), (0, 2, 1, −1),
(1, −4, 5, 0)}.

b. No

Exercise 5.1.4 Is it possible that
{(1, 2, 0), (2, 0, 3)} can span the subspace
U = {(r, s, 0) | r and s in R}? Defend your answer.

Exercise 5.1.5 Give a spanning set for the zero
subspace {0} of Rn.

Exercise 5.1.6 Is R2 a subspace of R3? Defend
your answer.

Exercise 5.1.7 If U = span{x, y, z} in Rn, show
that U = span{x+ tz, y, z} for every t in R.

Exercise 5.1.8 If U = span{x, y, z} in Rn, show
that U = span{x+y, y+z, z+x}.

Exercise 5.1.9 If a 6= 0 is a scalar, show that
span{ax}= span{x} for every vector x in Rn.

Exercise 5.1.10 If a1, a2, . . . , ak are nonzero
scalars, show that span{a1x1, a2x2, . . . , akxk} =
span{x1, x2, . . . , xk} for any vectors xi in Rn.

span{a1x1, a2x2, . . . , akxk} ⊆ span{x1, x2, . . . , xk}
by Theorem 5.1.1 because, for each i, aixi is in
span{x1, x2, . . . , xk}. Similarly, the fact that
xi = a−1

i (aixi) is in span{a1x1, a2x2, . . . , akxk}
for each i shows that span{x1, x2, . . . , xk} ⊆
span{a1x1, a2x2, . . . , akxk}, again by Theo-
rem 5.1.1.

Exercise 5.1.11 If x 6= 0 in Rn, determine all sub-
spaces of span{x}.

Exercise 5.1.12 Suppose that U =
span{x1, x2, . . . , xk} where each xi is in Rn. If A is an
m×n matrix and Axi = 0 for each i, show that Ay= 0
for every vector y in U .
If y = r1x1 + · · ·+ rkxk then Ay = r1(Ax1) + · · ·+
rk(Axk) = 0.

Exercise 5.1.13 If A is an m × n matrix, show
that, for each invertible m×m matrix U , null (A) =
null (UA).

Exercise 5.1.14 If A is an m×n matrix, show that,
for each invertible n×n matrix V , im (A) = im (AV ).

Exercise 5.1.15 Let U be a subspace of Rn, and
let x be a vector in Rn.

a. If ax is in U where a 6= 0 is a number, show
that x is in U .

b. If y and x+y are in U where y is a vector in
Rn, show that x is in U .

b. x = (x+y)−y = (x+y)+ (−y) is in U be-
cause U is a subspace and both x + y and
−y = (−1)y are in U .

Exercise 5.1.16 In each case either show that the
statement is true or give an example showing that it
is false.

a. If U 6= Rn is a subspace of Rn and x+y is in
U , then x and y are both in U .

b. If U is a subspace of Rn and rx is in U for all
r in R, then x is in U .

c. If U is a subspace of Rn and x is in U , then
−x is also in U .

d. If x is in U and U = span{y, z}, then U =
span{x, y, z}.

e. The empty set of vectors in Rn is a subspace
of Rn.

f.
[

0
1

]
is in span

{[
1
0

]
,
[

2
0

]}
.

b. True. x = 1x is in U .
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d. True. Always span{y, z} ⊆ span{x, y, z} by
Theorem 5.1.1. Since x is in span{x, y} we
have span{x, y, z} ⊆ span{y, z}, again by
Theorem 5.1.1.

f. False. a
[

1
0

]
+ b
[

2
0

]
=

[
a+2b

0

]
cannot

equal
[

0
1

]
.

Exercise 5.1.17

a. If A and B are m×n matrices, show that
U = {x in Rn | Ax = Bx} is a subspace of Rn.

b. What if A is m×n, B is k×n, and m 6= k?

Exercise 5.1.18 Suppose that x1, x2, . . . , xk
are vectors in Rn. If y = a1x1 + a2x2 + · · ·+ akxk
where a1 6= 0, show that span{x1 x2, . . . , xk} =
span{y1, x2, . . . , xk}.

Exercise 5.1.19 If U 6= {0} is a subspace of R,
show that U = R.

Exercise 5.1.20 Let U be a nonempty subset of
Rn. Show that U is a subspace if and only if S2 and
S3 hold.
If U is a subspace, then S2 and S3 certainly hold.
Conversely, assume that S2 and S3 hold for U . Since
U is nonempty, choose x in U . Then 0 = 0x is in U
by S3, so S1 also holds. This means that U is a
subspace.

Exercise 5.1.21 If S and T are nonempty sets of
vectors in Rn, and if S ⊆ T , show that span{S} ⊆
span{T}.

Exercise 5.1.22 Let U and W be subspaces
of Rn. Define their intersection U ∩ W and
their sum U +W as follows: U ∩W = {x ∈ Rn |
x belongs to both U and W}. U +W = {x ∈ Rn |
x is a sum of a vector in U
and a vector in W}.

a. Show that U ∩W is a subspace of Rn.

b. Show that U +W is a subspace of Rn.

b. The zero vector 0 is in U +W because 0 =
0+0. Let p and q be vectors in U +W , say
p = x1 + y1 and q = x2 + y2 where x1 and
x2 are in U , and y1 and y2 are in W . Then
p+q = (x1 +x2)+ (y1 +y2) is in U +W be-
cause x1+x2 is in U and y1+y2 is in W . Sim-
ilarly, a(p+q) = ap+ aq is in U +W for any
scalar a because ap is in U and aq is in W .
Hence U +W is indeed a subspace of Rn.

Exercise 5.1.23 Let P denote an invertible n× n
matrix. If λ is a number, show that

Eλ (PAP−1) = {Px | x is in Eλ (A)}

for each n×n matrix A.

Exercise 5.1.24 Show that every proper subspace
U of R2 is a line through the origin. [Hint: If d is a
nonzero vector in U , let L = Rd = {rd | r in R} de-
note the line with direction vector d. If u is in U
but not in L, argue geometrically that every vector
v in R2 is a linear combination of u and d.]
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5.2 Independence and Dimension

Some spanning sets are better than others. If U = span{x1, x2, . . . , xk} is a subspace of Rn,
then every vector in U can be written as a linear combination of the xi in at least one way. Our
interest here is in spanning sets where each vector in U has a exactly one representation as a linear
combination of these vectors.

Linear Independence

Given x1, x2, . . . , xk in Rn, suppose that two linear combinations are equal:

r1x1 + r2x2 + · · ·+ rkxk = s1x1 + s2x2 + · · ·+ skxk

We are looking for a condition on the set {x1, x2, . . . , xk} of vectors that guarantees that this
representation is unique; that is, ri = si for each i. Taking all terms to the left side gives

(r1 − s1)x1 +(r2 − s2)x2 + · · ·+(rk − sk)xk = 0

so the required condition is that this equation forces all the coefficients ri − si to be zero.

Definition 5.3 Linear Independence in Rn

With this in mind, we call a set {x1, x2, . . . , xk} of vectors linearly independent (or
simply independent) if it satisfies the following condition:

If t1x1 + t2x2 + · · ·+ tkxk = 0 then t1 = t2 = · · ·= tk = 0

We record the result of the above discussion for reference.

Theorem 5.2.1
If {x1, x2, . . . , xk} is an independent set of vectors in Rn, then every vector in
span{x1, x2, . . . , xk} has a unique representation as a linear combination of the xi.

It is useful to state the definition of independence in different language. Let us say that a linear
combination vanishes if it equals the zero vector, and call a linear combination trivial if every
coefficient is zero. Then the definition of independence can be compactly stated as follows:

A set of vectors is independent if and only if the only linear combination that vanishes
is the trivial one.

Hence we have a procedure for checking that a set of vectors is independent:
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Independence Test

To verify that a set {x1, x2, . . . , xk} of vectors in Rn is independent, proceed as follows:

1. Set a linear combination equal to zero: t1x1 + t2x2 + · · ·+ tkxk = 0.

2. Show that ti = 0 for each i (that is, the linear combination is trivial).

Of course, if some nontrivial linear combination vanishes, the vectors are not independent.

Example 5.2.1

Determine whether {(1, 0, −2, 5), (2, 1, 0, −1), (1, 1, 2, 1)} is independent in R4.

Solution. Suppose a linear combination vanishes:

r(1, 0, −2, 5)+ s(2, 1, 0, −1)+ t(1, 1, 2, 1) = (0, 0, 0, 0)

Equating corresponding entries gives a system of four equations:

r+2s+ t = 0, s+ t = 0, −2r+2t = 0, and 5r− s+ t = 0

The only solution is the trivial one r = s = t = 0 (verify), so these vectors are independent by
the independence test.

Example 5.2.2

Show that the standard basis {e1, e2, . . . , en} of Rn is independent.

Solution. The components of t1e1 + t2e2 + · · ·+ tnen are t1, t2, . . . , tn (see the discussion
preceding Example 5.1.6) So the linear combination vanishes if and only if each ti = 0.
Hence the independence test applies.

Example 5.2.3

If {x, y} is independent, show that {2x+3y, x−5y} is also independent.

Solution. If s(2x+3y)+ t(x−5y) = 0, collect terms to get (2s+ t)x+(3s−5t)y = 0. Since
{x, y} is independent this combination must be trivial; that is, 2s+ t = 0 and 3s−5t = 0.
These equations have only the trivial solution s = t = 0, as required.

Example 5.2.4

Show that the zero vector in Rn does not belong to any independent set.
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Solution. No set {0, x1, x2, . . . , xk} of vectors is independent because we have a
vanishing, nontrivial linear combination 1 ·0+0x1 +0x2 + · · ·+0xk = 0.

Example 5.2.5

Given x in Rn, show that {x} is independent if and only if x 6= 0.

Solution. A vanishing linear combination from {x} takes the form tx = 0, t in R. This
implies that t = 0 because x 6= 0.

The next example will be needed later.

Example 5.2.6

Show that the nonzero rows of a row-echelon matrix R are independent.

Solution. We illustrate the case with 3 leading 1s; the general case is analogous. Suppose R

has the form R =


0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 0

 where ∗ indicates a nonspecified number. Let R1,

R2, and R3 denote the nonzero rows of R. If t1R1 + t2R2 + t3R3 = 0 we show that t1 = 0, then
t2 = 0, and finally t3 = 0. The condition t1R1 + t2R2 + t3R3 = 0 becomes

(0, t1, ∗, ∗, ∗, ∗)+(0, 0, 0, t2, ∗, ∗)+(0, 0, 0, 0, t3, ∗) = (0, 0, 0, 0, 0, 0)

Equating second entries show that t1 = 0, so the condition becomes t2R2 + t3R3 = 0. Now the
same argument shows that t2 = 0. Finally, this gives t3R3 = 0 and we obtain t3 = 0.

A set of vectors in Rn is called linearly dependent (or simply dependent) if it is not linearly
independent, equivalently if some nontrivial linear combination vanishes.

Example 5.2.7

If v and w are nonzero vectors in R3, show that {v, w} is dependent if and only if v and w
are parallel.

Solution. If v and w are parallel, then one is a scalar multiple of the other
(Theorem 4.1.4), say v = aw for some scalar a. Then the nontrivial linear combination
v−aw = 0 vanishes, so {v, w} is dependent.
Conversely, if {v, w} is dependent, let sv+ tw = 0 be nontrivial, say s 6= 0. Then v =− t

sw
so v and w are parallel (by Theorem 4.1.4). A similar argument works if t 6= 0.

With this we can give a geometric description of what it means for a set {u, v, w} in R3 to
be independent. Note that this requirement means that {v, w} is also independent (av+bw = 0
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means that 0u+ av+ bw = 0), so M = span{v, w} is the plane containing v, w, and 0 (see the
discussion preceding Example 5.1.4). So we assume that {v, w} is independent in the following
example.

Example 5.2.8

u

v

w
M

{u, v, w} independent

u
v

w
M

{u, v, w} not independent

Let u, v, and w be nonzero vectors in R3 where {v, w}
independent. Show that {u, v, w} is independent if and only
if u is not in the plane M = span{v, w}. This is illustrated
in the diagrams.

Solution. If {u, v, w} is independent, suppose u is in the
plane M = span{v, w}, say u = av+bw, where a and b are
in R. Then 1u−av−bw = 0, contradicting the independence
of {u, v, w}.
On the other hand, suppose that u is not in M; we must show
that {u, v, w} is independent. If ru+ sv+ tw = 0 where r,
s, and t are in R3, then r = 0 since otherwise u =− s

r v+ −t
r w

is in M. But then sv+ tw = 0, so s = t = 0 by our assumption.
This shows that {u, v, w} is independent, as required.

By the inverse theorem, the following conditions are equivalent for an n×n matrix A:

1. A is invertible.

2. If Ax = 0 where x is in Rn, then x = 0.

3. Ax = b has a solution x for every vector b in Rn.

While condition 1 makes no sense if A is not square, conditions 2 and 3 are meaningful for any
matrix A and, in fact, are related to independence and spanning. Indeed, if c1, c2, . . . , cn are the

columns of A, and if we write x =


x1
x2

...
xn

, then

Ax = x1c1 + x2c2 + · · ·+ xncn

by Definition 2.5. Hence the definitions of independence and spanning show, respectively, that
condition 2 is equivalent to the independence of {c1, c2, . . . , cn} and condition 3 is equivalent to
the requirement that span{c1, c2, . . . , cn} = Rm. This discussion is summarized in the following
theorem:

Theorem 5.2.2
If A is an m×n matrix, let {c1, c2, . . . , cn} denote the columns of A.

1. {c1, c2, . . . , cn} is independent in Rm if and only if Ax = 0, x in Rn, implies x = 0.
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2. Rm = span{c1, c2, . . . , cn} if and only if Ax = b has a solution x for every vector b in
Rm.

For a square matrix A, Theorem 5.2.2 characterizes the invertibility of A in terms of the span-
ning and independence of its columns (see the discussion preceding Theorem 5.2.2). It is impor-
tant to be able to discuss these notions for rows. If x1, x2, . . . , xk are 1× n rows, we define
span{x1, x2, . . . , xk} to be the set of all linear combinations of the xi (as matrices), and we say
that {x1, x2, . . . , xk} is linearly independent if the only vanishing linear combination is the trivial
one (that is, if {xT

1 , xT
2 , . . . , xT

k } is independent in Rn, as the reader can verify).6

Theorem 5.2.3
The following are equivalent for an n×n matrix A:

1. A is invertible.

2. The columns of A are linearly independent.

3. The columns of A span Rn.

4. The rows of A are linearly independent.

5. The rows of A span the set of all 1×n rows.

Proof. Let c1, c2, . . . , cn denote the columns of A.
(1) ⇔ (2). By Theorem 2.4.5, A is invertible if and only if Ax = 0 implies x = 0; this holds if

and only if {c1, c2, . . . , cn} is independent by Theorem 5.2.2.
(1) ⇔ (3). Again by Theorem 2.4.5, A is invertible if and only if Ax = b has a solution for every

column B in Rn; this holds if and only if span{c1, c2, . . . , cn}= Rn by Theorem 5.2.2.
(1) ⇔ (4). The matrix A is invertible if and only if AT is invertible (by Corollary 2.4.1 to

Theorem 2.4.4); this in turn holds if and only if AT has independent columns (by (1) ⇔ (2)); finally,
this last statement holds if and only if A has independent rows (because the rows of A are the
transposes of the columns of AT ).

(1) ⇔ (5). The proof is similar to (1) ⇔ (4).

Example 5.2.9

Show that S = {(2, −2, 5), (−3, 1, 1), (2, 7, −4)} is independent in R3.

Solution. Consider the matrix A =

 2 −2 5
−3 1 1

2 7 −4

 with the vectors in S as its rows. A

routine computation shows that det A =−117 6= 0, so A is invertible. Hence S is
independent by Theorem 5.2.3. Note that Theorem 5.2.3 also shows that R3 = span S.

6It is best to view columns and rows as just two different notations for ordered n-tuples. This discussion will
become redundant in Chapter 6 where we define the general notion of a vector space.
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Dimension

It is common geometrical language to say that R3 is 3-dimensional, that planes are 2-dimensional
and that lines are 1-dimensional. The next theorem is a basic tool for clarifying this idea of
“dimension”. Its importance is difficult to exaggerate.

Theorem 5.2.4: Fundamental Theorem
Let U be a subspace of Rn. If U is spanned by m vectors, and if U contains k linearly
independent vectors, then k ≤ m.

This proof is given in Theorem 6.3.2 in much greater generality.

Definition 5.4 Basis of Rn

If U is a subspace of Rn, a set {x1, x2, . . . , xm} of vectors in U is called a basis of U if it
satisfies the following two conditions:

1. {x1, x2, . . . , xm} is linearly independent.

2. U = span{x1, x2, . . . , xm}.

The most remarkable result about bases7 is:

Theorem 5.2.5: Invariance Theorem
If {x1, x2, . . . , xm} and {y1, y2, . . . , yk} are bases of a subspace U of Rn, then m = k.

Proof. We have k ≤ m by the fundamental theorem because {x1, x2, . . . , xm} spans U , and
{y1, y2, . . . , yk} is independent. Similarly, by interchanging x’s and y’s we get m ≤ k. Hence
m = k.

The invariance theorem guarantees that there is no ambiguity in the following definition:

Definition 5.5 Dimension of a Subspace of Rn

If U is a subspace of Rn and {x1, x2, . . . , xm} is any basis of U , the number, m, of vectors
in the basis is called the dimension of U , denoted

dim U = m

The importance of the invariance theorem is that the dimension of U can be determined by counting
the number of vectors in any basis.8

7The plural of “basis” is “bases”.
8We will show in Theorem 5.2.6 that every subspace of Rn does indeed have a basis.
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Let {e1, e2, . . . , en} denote the standard basis of Rn, that is the set of columns of the identity
matrix. Then Rn = span{e1, e2, . . . , en} by Example 5.1.6, and {e1, e2, . . . , en} is independent
by Example 5.2.2. Hence it is indeed a basis of Rn in the present terminology, and we have

Example 5.2.10

dim (Rn) = n and {e1, e2, . . . , en} is a basis.

This agrees with our geometric sense that R2 is two-dimensional and R3 is three-dimensional.
It also says that R1 = R is one-dimensional, and {1} is a basis. Returning to subspaces of Rn, we
define

dim{0}= 0

This amounts to saying {0} has a basis containing no vectors. This makes sense because 0 cannot
belong to any independent set (Example 5.2.4).

Example 5.2.11

Let U =


 r

s
r

 | r, s in R

. Show that U is a subspace of R3, find a basis, and calculate

dim U .

Solution. Clearly,

 r
s
r

= ru+ sv where u =

 1
0
1

 and v =

 0
1
0

. It follows that

U = span{u, v}, and hence that U is a subspace of R3. Moreover, if ru+ sv = 0, then r
s
r

=

 0
0
0

 so r = s = 0. Hence {u, v} is independent, and so a basis of U . This means

dim U = 2.

Example 5.2.12

Let B = {x1, x2, . . . , xn} be a basis of Rn. If A is an invertible n×n matrix, then
D = {Ax1, Ax2, . . . , Axn} is also a basis of Rn.

Solution. Let x be a vector in Rn. Then A−1x is in Rn so, since B is a basis, we have
A−1x = t1x1 + t2x2 + · · ·+ tnxn for ti in R. Left multiplication by A gives
x = t1(Ax1)+ t2(Ax2)+ · · ·+ tn(Axn), and it follows that D spans Rn. To show independence,
let s1(Ax1)+ s2(Ax2)+ · · ·+ sn(Axn) = 0, where the si are in R. Then
A(s1x1 + s2x2 + · · ·+ snxn) = 0 so left multiplication by A−1 gives s1x1 + s2x2 + · · ·+ snxn = 0.
Now the independence of B shows that each si = 0, and so proves the independence of D.
Hence D is a basis of Rn.



280 Vector Space Rn

While we have found bases in many subspaces of Rn, we have not yet shown that every subspace
has a basis. This is part of the next theorem, the proof of which is deferred to Section 6.4 (Theorem
6.4.1) where it will be proved in more generality.

Theorem 5.2.6
Let U 6= {0} be a subspace of Rn. Then:

1. U has a basis and dim U ≤ n.

2. Any independent set in U can be enlarged (by adding vectors from the standard basis)
to a basis of U .

3. Any spanning set for U can be cut down (by deleting vectors) to a basis of U .

Example 5.2.13

Find a basis of R4 containing S = {u, v} where u = (0, 1, 2, 3) and v = (2, −1, 0, 1).

Solution. By Theorem 5.2.6 we can find such a basis by adding vectors from the standard
basis of R4 to S. If we try e1 = (1, 0, 0, 0), we find easily that {e1, u, v} is independent.
Now add another vector from the standard basis, say e2.
Again we find that B = {e1, e2, u, v} is independent. Since B has 4 = dim R4 vectors, then
B must span R4 by Theorem 5.2.7 below (or simply verify it directly). Hence B is a basis of
R4.

Theorem 5.2.6 has a number of useful consequences. Here is the first.

Theorem 5.2.7
Let U be a subspace of Rn where dim U = m and let B = {x1, x2, . . . , xm} be a set of m
vectors in U . Then B is independent if and only if B spans U .

Proof. Suppose B is independent. If B does not span U then, by Theorem 5.2.6, B can be enlarged
to a basis of U containing more than m vectors. This contradicts the invariance theorem because
dim U = m, so B spans U . Conversely, if B spans U but is not independent, then B can be cut down
to a basis of U containing fewer than m vectors, again a contradiction. So B is independent, as
required.

As we saw in Example 5.2.13, Theorem 5.2.7 is a “labour-saving” result. It asserts that, given
a subspace U of dimension m and a set B of exactly m vectors in U , to prove that B is a basis of
U it suffices to show either that B spans U or that B is independent. It is not necessary to verify
both properties.
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Theorem 5.2.8
Let U ⊆W be subspaces of Rn. Then:

1. dim U ≤ dim W .

2. If dim U = dim W , then U =W .
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Proof. Write dim W = k, and let B be a basis of U .

1. If dim U > k, then B is an independent set in W containing more than k vectors, contradicting
the fundamental theorem. So dim U ≤ k = dim W .

2. If dim U = k, then B is an independent set in W containing k = dim W vectors, so B spans W
by Theorem 5.2.7. Hence W = span B =U , proving (2).

It follows from Theorem 5.2.8 that if U is a subspace of Rn, then dim U is one of the integers
0, 1, 2, . . . , n, and that:

dim U = 0 if and only if U = {0},
dim U = n if and only if U = Rn

The other subspaces of Rn are called proper. The following example uses Theorem 5.2.8 to show
that the proper subspaces of R2 are the lines through the origin, while the proper subspaces of R3

are the lines and planes through the origin.

Example 5.2.14

1. If U is a subspace of R2 or R3, then dim U = 1 if and only if U is a line through the
origin.

2. If U is a subspace of R3, then dim U = 2 if and only if U is a plane through the origin.

Proof.

1. Since dim U = 1, let {u} be a basis of U . Then U = span{u}= {tu | t in R}, so U is the line
through the origin with direction vector u. Conversely each line L with direction vector d 6= 0
has the form L = {td | t in R}. Hence {d} is a basis of U , so U has dimension 1.

2. If U ⊆ R3 has dimension 2, let {v, w} be a basis of U . Then v and w are not parallel (by
Example 5.2.7) so n = v×w 6= 0. Let P = {x in R3 | n ·x = 0} denote the plane through the
origin with normal n. Then P is a subspace of R3 (Example 5.1.1) and both v and w lie in
P (they are orthogonal to n), so U = span{v, w} ⊆ P by Theorem 5.1.1. Hence

U ⊆ P ⊆ R3

Since dim U = 2 and dim (R3) = 3, it follows from Theorem 5.2.8 that dim P = 2 or 3, whence
P = U or R3. But P 6= R3 (for example, n is not in P) and so U = P is a plane through the
origin.
Conversely, if U is a plane through the origin, then dim U = 0, 1, 2, or 3 by Theorem 5.2.8.
But dim U 6= 0 or 3 because U 6= {0} and U 6= R3, and dim U 6= 1 by (1). So dim U = 2.

Note that this proof shows that if v and w are nonzero, nonparallel vectors in R3, then span{v, w}
is the plane with normal n = v×w. We gave a geometrical verification of this fact in Section 5.1.
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Exercises for 5.2

In Exercises 5.2.1-5.2.6 we write vectors Rn as
rows.
Exercise 5.2.1 Which of the following subsets are
independent? Support your answer.

a. {(1, −1, 0), (3, 2, −1), (3, 5, −2)} in R3

b. {(1, 1, 1), (1, −1, 1), (0, 0, 1)} in R3

c. {(1, −1, 1, −1), (2, 0, 1, 0), (0, −2, 1, −2)}
in R4

d. {(1, 1, 0, 0), (1, 0, 1, 0), (0, 0, 1, 1),
(0, 1, 0, 1)} in R4

b. Yes. If r

 1
1
1

+ s

 1
1
1

+ t

 0
0
1

 =

 0
0
0

,

then r+s= 0, r−s= 0, and r+s+t = 0. These
equations give r = s = t = 0.

d. No. Indeed:


1
1
0
0

 −


1
0
1
0

 +


0
0
1
1

 −


0
1
0
1

=


0
0
0
0

.

Exercise 5.2.2 Let {x, y, z, w} be an indepen-
dent set in Rn. Which of the following sets is inde-
pendent? Support your answer.

a. {x−y, y−z, z−x}

b. {x+y, y+z, z+x}

c. {x−y, y−z, z−w, w−x}

d. {x+y, y+z, z+w, w+x}

b. Yes. If r(x+y)+ s(y+z)+ t(z+x) = 0, then
(r+t)x+(r+s)y+(s+t)z= 0. Since {x, y, z}
is independent, this implies that r + t = 0,
r+ s = 0, and s+ t = 0. The only solution is
r = s = t = 0.

d. No. In fact, (x+y)− (y+z)+(z+w)− (w+
x) = 0.

Exercise 5.2.3 Find a basis and calculate the di-
mension of the following subspaces of R4.

a. span{(1, −1, 2, 0), (2, 3, 0, 3), (1, 9, −6, 6)}

b. span{(2, 1, 0, −1), (−1, 1, 1, 1), (2, 7, 4, 1)}

c. span{(−1, 2, 1, 0), (2, 0, 3, −1), (4, 4, 11, −3),
(3, −2, 2, −1)}

d. span{(−2, 0, 3, 1), (1, 2, −1, 0), (−2, 8, 5, 3),
(−1, 2, 2, 1)}

b.




2
1
0

−1

 ,


−1

1
1
1


; dimension 2.

d.




−2
0
3
1

 ,


1
2

−1
0


; dimension 2.

Exercise 5.2.4 Find a basis and calculate the di-
mension of the following subspaces of R4.

a. U =




a
a+b
a−b

b


∣∣∣∣∣∣∣∣a and b in R



b. U =




a+b
a−b

b
a


∣∣∣∣∣∣∣∣a and b in R


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c. U =




a
b

c+a
c


∣∣∣∣∣∣∣∣a, b, and c in R



d. U =




a−b
b+ c

a
b+ c


∣∣∣∣∣∣∣∣a, b, and c in R



e. U =




a
b
c
d


∣∣∣∣∣∣∣∣a+b− c+d = 0 in R



f. U =




a
b
c
d


∣∣∣∣∣∣∣∣a+b = c+d in R



b.




1
1
0
1

 ,


1

−1
1
0


; dimension 2.

d.




1
0
1
0

 ,


−1

1
0
1

 ,


0
1
0
1


; dimension 3.

f.




−1
1
0
0

 ,


1
0
1
0

 ,


1
0
0
1


; dimension 3.

Exercise 5.2.5 Suppose that {x, y, z, w} is a
basis of R4. Show that:

a. {x+aw, y, z, w} is also a basis of R4 for any
choice of the scalar a.

b. {x+w, y+w, z+w, w} is also a basis of R4.

c. {x, x+y, x+y+ z, x+y+ z+w} is also a
basis of R4.

b. If r(x+w) + s(y+w) + t(z+w) + u(w) = 0,
then rx+sy+tz+(r+s+t+u)w= 0, so r = 0,
s = 0, t = 0, and r + s+ t + u = 0. The only
solution is r = s = t = u = 0, so the set is inde-
pendent. Since dim R4 = 4, the set is a basis
by Theorem 5.2.7.

Exercise 5.2.6 Use Theorem 5.2.3 to determine if
the following sets of vectors are a basis of the indi-
cated space.

a. {(3, −1), (2, 2)} in R2

b. {(1, 1, −1), (1, −1, 1), (0, 0, 1)} in R3

c. {(−1, 1, −1), (1, −1, 2), (0, 0, 1)} in R3

d. {(5, 2, −1), (1, 0, 1), (3, −1, 0)} in R3

e. {(2, 1, −1, 3), (1, 1, 0, 2), (0, 1, 0, −3),
(−1, 2, 3, 1)} in R4

f. {(1, 0, −2, 5), (4, 4, −3, 2), (0, 1, 0, −3),
(1, 3, 3, −10)} in R4

b. Yes

d. Yes

f. No.

Exercise 5.2.7 In each case show that the state-
ment is true or give an example showing that it is
false.

a. If {x, y} is independent, then {x, y, x+y}
is independent.

b. If {x, y, z} is independent, then {y, z} is
independent.

c. If {y, z} is dependent, then {x, y, z} is de-
pendent for any x.

d. If all of x1, x2, . . . , xk are nonzero, then
{x1, x2, . . . , xk} is independent.

e. If one of x1, x2, . . . , xk is zero, then
{x1, x2, . . . , xk} is dependent.

f. If ax+by+cz = 0, then {x, y, z} is indepen-
dent.
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g. If {x, y, z} is independent, then ax+ by+
cz = 0 for some a, b, and c in R.

h. If {x1, x2, . . . , xk} is dependent, then t1x1 +
t2x2 + · · ·+ tkxk = 0 for some numbers ti in R
not all zero.

i. If {x1, x2, . . . , xk} is independent, then t1x1+
t2x2 + · · ·+ tkxk = 0 for some ti in R.

j. Every non-empty subset of a linearly indepen-
dent set is again linearly independent.

k. Every set containing a spanning set is again a
spanning set.

b. T. If ry + sz = 0, then 0x + ry + sz = 0 so
r = s = 0 because {x, y, z} is independent.

d. F. If x 6= 0, take k = 2, x1 = x and x2 =−x.

f. F. If y =−x and z = 0, then 1x+1y+1z = 0.

h. T. This is a nontrivial, vanishing linear com-
bination, so the xi cannot be independent.

Exercise 5.2.8 If A is an n×n matrix, show that
det A = 0 if and only if some column of A is a linear
combination of the other columns.

Exercise 5.2.9 Let {x, y, z} be a linearly indepen-
dent set in R4. Show that {x, y, z, ek} is a basis of
R4 for some ek in the standard basis {e1, e2, e3, e4}.

Exercise 5.2.10 If {x1, x2, x3, x4, x5, x6}
is an independent set of vectors, show that
the subset {x2, x3, x5} is also independent.

If rx2 + sx3 + tx5 = 0 then 0x1 + rx2 + sx3 + 0x4 +
tx5 +0x6 = 0 so r = s = t = 0.

Exercise 5.2.11 Let A be any m× n matrix, and
let b1, b2, b3, . . . , bk be columns in Rm such that
the system Ax = bi has a solution xi for each i. If
{b1, b2, b3, . . . , bk} is independent in Rm, show that
{x1, x2, x3, . . . , xk} is independent in Rn.

Exercise 5.2.12 If {x1, x2, x3, . . . , xk}
is independent, show {x1, x1 + x2, x1 + x2 +
x3, . . . , x1 + x2 + · · · + xk} is also independent.

If t1x1 + t2(x1 +x2)+ · · ·+ tk(x1 +x2 + · · ·+xk) = 0,
then (t1+t2+ · · ·+tk)x1+(t2+ · · ·+tk)x2+ · · ·+(tk−1+
tk)xk−1 + (tk)xk = 0. Hence all these coefficients
are zero, so we obtain successively tk = 0, tk−1 =
0, . . . , t2 = 0, t1 = 0.

Exercise 5.2.13 If {y, x1, x2, x3, . . . , xk} is inde-
pendent, show that {y+x1, y+x2, y+x3, . . . , y+
xk} is also independent.

Exercise 5.2.14 If {x1, x2, . . . , xk} is independent
in Rn, and if y is not in span{x1, x2, . . . , xk}, show
that {x1, x2, . . . , xk, y} is independent.

Exercise 5.2.15 If A and B are matrices and
the columns of AB are independent, show that the
columns of B are independent.

Exercise 5.2.16 Suppose that {x, y} is a basis of

R2, and let A =

[
a b
c d

]
.

a. If A is invertible, show that {ax+by, cx+dy}
is a basis of R2.

b. If {ax+ by, cx+ dy} is a basis of R2, show
that A is invertible.

b. We show AT is invertible (then A is invert-
ible). Let AT x = 0 where x = [s t]T . This
means as+ ct = 0 and bs+ dt = 0, so s(ax+
by)+ t(cx+ dy) = (sa+ tc)x+(sb+ td)y = 0.
Hence s = t = 0 by hypothesis.

Exercise 5.2.17 Let A denote an m×n matrix.

a. Show that null A = null (UA) for every invert-
ible m×m matrix U .

b. Show that dim (null A) = dim (null (AV )) for
every invertible n × n matrix V . [Hint: If
{x1, x2, . . . , xk} is a basis of null A, show
that {V−1x1, V−1x2, . . . , V−1xk} is a basis of
null (AV ).]

b. Each V−1xi is in null (AV ) because
AV (V−1xi) = Axi = 0. The set
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{V−1x1, . . . , V−1xk} is independent as V−1

is invertible. If y is in null (AV ), then Vy is in
null (A) so let Vy = t1x1+ · · ·+ tkxk where each
tk is in R. Thus y = t1V−1x1 + · · ·+ tkV−1xk is
in span{V−1x1, . . . , V−1xk}.

Exercise 5.2.18 Let A denote an m×n matrix.

a. Show that im A = im (AV ) for every invertible
n×n matrix V .

b. Show that dim ( im A) = dim ( im (UA)) for ev-
ery invertible m × m matrix U . [Hint: If
{y1, y2, . . . , yk} is a basis of im (UA), show

that {U−1y1, U−1y2, . . . , U−1yk} is a basis of
im A.]

Exercise 5.2.19 Let U and W denote subspaces of
Rn, and assume that U ⊆W . If dim U = n−1, show
that either W =U or W = Rn.

Exercise 5.2.20 Let U and W denote subspaces of
Rn, and assume that U ⊆W . If dim W = 1, show that
either U = {0} or U =W .
We have {0} ⊆ U ⊆ W where dim{0} = 0 and
dim W = 1. Hence dim U = 0 or dim U = 1 by The-
orem 5.2.8, that is U = 0 or U =W , again by Theo-
rem 5.2.8.
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5.3 Orthogonality

Length and orthogonality are basic concepts in geometry and, in R2 and R3, they both can be
defined using the dot product. In this section we extend the dot product to vectors in Rn, and so
endow Rn with euclidean geometry. We then introduce the idea of an orthogonal basis—one of the
most useful concepts in linear algebra, and begin exploring some of its applications.

Dot Product, Length, and Distance

If x= (x1, x2, . . . , xn) and y= (y1, y2, . . . , yn) are two n-tuples in Rn, recall that their dot product
was defined in Section 2.2 as follows:

x ·y = x1y1 + x2y2 + · · ·+ xnyn

Observe that if x and y are written as columns then x ·y= xT y is a matrix product (and x ·y= xyT

if they are written as rows). Here x ·y is a 1×1 matrix, which we take to be a number.

Definition 5.6 Length in Rn

As in R3, the length ‖x‖ of the vector is defined by

‖x‖=
√

x ·x =
√

x2
1 + x2

2 + · · ·+ x2
n

Where
√

( ) indicates the positive square root.

A vector x of length 1 is called a unit vector. If x 6= 0, then ‖x‖ 6= 0 and it follows easily that
1

‖x‖x is a unit vector (see Theorem 5.3.6 below), a fact that we shall use later.

Example 5.3.1

If x = (1, −1, −3, 1) and y = (2, 1, 1, 0) in R4, then x ·y = 2−1−3+0 =−2 and
‖x‖=

√
1+1+9+1 =

√
12 = 2

√
3. Hence 1

2
√

3
x is a unit vector; similarly 1√

6
y is a unit

vector.

These definitions agree with those in R2 and R3, and many properties carry over to Rn:

Theorem 5.3.1
Let x, y, and z denote vectors in Rn. Then:

1. x ·y = y ·x.

2. x · (y+z) = x ·y+x ·z.

3. (ax) ·y = a(x ·y) = x · (ay) for all scalars a.
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4. ‖x‖2 = x ·x.

5. ‖x‖ ≥ 0, and ‖x‖= 0 if and only if x = 0.

6. ‖ax‖= |a|‖x‖ for all scalars a.

Proof. (1), (2), and (3) follow from matrix arithmetic because x ·y = xT y; (4) is clear from the
definition; and (6) is a routine verification since |a| =

√
a2. If x = (x1, x2, . . . , xn), then ‖x‖ =√

x2
1 + x2

2 + · · ·+ x2
n so ‖x‖= 0 if and only if x2

1+x2
2+ · · ·+x2

n = 0. Since each xi is a real number this
happens if and only if xi = 0 for each i; that is, if and only if x = 0. This proves (5).

Because of Theorem 5.3.1, computations with dot products in Rn are similar to those in R3. In
particular, the dot product

(x1 +x2 + · · ·+xm) · (y1 +y2 + · · ·+yk)

equals the sum of mk terms, xi ·y j, one for each choice of i and j. For example:

(3x−4y) · (7x+2y) = 21(x ·x)+6(x ·y)−28(y ·x)−8(y ·y)
= 21‖x‖2 −22(x ·y)−8‖y‖2

holds for all vectors x and y.

Example 5.3.2

Show that ‖x+y‖2 = ‖x‖2 +2(x ·y)+‖y‖2 for any x and y in Rn.

Solution. Using Theorem 5.3.1 several times:

‖x+y‖2 = (x+y) · (x+y) = x ·x+x ·y+y ·x+y ·y
= ‖x‖2 +2(x ·y)+‖y‖2

Example 5.3.3

Suppose that Rn = span{f1, f2, . . . , fk} for some vectors fi. If x · fi = 0 for each i where x is
in Rn, show that x = 0.

Solution. We show x = 0 by showing that ‖x‖= 0 and using (5) of Theorem 5.3.1. Since
the fi span Rn, write x = t1f1 + t2f2 + · · ·+ tkfk where the ti are in R. Then

‖x‖2 = x ·x = x · (t1f1 + t2f2 + · · ·+ tkfk)

= t1(x · f1)+ t2(x · f2)+ · · ·+ tk(x · fk)

= t1(0)+ t2(0)+ · · ·+ tk(0)
= 0
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We saw in Section 4.2 that if u and v are nonzero vectors in R3, then u·v
‖u‖‖v‖ = cosθ where θ is the

angle between u and v. Since |cosθ | ≤ 1 for any angle θ , this shows that |u ·v| ≤ ‖u‖‖v‖. In this
form the result holds in Rn.

Theorem 5.3.2: Cauchy Inequality9

If x and y are vectors in Rn, then

|x ·y| ≤ ‖x‖‖y‖

Moreover |x ·y|= ‖x‖‖y‖ if and only if one of x and y is a multiple of the other.

Proof. The inequality holds if x = 0 or y = 0 (in fact it is equality). Otherwise, write ‖x‖= a > 0
and ‖y‖= b > 0 for convenience. A computation like that preceding Example 5.3.2 gives

‖bx−ay‖2 = 2ab(ab−x ·y) and ‖bx+ay‖2 = 2ab(ab+x ·y) (5.1)

It follows that ab−x ·y ≥ 0 and ab+x ·y ≥ 0, and hence that −ab ≤ x ·y ≤ ab. Hence |x ·y| ≤
ab = ‖x‖‖y‖, proving the Cauchy inequality.

If equality holds, then |x ·y|= ab, so x ·y = ab or x ·y =−ab. Hence Equation 5.1 shows that
bx− ay = 0 or bx+ ay = 0, so one of x and y is a multiple of the other (even if a = 0 or b = 0).

The Cauchy inequality is equivalent to (x ·y)2 ≤ ‖x‖2‖y‖2. In R5 this becomes

(x1y1 + x2y2 + x3y3 + x4y4 + x5y5)
2 ≤ (x2

1 + x2
2 + x2

3 + x2
4 + x2

5)(y
2
1 + y2

2 + y2
3 + y2

4 + y2
5)

for all xi and yi in R.
There is an important consequence of the Cauchy inequality. Given x and y in Rn, use Exam-

ple 5.3.2 and the fact that x ·y ≤ ‖x‖‖y‖ to compute

‖x+y‖2 = ‖x‖2 +2(x ·y)+‖y‖2 ≤ ‖x‖2 +2‖x‖‖y‖+‖y‖2 = (‖x+y‖)2

Taking positive square roots gives:

Corollary 5.3.1: Triangle Inequality

If x and y are vectors in Rn, then ‖x+y‖ ≤ ‖x‖+‖y‖.

9Augustin Louis Cauchy (1789–1857) was born in Paris and became a professor at the École Polytechnique at the
age of 26. He was one of the great mathematicians, producing more than 700 papers, and is best remembered for his
work in analysis in which he established new standards of rigour and founded the theory of functions of a complex
variable. He was a devout Catholic with a long-term interest in charitable work, and he was a royalist, following
King Charles X into exile in Prague after he was deposed in 1830. Theorem 5.3.2 first appeared in his 1812 memoir
on determinants.
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v w

v+w

The reason for the name comes from the observation that in R3 the
inequality asserts that the sum of the lengths of two sides of a triangle
is not less than the length of the third side. This is illustrated in the
diagram.

Definition 5.7 Distance in Rn

If x and y are two vectors in Rn, we define the distance d(x, y) between x and y by

d(x, y) = ‖x−y‖

w
v−w

v

The motivation again comes from R3 as is clear in the diagram.
This distance function has all the intuitive properties of distance in
R3, including another version of the triangle inequality.

Theorem 5.3.3
If x, y, and z are three vectors in Rn we have:

1. d(x, y)≥ 0 for all x and y.

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x) for all x and y .

4. d(x, z)≤ d(x, y)+d(y, z)for all x, y, and z. Triangle inequality.

Proof. (1) and (2) restate part (5) of Theorem 5.3.1 because d(x, y) = ‖x−y‖, and (3) follows
because ‖u‖= ‖−u‖ for every vector u in Rn. To prove (4) use the Corollary to Theorem 5.3.2:

d(x, z) = ‖x−z‖= ‖(x−y)+(y−z)‖
≤ ‖(x−y)‖+‖(y−z)‖= d(x, y)+d(y, z)

Orthogonal Sets and the Expansion Theorem

Definition 5.8 Orthogonal and Orthonormal Sets

We say that two vectors x and y in Rn are orthogonal if x ·y = 0, extending the
terminology in R3 (See Theorem 4.2.3). More generally, a set {x1, x2, . . . , xk} of vectors in
Rn is called an orthogonal set if

xi ·x j = 0 for all i 6= j and xi 6= 0 for all i10

Note that {x} is an orthogonal set if x 6= 0. A set {x1, x2, . . . , xk} of vectors in Rn is called



5.3. Orthogonality 291

orthonormal if it is orthogonal and, in addition, each xi is a unit vector:

‖xi‖= 1 for each i.

Example 5.3.4

The standard basis {e1, e2, . . . , en} is an orthonormal set in Rn.

The routine verification is left to the reader, as is the proof of:

Example 5.3.5

If {x1, x2, . . . , xk} is orthogonal, so also is {a1x1, a2x2, . . . , akxk} for any nonzero scalars
ai.

If x 6= 0, it follows from item (6) of Theorem 5.3.1 that 1
‖x‖x is a unit vector, that is it has

length 1.

Definition 5.9 Normalizing an Orthogonal Set

Hence if {x1, x2, . . . , xk} is an orthogonal set, then { 1
‖x1‖x1, 1

‖x2‖x2, · · · , 1
‖xk‖xk} is an

orthonormal set, and we say that it is the result of normalizing the orthogonal set
{x1, x2, · · · , xk}.

Example 5.3.6

If f1 =


1
1
1

−1

, f2 =


1
0
1
2

, f3 =


−1

0
1
0

, and f4 =


−1

3
−1

1

 then {f1, f2, f3, f4} is an

orthogonal set in R4 as is easily verified. After normalizing, the corresponding orthonormal
set is {1

2f1, 1√
6
f2, 1√

2
f3, 1

2
√

3
f4}

v+w

v

w The most important result about orthogonality is Pythagoras’ theo-
rem. Given orthogonal vectors v and w in R3, it asserts that

‖v+w‖2 = ‖v‖2 +‖w‖2

as in the diagram. In this form the result holds for any orthogonal set
in Rn.

10The reason for insisting that orthogonal sets consist of nonzero vectors is that we will be primarily concerned
with orthogonal bases.
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Theorem 5.3.4: Pythagoras’ Theorem

If {x1, x2, . . . , xk} is an orthogonal set in Rn, then

‖x1 +x2 + · · ·+xk‖2 = ‖x1‖2 +‖x2‖2 + · · ·+‖xk‖2.

Proof. The fact that xi ·x j = 0 whenever i 6= j gives
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‖x1 +x2 + · · ·+xk‖2 = (x1 +x2 + · · ·+xk) · (x1 +x2 + · · ·+xk)

= (x1 ·x1 +x2 ·x2 + · · ·+xk ·xk)+∑
i6= j

xi ·x j

= ‖x1‖2 +‖x2‖2 + · · ·+‖xk‖2 +0

This is what we wanted.

If v and w are orthogonal, nonzero vectors in R3, then they are certainly not parallel, and so
are linearly independent Example 5.2.7. The next theorem gives a far-reaching extension of this
observation.

Theorem 5.3.5
Every orthogonal set in Rn is linearly independent.

Proof. Let {x1, x2, . . . , xk} be an orthogonal set in Rn and suppose a linear combination vanishes,
say: t1x1 + t2x2 + · · ·+ tkxk = 0. Then

0 = x1 ·0 = x1 · (t1x1 + t2x2 + · · ·+ tkxk)

= t1(x1 ·x1)+ t2(x1 ·x2)+ · · ·+ tk(x1 ·xk)

= t1‖x1‖2 + t2(0)+ · · ·+ tk(0)

= t1‖x1‖2

Since ‖x1‖2 6= 0, this implies that t1 = 0. Similarly ti = 0 for each i.

Theorem 5.3.5 suggests considering orthogonal bases for Rn, that is orthogonal sets that span
Rn. These turn out to be the best bases in the sense that, when expanding a vector as a linear
combination of the basis vectors, there are explicit formulas for the coefficients.

Theorem 5.3.6: Expansion Theorem

Let {f1, f2, . . . , fm} be an orthogonal basis of a subspace U of Rn. If x is any vector in U ,
we have

x =
(

x·f1
‖f1‖2

)
f1 +

(
x·f2
‖f2‖2

)
f1 + · · ·+

(
x·fm
‖fm‖2

)
fm

Proof. Since {f1, f2, . . . , fm} spans U , we have x = t1f1 + t2f2 + · · ·+ tmfm where the ti are scalars.
To find t1 we take the dot product of both sides with f1:

x · f1 = (t1f1 + t2f2 + · · ·+ tmfm) · f1

= t1(f1 · f1)+ t2(f2 · f1)+ · · ·+ tm(fm · f1)

= t1‖f1‖2 + t2(0)+ · · ·+ tm(0)

= t1‖f1‖2
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Since f1 6= 0, this gives t1 =
x·f1
‖f1‖2 . Similarly, ti = x·fi

‖fi‖2 for each i.

The expansion in Theorem 5.3.6 of x as a linear combination of the orthogonal basis {f1, f2, . . . , fm}
is called the Fourier expansion of x, and the coefficients t1 = x·fi

‖fi‖2 are called the Fourier coeffi-
cients. Note that if {f1, f2, . . . , fm} is actually orthonormal, then ti = x · fi for each i. We will have
a great deal more to say about this in Section ??.

Example 5.3.7

Expand x = (a, b, c, d) as a linear combination of the orthogonal basis {f1, f2, f3, f4} of R4

given in Example 5.3.6.

Solution. We have f1 = (1, 1, 1, −1), f2 = (1, 0, 1, 2), f3 = (−1, 0, 1, 0), and
f4 = (−1, 3, −1, 1) so the Fourier coefficients are

t1 =
x·f1
‖f1‖2 =

1
4(a+b+ c+d) t3 =

x·f3
‖f3‖2 =

1
2(−a+ c)

t2 =
x·f2
‖f2‖2 =

1
6(a+ c+2d) t4 =

x·f4
‖f4‖2 =

1
12(−a+3b− c+d)

The reader can verify that indeed x = t1f1 + t2f2 + t3f3 + t4f4.

A natural question arises here: Does every subspace U of Rn have an orthogonal basis? The
answer is “yes”; in fact, there is a systematic procedure, called the Gram-Schmidt algorithm, for
turning any basis of U into an orthogonal one. This leads to a definition of the projection onto a
subspace U that generalizes the projection along a vector used in R2 and R3. All this is discussed
in Section 8.1.

Exercises for 5.3

We often write vectors in Rn as row n-tuples.
Exercise 5.3.1 Obtain orthonormal bases of R3 by
normalizing the following.

a. {(1, −1, 2), (0, 2, 1), (5, 1, −2)}

b. {(1, 1, 1), (4, 1, −5), (2, −3, 1)}

b. 1√
3

 1
1
1

 , 1√
42

 4
1

−5

 , 1√
14

 2
−3

1

.

Exercise 5.3.2 In each case, show that the set of
vectors is orthogonal in R4.

a. {(1, −1, 2, 5), (4, 1, 1, −1), (−7, 28, 5, 5)}

b. {(2, −1, 4, 5), (0, −1, 1, −1), (0, 3, 2, −1)}

Exercise 5.3.3 In each case, show that B is an
orthogonal basis of R3 and use Theorem 5.3.6 to ex-
pand x = (a, b, c) as a linear combination of the
basis vectors.

a. B = {(1, −1, 3), (−2, 1, 1), (4, 7, 1)}

b. B = {(1, 0, −1), (1, 4, 1), (2, −1, 2)}

c. B = {(1, 2, 3), (−1, −1, 1), (5, −4, 1)}
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d. B = {(1, 1, 1), (1, −1, 0), (1, 1, −2)}

b.

 a
b
c

 = 1
2(a − c)

 1
0

−1

 + 1
18(a + 4b +

c)

 1
4
1

+ 1
9(2a−b+2c)

 2
−1

2

.

d.

 a
b
c

 = 1
3(a + b + c)

 1
1
1

 + 1
2(a −

b)

 1
−1

0

+ 1
6(a+b−2c)

 1
1

−2

.

Exercise 5.3.4 In each case, write x as a linear
combination of the orthogonal basis of the subspace
U .

a. x=(13, −20, 15); U = span{(1, −2, 3), (−1, 1, 1)}

b. x = (14, 1, −8, 5);
U = span{(2, −1, 0, 3), (2, 1, −2, −1)}

b.


14
1

−8
5

= 3


2

−1
0
3

+4


2
1

−2
−1

.

Exercise 5.3.5 In each case, find all (a, b, c, d)
in R4 such that the given set is orthogonal.

a. {(1, 2, 1, 0), (1, −1, 1, 3), (2, −1, 0, −1),
(a, b, c, d)}

b. {(1, 0, −1, 1), (2, 1, 1, −1), (1, −3, 1, 0),
(a, b, c, d)}

b. t


−1

3
10
11

, in R

Exercise 5.3.6 If ‖x‖= 3, ‖y‖= 1, and x ·y =−2,
compute:

‖3x−5y‖a) ‖2x+7y‖b)
(3x−y) · (2y−x)c) (x−2y) · (3x+5y)d)

b.
√

29

d. 19

Exercise 5.3.7 In each case either show that the
statement is true or give an example showing that it
is false.

a. Every independent set in Rn is orthogonal.

b. If {x, y} is an orthogonal set in Rn, then
{x, x+y} is also orthogonal.

c. If {x, y} and {z, w} are both orthogonal in
Rn, then {x, y, z, w} is also orthogonal.

d. If {x1, x2} and {y1, y2, y3} are both or-
thogonal and xi ·y j = 0 for all i and j, then
{x1, x2, y1, y2, y3} is orthogonal.

e. If {x1, x2, . . . , xn} is orthogonal in Rn, then
Rn = span{x1, x2, . . . , xn}.

f. If x 6= 0 in Rn, then {x} is an orthogonal set.

b. F. x =

[
1
0

]
and y =

[
0
1

]
.

d. T. Every xi · y j = 0 by assumption, every
xi ·x j = 0 if i 6= j because the xi are orthogo-
nal, and every yi ·y j = 0 if i 6= j because the yi
are orthogonal. As all the vectors are nonzero,
this does it.

f. T. Every pair of distinct vectors in the set {x}
has dot product zero (there are no such pairs).

Exercise 5.3.8 Let v denote a nonzero vector in
Rn.
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a. Show that P = {x in Rn | x ·v = 0} is a sub-
space of Rn.

b. Show that Rv = {tv | t in R} is a subspace of
Rn.

c. Describe P and Rv geometrically when n = 3.

Exercise 5.3.9 If A is an m× n matrix with or-
thonormal columns, show that AT A = In. [Hint: If
c1, c2, . . . , cn are the columns of A, show that col-
umn j of AT A has entries c1 ·c j, c2 ·c j, . . . , cn ·c j].

Let c1, . . . , cn be the columns of A. Then row i of AT

is cT
i , so the (i, j)-entry of AT A is cT

i c j = ci ·c j = 0, 1
according as i 6= j, i = j. So AT A = I.

Exercise 5.3.10 Use the Cauchy inequality to
show that √xy≤ 1

2(x+y) for all x≥ 0 and y≥ 0. Here√
xy and 1

2(x+y) are called, respectively, the geomet-
ric mean and arithmetic mean of x and y. [Hint: Use

x =

[ √
x√
y

]
and y =

[ √
y√
x

]
.]

Exercise 5.3.11 Use the Cauchy inequality to
prove that:

a. r1 + r2 + · · ·+ rn ≤ n(r2
1 + r2

2 + · · ·+ r2
n) for all ri

in R and all n ≥ 1.

b. r1r2+r1r3+r2r3 ≤ r2
1+r2

2+r2
3 for all r1, r2, and

r3 in R. [Hint: See part (a).]

b. Take n = 3 in (a), expand, and simplify.

Exercise 5.3.12

a. Show that x and y are orthogonal in Rn if and
only if ‖x+y‖= ‖x−y‖.

b. Show that x+y and x−y are orthogonal in
Rn if and only if ‖x‖= ‖y‖.

b. We have (x+y) ·(x−y) = ‖x‖2−‖y‖2. Hence
(x+y) · (x−y) = 0 if and only if ‖x‖2 = ‖y‖2;
if and only if ‖x‖ = ‖y‖—where we used the
fact that ‖x‖ ≥ 0 and ‖y‖ ≥ 0.

Exercise 5.3.13

a. Show that ‖x+y‖2 = ‖x‖2 +‖y‖2 if and only
if x is orthogonal to y.

b. If x =

[
1
1

]
, y =

[
1
0

]
and z =

[
−2

3

]
, show

that ‖x+y+z‖2 = ‖x‖2 +‖y‖2 +‖z‖2 but
x ·y 6= 0, x ·z 6= 0, and y ·z 6= 0.

Exercise 5.3.14

a. Show that x ·y = 1
4 [‖x+y‖2−‖x−y‖2] for all

x, y in Rn.

b. Show that ‖x‖2+‖y‖2 = 1
2

[
‖x+y‖2 +‖x−y‖2

]
for all x, y in Rn.

Exercise 5.3.15 If A is n × n, show that ev-
ery eigenvalue of AT A is nonnegative. [Hint:
Compute ‖Ax‖2 where x is an eigenvector.]

If AT Ax = λx, then ‖Ax‖2 = (Ax) · (Ax) = xT AT Ax =
xT (λx) = λ‖x‖2.

Exercise 5.3.16 If Rn = span{x1, . . . , xm} and
x ·xi = 0 for all i, show that x = 0. [Hint: Show
‖x‖= 0.]

Exercise 5.3.17 If Rn = span{x1, . . . , xm} and
x ·xi = y ·xi for all i, show that x = y. [Hint: Exer-
cise 5.3.16]

Exercise 5.3.18 Let {e1, . . . , en} be an orthogonal
basis of Rn. Given x and y in Rn, show that

x ·y = (x·e1)(y·e1)
‖e1‖2 + · · ·+ (x·en)(y·en)

‖en‖2
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5.4 Rank of a Matrix

In this section we use the concept of dimension to clarify the definition of the rank of a matrix given
in Section 1.2, and to study its properties. This requires that we deal with rows and columns in the
same way. While it has been our custom to write the n-tuples in Rn as columns, in this section we
will frequently write them as rows. Subspaces, independence, spanning, and dimension are defined
for rows using matrix operations, just as for columns. If A is an m×n matrix, we define:

Definition 5.10 Column and Row Space of a Matrix

The column space, col A, of A is the subspace of Rm spanned by the columns of A.
The row space, row A, of A is the subspace of Rn spanned by the rows of A.

Much of what we do in this section involves these subspaces. We begin with:

Lemma 5.4.1
Let A and B denote m×n matrices.

1. If A → B by elementary row operations, then row A = row B.

2. If A → B by elementary column operations, then col A = col B.

Proof. We prove (1); the proof of (2) is analogous. It is enough to do it in the case when A → B
by a single row operation. Let R1, R2, . . . , Rm denote the rows of A. The row operation A → B
either interchanges two rows, multiplies a row by a nonzero constant, or adds a multiple of a row
to a different row. We leave the first two cases to the reader. In the last case, suppose that a times
row p is added to row q where p < q. Then the rows of B are R1, . . . , Rp, . . . , Rq +aRp, . . . , Rm,
and Theorem 5.1.1 shows that

span{R1, . . . , Rp, . . . , Rq, . . . , Rm}= span{R1, . . . , Rp, . . . , Rq +aRp, . . . , Rm}

That is, row A = row B.

If A is any matrix, we can carry A → R by elementary row operations where R is a row-echelon
matrix. Hence row A = row R by Lemma 5.4.1; so the first part of the following result is of interest.

Lemma 5.4.2
If R is a row-echelon matrix, then

1. The nonzero rows of R are a basis of row R.

2. The columns of R containing leading ones are a basis of col R.

Proof. The rows of R are independent by Example 5.2.6, and they span row R by definition. This
proves (1).
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Let c j1 , c j2 , . . . , c jr denote the columns of R containing leading 1s. Then {c j1 , c j2 , . . . , c jr}
is independent because the leading 1s are in different rows (and have zeros below and to the left
of them). Let U denote the subspace of all columns in Rm in which the last m− r entries are zero.
Then dim U = r (it is just Rr with extra zeros). Hence the independent set {c j1 , c j2 , . . . , c jr} is a
basis of U by Theorem 5.2.7. Since each c ji is in col R, it follows that col R =U , proving (2).

With Lemma 5.4.2 we can fill a gap in the definition of the rank of a matrix given in Chapter 1.
Let A be any matrix and suppose A is carried to some row-echelon matrix R by row operations.
Note that R is not unique. In Section 1.2 we defined the rank of A, denoted rank A, to be the
number of leading 1s in R, that is the number of nonzero rows of R. The fact that this number does
not depend on the choice of R was not proved in Section 1.2. However part 1 of Lemma 5.4.2 shows
that

rank A = dim ( row A)

and hence that rank A is independent of R.
Lemma 5.4.2 can be used to find bases of subspaces of Rn (written as rows). Here is an example.

Example 5.4.1

Find a basis of U = span{(1, 1, 2, 3), (2, 4, 1, 0), (1, 5, −4, −9)}.

Solution. U is the row space of

 1 1 2 3
2 4 1 0
1 5 −4 −9

. This matrix has row-echelon form 1 1 2 3
0 1 −3

2 −3
0 0 0 0

, so {(1, 1, 2, 3), (0, 1, −3
2 , −3)} is basis of U by Lemma 5.4.2.

Note that {(1, 1, 2, 3), (0, 2, −3, −6)} is another basis that avoids fractions.

Lemmas 5.4.1 and 5.4.2 are enough to prove the following fundamental theorem.

Theorem 5.4.1: Rank Theorem
Let A denote any m×n matrix of rank r. Then

dim (col A) = dim ( row A) = r

Moreover, if A is carried to a row-echelon matrix R by row operations, then

1. The r nonzero rows of R are a basis of row A.

2. If the leading 1s lie in columns j1, j2, . . . , jr of R, then columns j1, j2, . . . , jr of A are
a basis of col A.

Proof. We have row A = row R by Lemma 5.4.1, so (1) follows from Lemma 5.4.2. Moreover,
R = UA for some invertible matrix U by Theorem 2.5.1. Now write A =

[
c1 c2 . . . cn

]
where

c1, c2, . . . , cn are the columns of A. Then

R =UA =U
[

c1 c2 · · · cn
]
=
[

Uc1 Uc2 · · · Ucn
]
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Thus, in the notation of (2), the set B = {Uc j1 , Uc j2 , . . . , Uc jr} is a basis of col R by Lemma 5.4.2.
So, to prove (2) and the fact that dim (col A) = r, it is enough to show that D = {c j1 , c j2 , . . . , c jr}
is a basis of col A. First, D is linearly independent because U is invertible (verify), so we show that,
for each j, column c j is a linear combination of the c ji . But Uc j is column j of R, and so is a linear
combination of the Uc ji , say Uc j = a1Uc j1 +a2Uc j2 + · · ·+arUc jr where each ai is a real number.

Since U is invertible, it follows that c j = a1c j1 + a2c j2 + · · ·+ arc jr and the proof is complete.

Example 5.4.2

Compute the rank of A =

 1 2 2 −1
3 6 5 0
1 2 1 2

 and find bases for row A and col A.

Solution. The reduction of A to row-echelon form is as follows: 1 2 2 −1
3 6 5 0
1 2 1 2

→

 1 2 2 −1
0 0 −1 3
0 0 −1 3

→

 1 2 2 −1
0 0 −1 3
0 0 0 0


Hence rank A = 2, and {

[
1 2 2 −1

]
,
[

0 0 1 −3
]
} is a basis of row A by

Lemma 5.4.2. Since the leading 1s are in columns 1 and 3 of the row-echelon matrix,

Theorem 5.4.1 shows that columns 1 and 3 of A are a basis


 1

3
1

 ,

 2
5
1

 of col A.

Theorem 5.4.1 has several important consequences. The first, Corollary 5.4.1 below, follows
because the rows of A are independent (respectively span row A) if and only if their transposes are
independent (respectively span col A).

Corollary 5.4.1

If A is any matrix, then rank A = rank (AT ).

If A is an m×n matrix, we have col A ⊆ Rm and row A ⊆ Rn. Hence Theorem 5.2.8 shows that
dim (col A)≤ dim (Rm) = m and dim ( row A)≤ dim (Rn) = n. Thus Theorem 5.4.1 gives:

Corollary 5.4.2

If A is an m×n matrix, then rank A ≤ m and rank A ≤ n.

Corollary 5.4.3

rank A = rank (UA) = rank (AV ) whenever U and V are invertible.
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Proof. Lemma 5.4.1 gives rank A = rank (UA). Using this and Corollary 5.4.1 we get

rank (AV ) = rank (AV )T = rank (V T AT ) = rank (AT ) = rank A

The next corollary requires a preliminary lemma.

Lemma 5.4.3
Let A, U , and V be matrices of sizes m×n, p×m, and n×q respectively.

1. col (AV )⊆ col A, with equality if VV ′ = In for some V ′.

2. row (UA)⊆ row A, with equality if U ′U = Im for some U ′.

Proof. For (1), write V =
[
v1, v2, . . . , vq

]
where v j is column j of V . Then we have

AV =
[
Av1, Av2, . . . , Avq

]
, and each Av j is in col A by Definition 2.4. It follows that col (AV ) ⊆

col A. If VV ′ = In, we obtain col A = col [(AV )V ′]⊆ col (AV ) in the same way. This proves (1).
As to (2), we have col

[
(UA)T ]= col (ATUT )⊆ col (AT ) by (1), from which row (UA)⊆ row A.

If U ′U = Im, this is equality as in the proof of (1).

Corollary 5.4.4

If A is m×n and B is n×m, then rank AB ≤ rank A and rank AB ≤ rank B.

Proof. By Lemma 5.4.3, col (AB)⊆ col A and row (BA)⊆ row A, so Theorem 5.4.1 applies.

In Section 5.1 we discussed two other subspaces associated with an m× n matrix A: the null
space null (A) and the image space im (A)

null (A) = {x in Rn | Ax = 0} and im (A) = {Ax | x in Rn}

Using rank, there are simple ways to find bases of these spaces. If A has rank r, we have im (A) =
col (A) by Example 5.1.8, so dim [ im (A)] = dim [col (A)] = r. Hence Theorem 5.4.1 provides a
method of finding a basis of im (A). This is recorded as part (2) of the following theorem.

Theorem 5.4.2
Let A denote an m×n matrix of rank r. Then

1. The n− r basic solutions to the system Ax = 0 provided by the gaussian algorithm are
a basis of null (A), so dim [null (A)] = n− r.

2. Theorem 5.4.1 provides a basis of im (A) = col (A), and dim [ im (A)] = r.

Proof. It remains to prove (1). We already know (Theorem 2.2.1) that null (A) is spanned by the
n− r basic solutions of Ax = 0. Hence using Theorem 5.2.7, it suffices to show that dim [null (A)] =
n− r. So let {x1, . . . , xk} be a basis of null (A), and extend it to a basis {x1, . . . , xk, xk+1, . . . , xn}
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of Rn (by Theorem 5.2.6). It is enough to show that {Axk+1, . . . , Axn} is a basis of im (A); then
n− k = r by the above and so k = n− r as required.

Spanning. Choose Ax in im (A), x in Rn, and write x = a1x1 + · · ·+akxk +ak+1xk+1 + · · ·+anxn
where the ai are in R. Then Ax = ak+1Axk+1 + · · ·+anAxn because {x1, . . . , xk} ⊆ null (A).

Independence. Let tk+1Axk+1+ · · ·+ tnAxn = 0, ti in R. Then tk+1xk+1+ · · ·+ tnxn is in null A, so
tk+1xk+1 + · · ·+ tnxn = t1x1 + · · ·+ tkxk for some t1, . . . , tk in R. But then the independence of the
xi shows that ti = 0 for every i.

Example 5.4.3

If A =

 1 −2 1 1
−1 2 0 1

2 −4 1 0

, find bases of null (A) and im (A), and so find their dimensions.

Solution. If x is in null (A), then Ax = 0, so x is given by solving the system Ax = 0. The
reduction of the augmented matrix to reduced form is 1 −2 1 1 0

−1 2 0 1 0
2 −4 1 0 0

→

 1 −2 0 −1 0
0 0 1 2 0
0 0 0 0 0



Hence r = rank (A) = 2. Here, im (A) = col (A) has basis


 1

−1
2

 ,

 1
0
1

 by

Theorem 5.4.1 because the leading 1s are in columns 1 and 3. In particular,
dim [ im (A)] = 2 = r as in Theorem 5.4.2.
Turning to null (A), we use gaussian elimination. The leading variables are x1 and x3, so the
nonleading variables become parameters: x2 = s and x4 = t. It follows from the reduced
matrix that x1 = 2s+ t and x3 =−2t, so the general solution is

x =


x1
x2
x3
x4

=


2s+ t

s
−2t

t

= sx1 + tx2 where x1 =


2
1
0
0

 , and x2 =


1
0

−2
1

 .

Hence null (A). But x1 and x2 are solutions (basic), so

null (A) = span{x1, x2}

However Theorem 5.4.2 asserts that {x1, x2} is a basis of null (A). (In fact it is easy to
verify directly that {x1, x2} is independent in this case.) In particular,
dim [null (A)] = 2 = n− r, as Theorem 5.4.2 asserts.

Let A be an m×n matrix. Corollary 5.4.2 of Theorem 5.4.1 asserts that rank A ≤ m and rank A ≤
n, and it is natural to ask when these extreme cases arise. If c1, c2, . . . , cn are the columns of A,
Theorem 5.2.2 shows that {c1, c2, . . . , cn} spans Rm if and only if the system Ax = b is consistent



302 Vector Space Rn

for every b in Rm, and that {c1, c2, . . . , cn} is independent if and only if Ax = 0, x in Rn, implies
x = 0. The next two useful theorems improve on both these results, and relate them to when the
rank of A is n or m.

Theorem 5.4.3
The following are equivalent for an m×n matrix A:

1. rank A = n.

2. The rows of A span Rn.

3. The columns of A are linearly independent in Rm.

4. The n×n matrix AT A is invertible.

5. CA = In for some n×m matrix C.

6. If Ax = 0, x in Rn, then x = 0.

Proof. (1) ⇒ (2). We have row A ⊆ Rn, and dim ( row A) = n by (1), so row A = Rn by Theo-
rem 5.2.8. This is (2).

(2) ⇒ (3). By (2), row A =Rn, so rank A = n. This means dim (col A) = n. Since the n columns
of A span col A, they are independent by Theorem 5.2.7.

(3) ⇒ (4). If (AT A)x = 0, x in Rn, we show that x = 0 (Theorem 2.4.5). We have

‖Ax‖2 = (Ax)T Ax = xT AT Ax = xT 0 = 0

Hence Ax = 0, so x = 0 by (3) and Theorem 5.2.2.
(4) ⇒ (5). Given (4), take C = (AT A)−1AT .
(5) ⇒ (6). If Ax = 0, then left multiplication by C (from (5)) gives x = 0.
(6) ⇒ (1). Given (6), the columns of A are independent by Theorem 5.2.2. Hence dim (col A)= n,

and (1) follows.

Theorem 5.4.4
The following are equivalent for an m×n matrix A:

1. rank A = m.

2. The columns of A span Rm.

3. The rows of A are linearly independent in Rn.

4. The m×m matrix AAT is invertible.

5. AC = Im for some n×m matrix C.

6. The system Ax = b is consistent for every b in Rm.
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Proof. (1) ⇒ (2). By (1), dim (col A = m, so col A = Rm by Theorem 5.2.8.
(2) ⇒ (3). By (2), col A = Rm, so rank A = m. This means dim ( row A) = m. Since the m rows

of A span row A, they are independent by Theorem 5.2.7.
(3) ⇒ (4). We have rank A = m by (3), so the n×m matrix AT has rank m. Hence applying

Theorem 5.4.3 to AT in place of A shows that (AT )T AT is invertible, proving (4).
(4) ⇒ (5). Given (4), take C = AT (AAT )

−1 in (5).
(5) ⇒ (6). Comparing columns in AC = Im gives Ac j = e j for each j, where c j and e j denote

column j of C and Im respectively. Given b in Rm, write b = ∑
m
j=1 r je j, r j in R. Then Ax = b holds

with x = ∑
m
j=1 r jc j as the reader can verify.

(6) ⇒ (1). Given (6), the columns of A span Rm by Theorem 5.2.2. Thus col A = Rm and (1)
follows.

Example 5.4.4

Show that
[

3 x+ y+ z
x+ y+ z x2 + y2 + z2

]
is invertible if x, y, and z are not all equal.

Solution. The given matrix has the form AT A where A =

 1 x
1 y
1 z

 has independent

columns because x, y, and z are not all equal (verify). Hence Theorem 5.4.3 applies.

Theorem 5.4.3 and Theorem 5.4.4 relate several important properties of an m× n matrix A to
the invertibility of the square, symmetric matrices AT A and AAT . In fact, even if the columns of
A are not independent or do not span Rm, the matrices AT A and AAT are both symmetric and, as
such, have real eigenvalues as we shall see. We return to this in Chapter 7.

Exercises for 5.4

Exercise 5.4.1 In each case find bases for the row
and column spaces of A and determine the rank of
A.


2 −4 6 8
2 −1 3 2
4 −5 9 10
0 −1 1 2

a)


2 −1 1

−2 1 1
4 −2 3

−6 3 0

b)


1 −1 5 −2 2
2 −2 −2 5 1
0 0 −12 9 −3

−1 1 7 −7 1

c)

[
1 2 −1 3

−3 −6 3 −2

]
d)

b.
 2

−1
1

 ,

 0
0
1

 ;




2
−2

4
−6

 ,


1
1
3
0


 ;2
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d.




1
2

−1
3

 ,


0
0
0
1


 ;
{[

1
−3

]
,
[

3
−2

]}
;2

Exercise 5.4.2 In each case find a basis of the
subspace U .

a. U = span{(1, −1, 0, 3), (2, 1, 5, 1), (4, −2, 5, 7)}

b. U = span{(1, −1, 2, 5, 1), (3, 1, 4, 2, 7),
(1, 1, 0, 0, 0), (5, 1, 6, 7, 8)}

c. U = span




1
1
0
0

 ,


0
0
1
1

 ,


1
0
1
0

 ,


0
1
0
1




d.

U = span


 1

5
−6

 ,

 2
6

−8

 ,

 3
7

−10

 ,

 4
8

12



b.




1
1
0
0
0

 ,


0

−2
2
5
1

 ,


0
0
2

−3
6




d.


 1

5
−6

 ,

 0
1

−1

 0
0
1


Exercise 5.4.3

a. Can a 3×4 matrix have independent columns?
Independent rows? Explain.

b. If A is 4× 3 and rank A = 2, can A have in-
dependent columns? Independent rows? Ex-
plain.

c. If A is an m×n matrix and rank A = m, show
that m ≤ n.

d. Can a nonsquare matrix have its rows inde-
pendent and its columns independent? Ex-
plain.

e. Can the null space of a 3×6 matrix have di-
mension 2? Explain.

f. Suppose that A is 5×4 and null (A) = Rx for
some column x 6= 0. Can dim ( im A) = 2?

b. No; no

d. No

f. Otherwise, if A is m × n, we have m =
dim ( row A) = rank A = dim (col A) = n

Exercise 5.4.4 If A is m×n show that

col (A) = {Ax | x in Rn}

Let A =
[

c1 . . . cn
]
. Then col A =

span{c1, . . . , cn} = {x1c1 + · · · + xncn | xi in R} =
{Ax | x in Rn}.

Exercise 5.4.5 If A is m×n and B is n×m, show
that AB = 0 if and only if col B ⊆ null A.

Exercise 5.4.6 Show that the rank does not
change when an elementary row or column opera-
tion is performed on a matrix.

Exercise 5.4.7 In each case find a basis of the null
space of A. Then compute rank A and verify (1) of
Theorem 5.4.2.

a. A =


3 1 1
2 0 1
4 2 1
1 −1 1



b. A =


3 5 5 2 0
1 0 2 2 1
1 1 1 −2 −2

−2 0 −4 −4 −2



b. The basis is




6
0

−4
1
0

 ,


5
0

−3
0
1


 so the di-

mension is 2. Have rank A = 3 and n−3 = 2.

Exercise 5.4.8 Let A = cr where c 6= 0 is a column
in Rm and r 6= 0 is a row in Rn.
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a. Show that col A = span{c} and
row A = span{r}.

b. Find dim (null A).

c. Show that null A = null r.

b. n−1

Exercise 5.4.9 Let A be m × n with columns
c1, c2, . . . , cn.

a. If {c1, . . . , cn} is independent, show null A =
{0}.

b. If null A = {0}, show that {c1, . . . , cn} is in-
dependent.

b. If r1c1 + · · ·+ rncn = 0, let x = [r1, . . . , rn]
T .

Then Cx = r1c1 + · · ·+ rncn = 0, so x is in
null A = 0. Hence each ri = 0.

Exercise 5.4.10 Let A be an n×n matrix.

a. Show that A2 = 0 if and only if col A ⊆ null A.

b. Conclude that if A2 = 0, then rank A ≤ n
2 .

c. Find a matrix A for which col A = null A.

b. Write r = rank A. Then (a) gives r =
dim (col A ≤ dim (null A) = n− r.

Exercise 5.4.11 Let B be m×n and let AB be k×n.
If rank B = rank (AB), show that null B = null (AB).
[Hint: Theorem 5.4.1.]

Exercise 5.4.12 Give a careful argument why
rank (AT ) = rank A.

We have rank (A) = dim [col (A)] and rank (AT ) =
dim [ row (AT )]. Let {c1, c2, . . . , ck} be a basis of
col (A); it suffices to show that {cT

1 , cT
2 , . . . , cT

k } is a

basis of row (AT ). But if t1cT
1 +t2cT

2 + · · ·+tkcT
k = 0, t j

in R, then (taking transposes) t1c1+t2c2+ · · ·+tkck =
0 so each t j = 0. Hence {cT

1 , cT
2 , . . . , cT

k } is inde-
pendent. Given v in row (AT ) then vT is in col (A);
say vT = s1c1 + s2c2 + · · ·+ skck, s j in R: Hence
v = s1cT

1 + s2cT
2 + · · ·+ skcT

k , so {cT
1 , cT

2 , . . . , cT
k }

spans row (AT ), as required.

Exercise 5.4.13 Let A be an m× n matrix with
columns c1, c2, . . . , cn. If rank A = n, show that
{AT c1, AT c2, . . . , AT cn} is a basis of Rn.

Exercise 5.4.14 If A is m×n and b is m×1, show
that b lies in the column space of A if and only if
rank [A b] = rank A.

Exercise 5.4.15

a. Show that Ax = b has a solution if and only
if rank A = rank [A b]. [Hint: Exercises 5.4.12
and 5.4.14.]

b. If Ax = b has no solution, show that
rank [A b] = 1+ rank A.

b. Let {u1, . . . , ur} be a basis of col (A). Then
b is not in col (A), so {u1, . . . , ur, b} is
linearly independent. Show that col [A b] =
span{u1, . . . , ur, b}.

Exercise 5.4.16 Let X be a k×m matrix. If I is
the m×m identity matrix, show that I +XT X is in-

vertible. [Hint: I +XT X = AT A where A =

[
I
X

]
in

block form.]

Exercise 5.4.17 If A is m × n of rank r, show
that A can be factored as A = PQ where P is m× r
with r independent columns, and Q is r × n with

r independent rows. [Hint: Let UAV =

[
Ir 0
0 0

]
by Theorem 2.5.3, and write U−1 =

[
U1 U2
U3 U4

]
and

V−1 =

[
V1 V2
V3 V4

]
in block form, where U1 and V1 are

r× r.]

Exercise 5.4.18

a. Show that if A and B have independent
columns, so does AB.
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b. Show that if A and B have independent rows,
so does AB.

Exercise 5.4.19 A matrix obtained from A by
deleting rows and columns is called a submatrix
of A. If A has an invertible k × k submatrix, show

that rank A ≥ k. [Hint: Show that row and column
operations carry

A →
[

Ik P
0 Q

]
in block form.] Remark: It can be

shown that rank A is the largest integer r such that
A has an invertible r× r submatrix.
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5.5 Similarity and Diagonalization

In Section 3.3 we studied diagonalization of a square matrix A, and found important applications
(for example to linear dynamical systems). We can now utilize the concepts of subspace, basis, and
dimension to clarify the diagonalization process, reveal some new results, and prove some theorems
which could not be demonstrated in Section 3.3.

Before proceeding, we introduce a notion that simplifies the discussion of diagonalization, and
is used throughout the book.

Similar Matrices

Definition 5.11 Similar Matrices
If A and B are n×n matrices, we say that A and B are similar, and write A ∼ B, if
B = P−1AP for some invertible matrix P.

Note that A ∼ B if and only if B = QAQ−1 where Q is invertible (write P−1 = Q). The language of
similarity is used throughout linear algebra. For example, a matrix A is diagonalizable if and only
if it is similar to a diagonal matrix.

If A∼B, then necessarily B∼A. To see why, suppose that B=P−1AP. Then A=PBP−1 =Q−1BQ
where Q = P−1 is invertible. This proves the second of the following properties of similarity (the
others are left as an exercise):

1. A ∼ A for all square matrices A.
2. If A ∼ B, then B ∼ A. (5.2)
3. If A ∼ B and B ∼ A, then A ∼C.

These properties are often expressed by saying that the similarity relation ∼ is an equivalence
relation on the set of n×n matrices. Here is an example showing how these properties are used.

Example 5.5.1

If A is similar to B and either A or B is diagonalizable, show that the other is also
diagonalizable.

Solution. We have A ∼ B. Suppose that A is diagonalizable, say A ∼ D where D is diagonal.
Since B ∼ A by (2) of (5.2), we have B ∼ A and A ∼ D. Hence B ∼ D by (3) of (5.2), so B is
diagonalizable too. An analogous argument works if we assume instead that B is
diagonalizable.

Similarity is compatible with inverses, transposes, and powers:

If A ∼ B then A−1 ∼ B−1, AT ∼ BT , and Ak ∼ Bk for all integers k ≥ 1.
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The proofs are routine matrix computations using Theorem 3.3.1. Thus, for example, if A is
diagonalizable, so also are AT , A−1 (if it exists), and Ak (for each k ≥ 1). Indeed, if A ∼ D where D
is a diagonal matrix, we obtain AT ∼ DT , A−1 ∼ D−1, and Ak ∼ Dk, and each of the matrices DT ,
D−1, and Dk is diagonal.

We pause to introduce a simple matrix function that will be referred to later.

Definition 5.12 Trace of a Matrix
The trace tr A of an n×n matrix A is defined to be the sum of the main diagonal elements
of A.

In other words:
If A =

[
ai j
]

, then tr A = a11 +a22 + · · ·+ann.

It is evident that tr (A+B) = tr A+ tr B and that tr (cA) = c tr A holds for all n×n matrices A and
B and all scalars c. The following fact is more surprising.

Lemma 5.5.1
Let A and B be n×n matrices. Then tr (AB) = tr (BA).

Proof. Write A =
[
ai j
]

and B =
[
bi j
]
. For each i, the (i, i)-entry di of the matrix AB is given as

follows: di = ai1b1i +ai2b2i + · · ·+ainbni = ∑ j ai jb ji. Hence

tr (AB) = d1 +d2 + · · ·+dn = ∑
i

di = ∑
i

(
∑

j
ai jb ji

)

Similarly we have tr (BA) = ∑i(∑ j bi ja ji). Since these two double sums are the same, Lemma 5.5.1
is proved.

As the name indicates, similar matrices share many properties, some of which are collected in
the next theorem for reference.

Theorem 5.5.1
If A and B are similar n×n matrices, then A and B have the same determinant, rank, trace,
characteristic polynomial, and eigenvalues.

Proof. Let B = P−1AP for some invertible matrix P. Then we have

det B = det (P−1) det A det P = det A because det (P−1) = 1/ det P

Similarly, rank B = rank (P−1AP) = rank A by Corollary 5.4.3. Next Lemma 5.5.1 gives

tr (P−1AP) = tr
[
P−1(AP)

]
= tr

[
(AP)P−1]= tr A
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As to the characteristic polynomial,
cB(x) = det (xI −B) = det{x(P−1IP)−P−1AP}

= det{P−1(xI −A)P}
= det (xI −A)
= cA(x)

Finally, this shows that A and B have the same eigenvalues because the eigenvalues of a matrix are
the roots of its characteristic polynomial.

Example 5.5.2

Sharing the five properties in Theorem 5.5.1 does not guarantee that two matrices are
similar. The matrices A =

[
1 1
0 1

]
and I =

[
1 0
0 1

]
have the same determinant, rank,

trace, characteristic polynomial, and eigenvalues, but they are not similar because P−1IP = I
for any invertible matrix P.

Diagonalization Revisited

Recall that a square matrix A is diagonalizable if there exists an invertible matrix P such that
P−1AP = D is a diagonal matrix, that is if A is similar to a diagonal matrix D. Unfortunately, not
all matrices are diagonalizable, for example

[
1 1
0 1

]
(see Example 3.3.10). Determining whether

A is diagonalizable is closely related to the eigenvalues and eigenvectors of A. Recall that a number
λ is called an eigenvalue of A if Ax = λx for some nonzero column x in Rn, and any such nonzero
vector x is called an eigenvector of A corresponding to λ (or simply a λ -eigenvector of A). The
eigenvalues and eigenvectors of A are closely related to the characteristic polynomial cA(x) of A,
defined by

cA(x) = det (xI −A)

If A is n×n this is a polynomial of degree n, and its relationship to the eigenvalues is given in the
following theorem (a repeat of Theorem 3.3.2).

Theorem 5.5.2
Let A be an n×n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.

2. The λ -eigenvectors x are the nonzero solutions to the homogeneous system

(λ I −A)x = 0

of linear equations with λ I −A as coefficient matrix.
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Example 5.5.3

Show that the eigenvalues of a triangular matrix are the main diagonal entries.

Solution. Assume that A is triangular. Then the matrix xI −A is also triangular and has
diagonal entries (x−a11), (x−a22), . . . , (x−ann) where A =

[
ai j
]
. Hence Theorem 3.1.4 gives

cA(x) = (x−a11)(x−a22) · · ·(x−ann)

and the result follows because the eigenvalues are the roots of cA(x).

Theorem 3.3.4 asserts (in part) that an n×n matrix A is diagonalizable if and only if it has n
eigenvectors x1, . . . , xn such that the matrix P=

[
x1 · · · xn

]
with the xi as columns is invertible.

This is equivalent to requiring that {x1, . . . , xn} is a basis of Rn consisting of eigenvectors of A.
Hence we can restate Theorem 3.3.4 as follows:

Theorem 5.5.3
Let A be an n×n matrix.

1. A is diagonalizable if and only if Rn has a basis {x1, x2, . . . , xn} consisting of
eigenvectors of A.

2. When this is the case, the matrix P =
[

x1 x2 · · · xn
]

is invertible and
P−1AP = diag (λ1, λ2, . . . , λn) where, for each i, λi is the eigenvalue of A
corresponding to xi.

The next result is a basic tool for determining when a matrix is diagonalizable. It reveals an
important connection between eigenvalues and linear independence: Eigenvectors corresponding to
distinct eigenvalues are necessarily linearly independent.

Theorem 5.5.4
Let x1, x2, . . . , xk be eigenvectors corresponding to distinct eigenvalues λ1, λ2, . . . , λk of an
n×n matrix A. Then {x1, x2, . . . , xk} is a linearly independent set.

Proof. We use induction on k. If k = 1, then {x1} is independent because x1 6= 0. In general,
suppose the theorem is true for some k ≥ 1. Given eigenvectors {x1, x2, . . . , xk+1}, suppose a
linear combination vanishes:

t1x1 + t2x2 + · · ·+ tk+1xk+1 = 0 (5.3)
We must show that each ti = 0. Left multiply (5.3) by A and use the fact that Axi = λixi to get

t1λ1x1 + t2λ2x2 + · · ·+ tk+1λk+1xk+1 = 0 (5.4)

If we multiply (5.3) by λ1 and subtract the result from (5.4), the first terms cancel and we obtain

t2(λ2 −λ1)x2 + t3(λ3 −λ1)x3 + · · ·+ tk+1(λk+1 −λ1)xk+1 = 0
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Since x2, x3, . . . , xk+1 correspond to distinct eigenvalues λ2, λ3, . . . , λk+1, the set {x2, x3, . . . , xk+1}
is independent by the induction hypothesis. Hence,

t2(λ2 −λ1) = 0, t3(λ3 −λ1) = 0, . . . , tk+1(λk+1 −λ1) = 0

and so t2 = t3 = · · · = tk+1 = 0 because the λi are distinct. Hence (5.3) becomes t1x1 = 0, which
implies that t1 = 0 because x1 6= 0. This is what we wanted.

Theorem 5.5.4 will be applied several times; we begin by using it to give a useful condition for
when a matrix is diagonalizable.

Theorem 5.5.5
If A is an n×n matrix with n distinct eigenvalues, then A is diagonalizable.

Proof. Choose one eigenvector for each of the n distinct eigenvalues. Then these eigenvectors are
independent by Theorem 5.5.4, and so are a basis of Rn by Theorem 5.2.7. Now use Theorem 5.5.3.

Example 5.5.4

Show that A =

 1 0 0
1 2 3

−1 1 0

 is diagonalizable.

Solution. A routine computation shows that cA(x) = (x−1)(x−3)(x+1) and so has
distinct eigenvalues 1, 3, and −1. Hence Theorem 5.5.5 applies.

However, a matrix can have multiple eigenvalues as we saw in Section 3.3. To deal with this sit-
uation, we prove an important lemma which formalizes a technique that is basic to diagonalization,
and which will be used three times below.
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Lemma 5.5.2
Let {x1, x2, . . . , xk} be a linearly independent set of eigenvectors of an n×n matrix A,
extend it to a basis {x1, x2, . . . , xk, . . . , xn} of Rn, and let

P =
[

x1 x2 · · · xn
]

be the (invertible) n×n matrix with the xi as its columns. If λ1, λ2, . . . , λk are the (not
necessarily distinct) eigenvalues of A corresponding to x1, x2, . . . , xk respectively, then
P−1AP has block form

P−1AP =

[
diag (λ1, λ2, . . . , λk) B

0 A1

]
where B has size k× (n− k) and A1 has size (n− k)× (n− k).

Proof. If {e1, e2, . . . , en} is the standard basis of Rn, then[
e1 e2 . . . en

]
= In = P−1P = P−1 [ x1 x2 · · · xn

]
=
[

P−1x1 P−1x2 · · · P−1xn
]

Comparing columns, we have P−1xi = ei for each 1 ≤ i ≤ n. On the other hand, observe that

P−1AP = P−1A
[

x1 x2 · · · xn
]
=
[
(P−1A)x1 (P−1A)x2 · · · (P−1A)xn

]
Hence, if 1 ≤ i ≤ k, column i of P−1AP is

(P−1A)xi = P−1(λixi) = λi(P−1xi) = λiei

This describes the first k columns of P−1AP, and Lemma 5.5.2 follows.

Note that Lemma 5.5.2 (with k = n) shows that an n×n matrix A is diagonalizable if Rn has a basis
of eigenvectors of A, as in (1) of Theorem 5.5.3.

Definition 5.13 Eigenspace of a Matrix

If λ is an eigenvalue of an n×n matrix A, define the eigenspace of A corresponding to λ by

Eλ (A) = {x in Rn | Ax = λx}

This is a subspace of Rn and the eigenvectors corresponding to λ are just the nonzero vectors in
Eλ (A). In fact Eλ (A) is the null space of the matrix (λ I −A):

Eλ (A) = {x | (λ I −A)x = 0}= null (λ I −A)

Hence, by Theorem 5.4.2, the basic solutions of the homogeneous system (λ I −A)x = 0 given by
the gaussian algorithm form a basis for Eλ (A). In particular

dim Eλ (A) is the number of basic solutions x of (λ I −A)x = 0 (5.5)
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Now recall (Definition 3.7) that the multiplicity11 of an eigenvalue λ of A is the number of times
λ occurs as a root of the characteristic polynomial cA(x) of A. In other words, the multiplicity of λ

is the largest integer m ≥ 1 such that

cA(x) = (x−λ )mg(x)

for some polynomial g(x). Because of (5.5), the assertion (without proof) in Theorem 3.3.5 can be
stated as follows: A square matrix is diagonalizable if and only if the multiplicity of each eigenvalue
λ equals dim [Eλ (A)]. We are going to prove this, and the proof requires the following result which
is valid for any square matrix, diagonalizable or not.

Lemma 5.5.3
Let λ be an eigenvalue of multiplicity m of a square matrix A. Then dim [Eλ (A)]≤ m.

Proof. Write dim [Eλ (A)] = d. It suffices to show that cA(x) = (x−λ )dg(x) for some polynomial
g(x), because m is the highest power of (x−λ ) that divides cA(x). To this end, let {x1, x2, . . . , xd}
be a basis of Eλ (A). Then Lemma 5.5.2 shows that an invertible n×n matrix P exists such that

P−1AP =

[
λ Id B
0 A1

]
in block form, where Id denotes the d×d identity matrix. Now write A′ = P−1AP and observe that
cA′(x) = cA(x) by Theorem 5.5.1. But Theorem 3.1.5 gives

cA(x) = cA′(x) = det (xIn −A′) = det
[
(x−λ )Id −B

0 xIn−d −A1

]
= det [(x−λ )Id] det [(xIn−d −A1)]

= (x−λ )dg(x)

where g(x) = cA1(x). This is what we wanted.

It is impossible to ignore the question when equality holds in Lemma 5.5.3 for each eigenvalue
λ . It turns out that this characterizes the diagonalizable n×n matrices A for which cA(x) factors
completely over R. By this we mean that cA(x) = (x− λ1)(x− λ2) · · ·(x− λn), where the λi are
real numbers (not necessarily distinct); in other words, every eigenvalue of A is real. This need not

happen (consider A =

[
0 −1
1 0

]
), and we investigate the general case below.

Theorem 5.5.6
The following are equivalent for a square matrix A for which cA(x) factors completely.

1. A is diagonalizable.

2. dim [Eλ (A)] equals the multiplicity of λ for every eigenvalue λ of the matrix A.

11This is often called the algebraic multiplicity of λ .
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Proof. Let A be n× n and let λ1, λ2, . . . , λk be the distinct eigenvalues of A. For each i, let mi
denote the multiplicity of λi and write di = dim

[
Eλi(A)

]
. Then

cA(x) = (x−λ1)
m1(x−λ2)

m2 . . .(x−λk)
mk

so m1 + · · ·+mk = n because cA(x) has degree n. Moreover, di ≤ mi for each i by Lemma 5.5.3.
(1) ⇒ (2). By (1), Rn has a basis of n eigenvectors of A, so let ti of them lie in Eλi(A) for each

i. Since the subspace spanned by these ti eigenvectors has dimension ti, we have ti ≤ di for each i by
Theorem 5.2.4. Hence

n = t1 + · · ·+ tk ≤ d1 + · · ·+dk ≤ m1 + · · ·+mk = n

It follows that d1 + · · ·+dk = m1 + · · ·+mk so, since di ≤ mi for each i, we must have di = mi. This
is (2).

(2) ⇒ (1). Let Bi denote a basis of Eλi(A) for each i, and let B = B1 ∪ ·· · ∪Bk. Since each Bi
contains mi vectors by (2), and since the Bi are pairwise disjoint (the λi are distinct), it follows that
B contains n vectors. So it suffices to show that B is linearly independent (then B is a basis of Rn).
Suppose a linear combination of the vectors in B vanishes, and let yi denote the sum of all terms
that come from Bi. Then yi lies in Eλi(A), so the nonzero yi are independent by Theorem 5.5.4 (as
the λi are distinct). Since the sum of the yi is zero, it follows that yi = 0 for each i. Hence all
coefficients of terms in yi are zero (because Bi is independent). Since this holds for each i, it shows
that B is independent.

Example 5.5.5

If A =

 5 8 16
4 1 8

−4 −4 −11

 and B =

 2 1 1
2 1 −2

−1 0 −2

 show that A is diagonalizable but B is

not.

Solution. We have cA(x) = (x+3)2(x−1) so the eigenvalues are λ1 =−3 and λ2 = 1. The
corresponding eigenspaces are Eλ1(A) = span{x1, x2} and Eλ2(A) = span{x3} where

x1 =

 −1
1
0

 , x2 =

 −2
0
1

 , x3 =

 2
1

−1


as the reader can verify. Since {x1, x2} is independent, we have dim (Eλ1(A)) = 2 which is
the multiplicity of λ1. Similarly, dim (Eλ2(A)) = 1 equals the multiplicity of λ2. Hence A is
diagonalizable by Theorem 5.5.6, and a diagonalizing matrix is P =

[
x1 x2 x3

]
.

Turning to B, cB(x) = (x+1)2(x−3) so the eigenvalues are λ1 =−1 and λ2 = 3. The
corresponding eigenspaces are Eλ1(B) = span{y1} and Eλ2(B) = span{y2} where

y1 =

 −1
2
1

 , y2 =

 5
6

−1


Here dim (Eλ1(B)) = 1 is smaller than the multiplicity of λ1, so the matrix B is not
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diagonalizable, again by Theorem 5.5.6. The fact that dim (Eλ1(B)) = 1 means that there is
no possibility of finding three linearly independent eigenvectors.

Complex Eigenvalues

All the matrices we have considered have had real eigenvalues. But this need not be the case:
The matrix A =

[
0 −1
1 0

]
has characteristic polynomial cA(x) = x2 + 1 which has no real roots.

Nonetheless, this matrix is diagonalizable; the only difference is that we must use a larger set of
scalars, the complex numbers. The basic properties of these numbers are outlined in Appendix ??.

Indeed, nearly everything we have done for real matrices can be done for complex matrices.
The methods are the same; the only difference is that the arithmetic is carried out with complex
numbers rather than real ones. For example, the gaussian algorithm works in exactly the same way
to solve systems of linear equations with complex coefficients, matrix multiplication is defined the
same way, and the matrix inversion algorithm works in the same way.

But the complex numbers are better than the real numbers in one respect: While there are
polynomials like x2+1 with real coefficients that have no real root, this problem does not arise with
the complex numbers: Every nonconstant polynomial with complex coefficients has a complex root,
and hence factors completely as a product of linear factors. This fact is known as the fundamental
theorem of algebra.12

Example 5.5.6

Diagonalize the matrix A =

[
0 −1
1 0

]
.

Solution. The characteristic polynomial of A is

cA(x) = det (xI −A) = x2 +1 = (x− i)(x+ i)

where i2 =−1. Hence the eigenvalues are λ1 = i and λ2 =−i, with corresponding
eigenvectors x1 =

[
1

−i

]
and x2 =

[
1
i

]
. Hence A is diagonalizable by the complex version

of Theorem 5.5.5, and the complex version of Theorem 5.5.3 shows that
P =

[
x1 x2

]
=

[
1 1

−i i

]
is invertible and P−1AP =

[
λ1 0
0 λ2

]
=

[
i 0
0 −i

]
. Of course,

this can be checked directly.

We shall return to complex linear algebra in Section ??.
12This was a famous open problem in 1799 when Gauss solved it at the age of 22 in his Ph.D. dissertation.
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Symmetric Matrices13

On the other hand, many of the applications of linear algebra involve a real matrix A and, while
A will have complex eigenvalues by the fundamental theorem of algebra, it is always of interest
to know when the eigenvalues are, in fact, real. While this can happen in a variety of ways, it
turns out to hold whenever A is symmetric. This important theorem will be used extensively later.
Surprisingly, the theory of complex eigenvalues can be used to prove this useful result about real
eigenvalues.

Let z denote the conjugate of a complex number z. If A is a complex matrix, the conjugate
matrix A is defined to be the matrix obtained from A by conjugating every entry. Thus, if A =

[
zi j
]
,

then A =
[
zi j
]
. For example,

If A =

[
−i+2 5

i 3+4i

]
then A =

[
i+2 5
−i 3−4i

]
Recall that z+w = z+w and zw = z w hold for all complex numbers z and w. It follows that if A
and B are two complex matrices, then

A+B = A+B, AB = A B and λA = λ A

hold for all complex scalars λ . These facts are used in the proof of the following theorem.

Theorem 5.5.7
Let A be a symmetric real matrix. If λ is any complex eigenvalue of A, then λ is real.14

Proof. Observe that A = A because A is real. If λ is an eigenvalue of A, we show that λ is real by
showing that λ = λ . Let x be a (possibly complex) eigenvector corresponding to λ , so that x 6= 0
and Ax = λx. Define c = xT x.

If we write x =


z1
z2
...

zn

 where the zi are complex numbers, we have

c = xT x = z1z1 + z2z2 + · · ·+ znzn = |z1|2 + |z2|2 + · · ·+ |zn|2

Thus c is a real number, and c > 0 because at least one of the zi 6= 0 (as x 6= 0). We show that
λ = λ by verifying that λc = λc. We have

λc = λ (xT x) = (λx)T x = (Ax)T x = xT AT x

At this point we use the hypothesis that A is symmetric and real. This means AT = A = A so we
continue the calculation:

13This discussion uses complex conjugation and absolute value. These topics are discussed in Appendix ??.
14This theorem was first proved in 1829 by the great French mathematician Augustin Louis Cauchy (1789–1857).
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λc = xT AT x = xT (A x) = xT (Ax) = xT (λx)
= xT (λ x)
= λxT x
= λc

as required.

The technique in the proof of Theorem 5.5.7 will be used again when we return to complex linear
algebra in Section ??.

Example 5.5.7

Verify Theorem 5.5.7 for every real, symmetric 2×2 matrix A.

Solution. If A =

[
a b
b c

]
we have cA(x) = x2 − (a+ c)x+(ac−b2), so the eigenvalues are

given by λ = 1
2 [(a+ c)±

√
(a+ c)2 −4(ac−b2)]. But here

(a+ c)2 −4(ac−b2) = (a− c)2 +4b2 ≥ 0

for any choice of a, b, and c. Hence, the eigenvalues are real numbers.

Exercises for 5.5

Exercise 5.5.1 By computing the trace, determi-
nant, and rank, show that A and B are not similar
in each case.

a. A =

[
1 2
2 1

]
, B =

[
1 1

−1 1

]

b. A =

[
3 1
2 −1

]
, B =

[
1 1
2 1

]

c. A =

[
2 1
1 −1

]
, B =

[
3 0
1 −1

]

d. A =

[
3 1

−1 2

]
, B =

[
2 −1
3 2

]

e. A =

 2 1 1
1 0 1
1 1 0

, B =

 1 −2 1
−2 4 −2
−3 6 −3



f. A =

 1 2 −3
1 −1 2
0 3 −5

, B =

 −2 1 3
6 −3 −9
0 0 0



b. traces = 2, ranks = 2, but det A =−5, det B =
−1

d. ranks = 2, determinants = 7, but tr A = 5,
tr B = 4

f. traces =−5, determinants = 0, but rank A= 2,
rank B = 1

Exercise 5.5.2 Show that


1 2 −1 0
2 0 1 1
1 1 0 −1
4 3 0 0

 and
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
1 −1 3 0

−1 0 1 1
0 −1 4 1
5 −1 −1 −4

 are not similar.

Exercise 5.5.3 If A ∼ B, show that:

AT ∼ BTa) A−1 ∼ B−1b)
rA ∼ rB for r in Rc) An ∼ Bn for n ≥ 1d)

b. If B = P−1AP, then B−1 = P−1A−1(P−1)−1 =
P−1A−1P.

Exercise 5.5.4 In each case, decide whether the
matrix A is diagonalizable. If so, find P such that
P−1AP is diagonal. 1 0 0

1 2 1
0 0 1

a)

 3 0 6
0 −3 0
5 0 2

b)

 3 1 6
2 1 0

−1 0 −3

c)

 4 0 0
0 2 2
2 3 1

d)

b. Yes, P =

 −1 0 6
0 1 0
1 0 5

, P−1AP = −3 0 0
0 −3 0
0 0 8


d. No, cA(x) = (x+1)(x−4)2 so λ = 4 has multi-

plicity 2. But dim (E4) = 1 so Theorem 5.5.6
applies.

Exercise 5.5.5 If A is invertible, show that AB is
similar to BA for all B.

Exercise 5.5.6 Show that the only matrix similar
to a scalar matrix A = rI, r in R, is A itself.

Exercise 5.5.7 Let λ be an eigenvalue of A with
corresponding eigenvector x. If B = P−1AP is similar
to A, show that P−1x is an eigenvector of B corre-
sponding to λ .

Exercise 5.5.8 If A∼B and A has any of the follow-
ing properties, show that B has the same property.

a. Idempotent, that is A2 = A.

b. Nilpotent, that is Ak = 0 for some k ≥ 1.

c. Invertible.

b. If B=P−1AP and Ak = 0, then Bk =(P−1AP)k =
P−1AkP = P−10P = 0.

Exercise 5.5.9 Let A denote an n×n upper trian-
gular matrix.

a. If all the main diagonal entries of A are dis-
tinct, show that A is diagonalizable.

b. If all the main diagonal entries of A are equal,
show that A is diagonalizable only if it is al-
ready diagonal.

c. Show that

 1 0 1
0 1 0
0 0 2

 is diagonalizable but

that

 1 1 0
0 1 0
0 0 2

 is not diagonalizable.

b. The eigenvalues of A are all equal (they are the
diagonal elements), so if P−1AP = D is diago-
nal, then D = λ I. Hence A = P−1(λ I)P = λ I.

Exercise 5.5.10 Let A be a diagonalizable n× n
matrix with eigenvalues λ1, λ2, . . . , λn (including
multiplicities). Show that:

a. det A = λ1λ2 · · ·λn

b. tr A = λ1 +λ2 + · · ·+λn

b. A is similar to D = diag (λ1, λ2, . . . , λn) so
(Theorem 5.5.1) tr A= tr D= λ1+λ2+ · · ·+λn.

Exercise 5.5.11 Given a polynomial p(x) = r0 +
r1x + · · ·+ rnxn and a square matrix A, the matrix
p(A) = r0I + r1A + · · ·+ rnAn is called the evalua-
tion of p(x) at A. Let B = P−1AP. Show that
p(B) = P−1 p(A)P for all polynomials p(x).

Exercise 5.5.12 Let P be an invertible n×n ma-
trix. If A is any n×n matrix, write TP(A) = P−1AP.
Verify that:
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TP(I) = Ia) TP(AB)= TP(A)TP(B)b)
TP(A + B) = TP(A) +
TP(B)

c) TP(rA) = rTP(A)d)

TP(Ak) = [TP(A)]k for k ≥ 1e)
If A is invertible, TP(A−1) = [TP(A)]−1.f)
If Q is invertible, TQ[TP(A)] = TPQ(A).g)

b. TP(A)TP(B) = (P−1AP)(P−1BP) = P−1(AB)P =
TP(AB).

Exercise 5.5.13

a. Show that two diagonalizable matrices are
similar if and only if they have the same eigen-
values with the same multiplicities.

b. If A is diagonalizable, show that A ∼ AT .

c. Show that A ∼ AT if A =

[
1 1
0 1

]
b. If A is diagonalizable, so is AT , and they have

the same eigenvalues. Use (a).

Exercise 5.5.14 If A is 2× 2 and diagonalizable,
show that C(A) = {X | XA = AX} has dimension 2 or
4. [Hint: If P−1AP = D, show that X is in C(A) if
and only if P−1XP is in C(D).]

Exercise 5.5.15 If A is diagonalizable and p(x) is
a polynomial such that p(λ ) = 0 for all eigenvalues
λ of A, show that p(A) = 0 (see Example 3.3.9). In
particular, show cA(A) = 0. [Remark: cA(A) = 0 for
all square matrices A—this is the Cayley-Hamilton
theorem, see Theorem ??.]

Exercise 5.5.16 Let A be n×n with n distinct real
eigenvalues. If AC = CA, show that C is diagonaliz-
able.

Exercise 5.5.17 Let A =

 0 a b
a 0 c
b c 0

 and

B =

 c a b
a b c
b c a

.

a. Show that x3 − (a2 + b2 + c2)x− 2abc has real
roots by considering A.

b. Show that a2 + b2 + c2 ≥ ab+ ac+ bc by con-
sidering B.

b. cB(x) = [x− (a+ b+ c)][x2 − k] where k = a2 +
b2 + c2 − [ab+ac+bc]. Use Theorem 5.5.7.

Exercise 5.5.18 Assume the 2×2 matrix A is sim-
ilar to an upper triangular matrix. If tr A= 0= tr A2,
show that A2 = 0.

Exercise 5.5.19 Show that A is similar to AT for all
2×2 matrices A. [Hint: Let A =

[
a b
c d

]
. If c = 0

treat the cases b = 0 and b 6= 0 separately. If c 6= 0,
reduce to the case c = 1 using Exercise 5.5.12(d).]

Exercise 5.5.20 Refer to Section ?? on linear re-
currences. Assume that the sequence x0, x1, x2, . . .
satisfies

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1

for all n ≥ 0. Define

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
r0 r1 r2 · · · rk−1

 , Vn =

 xn
xn+1

...
xn+k−1

 .

Then show that:
a. Vn = AnV0 for all n.

b. cA(x) = xk − rk−1xk−1 −·· ·− r1x− r0

c. If λ is an eigenvalue of A, the
eigenspace Eλ has dimension 1, and x =
(1, λ , λ 2, . . . , λ k−1)T is an eigenvector. [Hint:
Use cA(λ ) = 0 to show that Eλ = Rx.]

d. A is diagonalizable if and only if the eigenval-
ues of A are distinct. [Hint: See part (c) and
Theorem 5.5.4.]

e. If λ1, λ2, . . . , λk are distinct real eigenvalues,
there exist constants t1, t2, . . . , tk such that
xn = t1λ n

1 + · · ·+ tkλ n
k holds for all n. [Hint:

If D is diagonal with λ1, λ2, . . . , λk as the
main diagonal entries, show that An = PDnP−1

has entries that are linear combinations of
λ n

1 , λ n
2 , . . . , λ n

k .]

Exercise 5.5.21 Suppose A is 2×2 and A2 = 0. If
tr A 6= 0 show that A = 0.
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Supplementary Exercises for Chapter 5

Exercise 5.1 In each case either show that the
statement is true or give an example showing that it
is false. Throughout, x, y, z, x1, x2, . . . , xn denote
vectors in Rn.

a. If U is a subspace of Rn and x+y is in U , then
x and y are both in U .

b. If U is a subspace of Rn and rx is in U , then
x is in U .

c. If U is a nonempty set and sx+ ty is in U for
any s and t whenever x and y are in U , then
U is a subspace.

d. If U is a subspace of Rn and x is in U , then
−x is in U .

e. If {x, y} is independent, then {x, y, x+y}
is independent.

f. If {x, y, z} is independent, then {x, y} is
independent.

g. If {x, y} is not independent, then {x, y, z}
is not independent.

h. If all of x1, x2, . . . , xn are nonzero, then
{x1, x2, . . . , xn} is independent.

i. If one of x1, x2, . . . , xn is zero, then
{x1, x2, . . . , xn} is not independent.

j. If ax+by+cz = 0 where a, b, and c are in R,
then {x, y, z} is independent.

k. If {x, y, z} is independent, then ax+ by+
cz = 0 for some a, b, and c in R.

l. If {x1, x2, . . . , xn} is not independent, then
t1x1 + t2x2 + · · ·+ tnxn = 0 for ti in R not all
zero.

m. If {x1, x2, . . . , xn} is independent, then
t1x1 + t2x2 + · · ·+ tnxn = 0 for some ti in R.

n. Every set of four non-zero vectors in R4 is a
basis.

o. No basis of R3 can contain a vector with a
component 0.

p. R3 has a basis of the form {x, x+y, y} where
x and y are vectors.

q. Every basis of R5 contains one column of I5.

r. Every nonempty subset of a basis of R3 is
again a basis of R3.

s. If {x1, x2, x3, x4} and {y1, y2, y3, y4}
are bases of R4, then {x1 +y1, x2 +y2, x3 +
y3, x4 +y4} is also a basis of R4.

b. F

d. T

f. T

h. F

j. F

l. T

n. F

p. F

r. F
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In this chapter we introduce vector spaces in full generality. The reader will notice some similarity
with the discussion of the space Rn in Chapter 5. In fact much of the present material has been
developed in that context, and there is some repetition. However, Chapter 6 deals with the notion
of an abstract vector space, a concept that will be new to most readers. It turns out that there
are many systems in which a natural addition and scalar multiplication are defined and satisfy the
usual rules familiar from Rn. The study of abstract vector spaces is a way to deal with all these
examples simultaneously. The new aspect is that we are dealing with an abstract system in which
all we know about the vectors is that they are objects that can be added and multiplied by a scalar
and satisfy rules familiar from Rn.

The novel thing is the abstraction. Getting used to this new conceptual level is facilitated by
the work done in Chapter 5: First, the vector manipulations are familiar, giving the reader more
time to become accustomed to the abstract setting; and, second, the mental images developed in
the concrete setting of Rn serve as an aid to doing many of the exercises in Chapter 6.

The concept of a vector space was first introduced in 1844 by the German mathematician
Hermann Grassmann (1809-1877), but his work did not receive the attention it deserved. It was
not until 1888 that the Italian mathematician Guiseppe Peano (1858-1932) clarified Grassmann’s
work in his book Calcolo Geometrico and gave the vector space axioms in their present form. Vector
spaces became established with the work of the Polish mathematician Stephan Banach (1892-1945),
and the idea was finally accepted in 1918 when Hermann Weyl (1885-1955) used it in his widely
read book Raum-Zeit-Materie (“Space-Time-Matter”), an introduction to the general theory of
relativity.
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6.1 Examples and Basic Properties

Many mathematical entities have the property that they can be added and multiplied by a number.
Numbers themselves have this property, as do m×n matrices: The sum of two such matrices is again
m×n as is any scalar multiple of such a matrix. Polynomials are another familiar example, as are the
geometric vectors in Chapter 4. It turns out that there are many other types of mathematical objects
that can be added and multiplied by a scalar, and the general study of such systems is introduced
in this chapter. Remarkably, much of what we could say in Chapter 5 about the dimension of
subspaces in Rn can be formulated in this generality.
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Definition 6.1 Vector Spaces

A vector space consists of a nonempty set V of objects (called vectors) that can be
added, that can be multiplied by a real number (called a scalar in this context), and for
which certain axioms hold.1If v and w are two vectors in V , their sum is expressed as v+w,
and the scalar product of v by a real number a is denoted as av. These operations are
called vector addition and scalar multiplication, respectively, and the following axioms
are assumed to hold.

Axioms for vector addition
A1. If u and v are in V , then u+v is in V .

A2. u+v = v+u for all u and v in V .

A3. u+(v+w) = (u+v)+w for all u, v, and w in V .

A4. An element 0 in V exists such that v+0 = v = 0+v for every v in V .

A5. For each v in V , an element −v in V exists such that −v+v = 0 and v+(−v) = 0.

Axioms for scalar multiplication
S1. If v is in V , then av is in V for all a in R.

S2. a(v+w) = av+aw for all v and w in V and all a in R.

S3. (a+b)v = av+bv for all v in V and all a and b in R.

S4. a(bv) = (ab)v for all v in V and all a and b in R.

S5. 1v = v for all v in V .

The content of axioms A1 and S1 is described by saying that V is closed under vector addition and
scalar multiplication. The element 0 in axiom A4 is called the zero vector, and the vector −v in
axiom A5 is called the negative of v.

The rules of matrix arithmetic, when applied to Rn, give

Example 6.1.1

Rn is a vector space using matrix addition and scalar multiplication.2

It is important to realize that, in a general vector space, the vectors need not be n-tuples as in
Rn. They can be any kind of objects at all as long as the addition and scalar multiplication are
defined and the axioms are satisfied. The following examples illustrate the diversity of the concept.

1The scalars will usually be real numbers, but they could be complex numbers, or elements of an algebraic system
called a field. Another example is the field Q of rational numbers. We will look briefly at finite fields in Section ??.

2We will usually write the vectors in Rn as n-tuples. However, if it is convenient, we will sometimes denote them
as rows or columns.
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The space Rn consists of special types of matrices. More generally, let Mmn denote the set of
all m×n matrices with real entries. Then Theorem 2.1.1 gives:

Example 6.1.2

The set Mmn of all m×n matrices is a vector space using matrix addition and scalar
multiplication. The zero element in this vector space is the zero matrix of size m×n, and
the vector space negative of a matrix (required by axiom A5) is the usual matrix negative
discussed in Section 2.1. Note that Mmn is just Rmn in different notation.

In Chapter 5 we identified many important subspaces of Rn such as im A and null A for a matrix
A. These are all vector spaces.

Example 6.1.3

Show that every subspace of Rn is a vector space in its own right using the addition and
scalar multiplication of Rn.

Solution. Axioms A1 and S1 are two of the defining conditions for a subspace U of Rn (see
Section 5.1). The other eight axioms for a vector space are inherited from Rn. For example,
if x and y are in U and a is a scalar, then a(x+y) = ax+ay because x and y are in Rn.
This shows that axiom S2 holds for U ; similarly, the other axioms also hold for U .

Example 6.1.4

Let V denote the set of all ordered pairs (x, y) and define addition in V as in R2. However,
define a new scalar multiplication in V by

a(x, y) = (ay, ax)

Determine if V is a vector space with these operations.

Solution. Axioms A1 to A5 are valid for V because they hold for matrices. Also
a(x, y) = (ay, ax) is again in V , so axiom S1 holds. To verify axiom S2, let v = (x, y) and
w = (x1, y1) be typical elements in V and compute

a(v+w) = a(x+ x1, y+ y1) = (a(y+ y1), a(x+ x1))

av+aw = (ay, ax)+(ay1, ax1) = (ay+ay1, ax+ax1)

Because these are equal, axiom S2 holds. Similarly, the reader can verify that axiom S3
holds. However, axiom S4 fails because

a(b(x, y)) = a(by, bx) = (abx, aby)

need not equal ab(x, y) = (aby, abx). Hence, V is not a vector space. (In fact, axiom S5 also
fails.)
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Sets of polynomials provide another important source of examples of vector spaces, so we review
some basic facts. A polynomial in an indeterminate x is an expression

p(x) = a0 +a1x+a2x2 + · · ·+anxn

where a0, a1, a2, . . . , an are real numbers called the coefficients of the polynomial. If all the
coefficients are zero, the polynomial is called the zero polynomial and is denoted simply as 0. If
p(x) 6= 0, the highest power of x with a nonzero coefficient is called the degree of p(x) denoted as
deg p(x). The coefficient itself is called the leading coefficient of p(x). Hence deg (3+ 5x) = 1,
deg (1+ x+ x2) = 2, and deg (4) = 0. (The degree of the zero polynomial is not defined.)

Let P denote the set of all polynomials and suppose that

p(x) = a0 +a1x+a2x2 + · · ·
q(x) = b0 +b1x+b2x2 + · · ·

are two polynomials in P (possibly of different degrees). Then p(x) and q(x) are called equal
[written p(x) = q(x)] if and only if all the corresponding coefficients are equal—that is, a0 = b0,
a1 = b1, a2 = b2, and so on. In particular, a0+a1x+a2x2+ · · ·= 0 means that a0 = 0, a1 = 0, a2 = 0,
. . . , and this is the reason for calling x an indeterminate. The set P has an addition and scalar
multiplication defined on it as follows: if p(x) and q(x) are as before and a is a real number,

p(x)+q(x) = (a0 +b0)+(a1 +b1)x+(a2 +b2)x2 + · · ·
ap(x) = aa0 +(aa1)x+(aa2)x2 + · · ·

Evidently, these are again polynomials, so P is closed under these operations, called pointwise
addition and scalar multiplication. The other vector space axioms are easily verified, and we have

Example 6.1.5

The set P of all polynomials is a vector space with the foregoing addition and scalar
multiplication. The zero vector is the zero polynomial, and the negative of a polynomial
p(x) = a0 +a1x+a2x2 + . . . is the polynomial −p(x) =−a0 −a1x−a2x2 − . . . obtained by
negating all the coefficients.

There is another vector space of polynomials that will be referred to later.

Example 6.1.6

Given n ≥ 1, let Pn denote the set of all polynomials of degree at most n, together with the
zero polynomial. That is

Pn = {a0 +a1x+a2x2 + · · ·+anxn | a0, a1, a2, . . . , an in R}.

Then Pn is a vector space. Indeed, sums and scalar multiples of polynomials in Pn are again
in Pn, and the other vector space axioms are inherited from P. In particular, the zero
vector and the negative of a polynomial in Pn are the same as those in P.
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If a and b are real numbers and a < b, the interval [a, b] is defined to be the set of all real
numbers x such that a ≤ x ≤ b. A (real-valued) function f on [a, b] is a rule that associates to
every number x in [a, b] a real number denoted f (x). The rule is frequently specified by giving a
formula for f (x) in terms of x. For example, f (x) = 2x, f (x) = sinx, and f (x) = x2 +1 are familiar
functions. In fact, every polynomial p(x) can be regarded as the formula for a function p.

1

1

O

y =−x = g(x)

y = f (x)+g(x)
= x2 − x

y = x2 = f (x)

x

y
The set of all functions on [a, b] is denoted F[a, b]. Two functions

f and g in F[a, b] are equal if f (x) = g(x) for every x in [a, b], and
we describe this by saying that f and g have the same action. Note
that two polynomials are equal in P (defined prior to Example 6.1.5)
if and only if they are equal as functions.

If f and g are two functions in F[a, b], and if r is a real number,
define the sum f +g and the scalar product r f by

( f +g)(x) = f (x)+g(x) for each x in [a, b]
(r f )(x) = r f (x) for each x in [a, b]

In other words, the action of f + g upon x is to associate x with the number f (x)+ g(x), and
r f associates x with r f (x). The sum of f (x) = x2 and g(x) = −x is shown in the diagram. These
operations on F[a, b] are called pointwise addition and scalar multiplication of functions and
they are the usual operations familiar from elementary algebra and calculus.

Example 6.1.7

The set F[a, b] of all functions on the interval [a, b] is a vector space using pointwise
addition and scalar multiplication. The zero function (in axiom A4), denoted 0, is the
constant function defined by

0(x) = 0 for each x in [a, b]

The negative of a function f is denoted − f and has action defined by

(− f )(x) =− f (x) for each x in [a, b]

Axioms A1 and S1 are clearly satisfied because, if f and g are functions on [a, b], then f +g
and r f are again such functions. The verification of the remaining axioms is left as
Exercise 6.1.14.

Other examples of vector spaces will appear later, but these are sufficiently varied to indicate
the scope of the concept and to illustrate the properties of vector spaces to be discussed. With
such a variety of examples, it may come as a surprise that a well-developed theory of vector spaces
exists. That is, many properties can be shown to hold for all vector spaces and hence hold in every
example. Such properties are called theorems and can be deduced from the axioms. Here is an
important example.

Theorem 6.1.1: Cancellation
Let u, v, and w be vectors in a vector space V . If v+u = v+w, then u = w.
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Proof. We are given v+u = v+w. If these were numbers instead of vectors, we would simply
subtract v from both sides of the equation to obtain u = w. This can be accomplished with vectors
by adding −v to both sides of the equation. The steps (using only the axioms) are as follows:

v+u = v+w
−v+(v+u) =−v+(v+w) (axiom A5)
(−v+v)+u = (−v+v)+w (axiom A3)

0+u = 0+w (axiom A5)
u = w (axiom A4)

This is the desired conclusion.3

As with many good mathematical theorems, the technique of the proof of Theorem 6.1.1 is
at least as important as the theorem itself. The idea was to mimic the well-known process of
numerical subtraction in a vector space V as follows: To subtract a vector v from both sides of a
vector equation, we added −v to both sides. With this in mind, we define difference u−v of two
vectors in V as

u−v = u+(−v)

We shall say that this vector is the result of having subtracted v from u and, as in arithmetic,
this operation has the property given in Theorem 6.1.2.

Theorem 6.1.2
If u and v are vectors in a vector space V , the equation

x+v = u

has one and only one solution x in V given by

x = u−v

Proof. The difference x = u−v is indeed a solution to the equation because (using several axioms)

x+v = (u−v)+v = [u+(−v)]+v = u+(−v+v) = u+0 = u

To see that this is the only solution, suppose x1 is another solution so that x1 +v = u. Then
x+v = x1 +v (they both equal u), so x = x1 by cancellation.

Similarly, cancellation shows that there is only one zero vector in any vector space and only one
negative of each vector (Exercises 6.1.10 and 6.1.11). Hence we speak of the zero vector and the
negative of a vector.

The next theorem derives some basic properties of scalar multiplication that hold in every vector
space, and will be used extensively.

3Observe that none of the scalar multiplication axioms are needed here.
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Theorem 6.1.3
Let v denote a vector in a vector space V and let a denote a real number.

1. 0v = 0.

2. a0 = 0.

3. If av = 0, then either a = 0 or v = 0.

4. (−1)v =−v.

5. (−a)v =−(av) = a(−v).

Proof.

1. Observe that 0v+ 0v = (0+ 0)v = 0v = 0v+0 where the first equality is by axiom S3. It
follows that 0v = 0 by cancellation.

2. The proof is similar to that of (1), and is left as Exercise 6.1.12(a).

3. Assume that av = 0. If a = 0, there is nothing to prove; if a 6= 0, we must show that v = 0.
But a 6= 0 means we can scalar-multiply the equation av = 0 by the scalar 1

a . The result
(using (2) and Axioms S5 and S4) is

v = 1v =
(1

aa
)

v = 1
a(av) = 1

a0 = 0

4. We have −v+v = 0 by axiom A5. On the other hand,

(−1)v+v = (−1)v+1v = (−1+1)v = 0v = 0

using (1) and axioms S5 and S3. Hence (−1)v+v = −v+v (because both are equal to 0),
so (−1)v =−v by cancellation.

5. The proof is left as Exercise 6.1.12.4

The properties in Theorem 6.1.3 are familiar for matrices; the point here is that they hold in every
vector space. It is hard to exaggerate the importance of this observation.

Axiom A3 ensures that the sum u+(v+w) = (u+v)+w is the same however it is formed, and
we write it simply as u+v+w. Similarly, there are different ways to form any sum v1+v2+ · · ·+vn,
and Axiom A3 guarantees that they are all equal. Moreover, Axiom A2 shows that the order in
which the vectors are written does not matter (for example: u+v+w+z = z+u+w+v).

Similarly, Axioms S2 and S3 extend. For example

a(u+v+w) = a [u+(v+w)] = au+a(v+w) = au+av+aw

for all a, u, v, and w. Similarly (a+ b+ c)v = av+ bv+ cv hold for all values of a, b, c, and v
(verify). More generally,

a(v1 +v2 + · · ·+vn) = av1 +av2 + · · ·+avn

(a1 +a2 + · · ·+an)v = a1v+a2v+ · · ·+anv
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hold for all n ≥ 1, all numbers a, a1, . . . , an, and all vectors, v, v1, . . . , vn. The verifications are
by induction and are left to the reader (Exercise 6.1.13). These facts—together with the axioms,
Theorem 6.1.3, and the definition of subtraction—enable us to simplify expressions involving sums
of scalar multiples of vectors by collecting like terms, expanding, and taking out common factors.
This has been discussed for the vector space of matrices in Section 2.1 (and for geometric vectors in
Section 4.1); the manipulations in an arbitrary vector space are carried out in the same way. Here
is an illustration.

Example 6.1.8

If u, v, and w are vectors in a vector space V , simplify the expression

2(u+3w)−3(2w−v)−3[2(2u+v−4w)−4(u−2w)]

Solution. The reduction proceeds as though u, v, and w were matrices or variables.

2(u+3w)−3(2w−v)−3[2(2u+v−4w)−4(u−2w)]

= 2u+6w−6w+3v−3[4u+2v−8w−4u+8w]

= 2u+3v−3[2v]
= 2u+3v−6v
= 2u−3v

Condition (2) in Theorem 6.1.3 points to another example of a vector space.

Example 6.1.9

A set {0} with one element becomes a vector space if we define

0+0 = 0 and a0 = 0 for all scalars a.

The resulting space is called the zero vector space and is denoted {0}.

The vector space axioms are easily verified for {0}. In any vector space V , Theorem 6.1.3 shows
that the zero subspace (consisting of the zero vector of V alone) is a copy of the zero vector space.

Exercises for 6.1

Exercise 6.1.1 Let V denote the set of ordered
triples (x, y, z) and define addition in V as in R3.
For each of the following definitions of scalar multi-

plication, decide whether V is a vector space.

a. a(x, y, z) = (ax, y, az)
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b. a(x, y, z) = (ax, 0, az)

c. a(x, y, z) = (0, 0, 0)

d. a(x, y, z) = (2ax, 2ay, 2az)

b. No; S5 fails.

d. No; S4 and S5 fail.

Exercise 6.1.2 Are the following sets vector spaces
with the indicated operations? If not, why not?

a. The set V of nonnegative real numbers; ordi-
nary addition and scalar multiplication.

b. The set V of all polynomials of degree ≥ 3,
together with 0; operations of P.

c. The set of all polynomials of degree ≤ 3; op-
erations of P.

d. The set {1, x, x2, . . .}; operations of P.

e. The set V of all 2 × 2 matrices of the form[
a b
0 c

]
; operations of M22.

f. The set V of 2×2 matrices with equal column
sums; operations of M22.

g. The set V of 2×2 matrices with zero determi-
nant; usual matrix operations.

h. The set V of real numbers; usual operations.

i. The set V of complex numbers; usual addition
and multiplication by a real number.

j. The set V of all ordered pairs (x, y) with the
addition of R2, but using scalar multiplication
a(x, y) = (ax, −ay).

k. The set V of all ordered pairs (x, y) with the
addition of R2, but using scalar multiplication
a(x, y) = (x, y) for all a in R.

l. The set V of all functions f : R → R with
pointwise addition, but scalar multiplication
defined by (a f )(x) = f (ax).

m. The set V of all 2× 2 matrices whose entries
sum to 0; operations of M22.

n. The set V of all 2×2 matrices with the addi-
tion of M22 but scalar multiplication ∗ defined
by a∗X = aXT .

b. No; only A1 fails.

d. No.

f. Yes.

h. Yes.

j. No.

l. No; only S3 fails.

n. No; only S4 and S5 fail.

Exercise 6.1.3 Let V be the set of positive real
numbers with vector addition being ordinary multi-
plication, and scalar multiplication being a · v = va.
Show that V is a vector space.
Exercise 6.1.4 If V is the set of ordered pairs (x, y)
of real numbers, show that it is a vector space with
addition (x, y) + (x1, y1) = (x + x1, y+ y1 + 1) and
scalar multiplication a(x, y) = (ax, ay+a−1). What
is the zero vector in V?
The zero vector is (0, −1); the negative of (x, y) is
(−x, −2− y).
Exercise 6.1.5 Find x and y (in terms of u and
v) such that:

2x+ y=u
5x+ 3y= v

a) 3x− 2y=u
4x− 5y= v

b)

b. x = 1
7(5u−2v), y = 1

7(4u−3v)

Exercise 6.1.6 In each case show that the condi-
tion au+bv+cw= 0 in V implies that a = b = c = 0.

a. V = R4; u = (2, 1, 0, 2), v = (1, 1, −1, 0),
w = (0, 1, 2, 1)

b. V = M22; u =

[
1 0
0 1

]
, v =

[
0 1
1 0

]
,

w =

[
1 1
1 −1

]
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c. V =P; u= x3+x, v= x2+1, w= x3−x2+x+1

d. V = F[0, π]; u = sinx, v = cosx, w = 1—the
constant function

b. Equating entries gives a + c = 0, b + c = 0,
b+ c = 0, a− c = 0. The solution is a = b =
c = 0.

d. If asinx+ bcosy+ c = 0 in F[0, π], then this
must hold for every x in [0, π]. Taking
x = 0, π

2 , and π, respectively, gives b+ c = 0,
a+ c = 0, −b+ c = 0 whence, a = b = c = 0.

Exercise 6.1.7 Simplify each of the following.

a. 3[2(u−2v−w)+3(w−v)]−7(u−3v−w)

b. 4(3u−v+w)−2[(3u−2v)−3(v−w)]
+6(w−u−v)

b. 4w

Exercise 6.1.8 Show that x = v is the only solu-
tion to the equation x+x = 2v in a vector space V .
Cite all axioms used.

Exercise 6.1.9 Show that −0 = 0 in any vector
space. Cite all axioms used.

Exercise 6.1.10 Show that the zero vector 0 is
uniquely determined by the property in axiom A4.

If z+v = v for all v, then z+v = 0+v, so z = 0 by
cancellation.

Exercise 6.1.11 Given a vector v, show that its
negative −v is uniquely determined by the property
in axiom A5.

Exercise 6.1.12

a. Prove (2) of Theorem 6.1.3. [Hint: Axiom S2.]

b. Prove that (−a)v = −(av) in Theorem 6.1.3
by first computing (−a)v+ av. Then do it
using (4) of Theorem 6.1.3 and axiom S4.

c. Prove that a(−v) = −(av) in Theorem 6.1.3
in two ways, as in part (b).

b. (−a)v + av = (−a + a)v = 0v = 0 by Theo-
rem 6.1.3. Because also −(av)+ av = 0 (by
the definition of −(av) in axiom A5), this
means that (−a)v = −(av) by cancellation.
Alternatively, use Theorem 6.1.3(4) to give
(−a)v = [(−1)a]v = (−1)(av) =−(av).

Exercise 6.1.13 Let v, v1, . . . , vn denote vec-
tors in a vector space V and let a, a1, . . . , an denote
numbers. Use induction on n to prove each of the
following.

a. a(v1 +v2 + · · ·+vn) = av1 +av2 + · · ·+avn

b. (a1 +a2 + · · ·+an)v = a1v+a2v+ · · ·+anv

b. The case n = 1 is clear, and n = 2 is ax-
iom S3. If n > 2, then (a1 + a2 + · · ·+ an)v =
[a1 +(a2 + · · ·+an)]v = a1v+(a2 + · · ·+an)v =
a1v+(a2v+ · · ·+anv) using the induction hy-
pothesis; so it holds for all n.

Exercise 6.1.14 Verify axioms A2—A5 and
S2—S5 for the space F[a, b] of functions on [a, b]
(Example 6.1.7).

Exercise 6.1.15 Prove each of the following for
vectors u and v and scalars a and b.

a. If av = 0, then a = 0 or v = 0.

b. If av = bv and v 6= 0, then a = b.

c. If av = aw and a 6= 0, then v = w.

c. If av= aw, then v= 1v=(a−1a)v= a−1(av)=
a−1(aw) = (a−1a)w = 1w = w.
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Exercise 6.1.16 By calculating (1+ 1)(v+w) in
two ways (using axioms S2 and S3), show that axiom
A2 follows from the other axioms.
Exercise 6.1.17 Let V be a vector space, and de-
fine V n to be the set of all n-tuples (v1, v2, . . . , vn)
of n vectors vi, each belonging to V . Define addition
and scalar multiplication in V n as follows:

(u1, u2, . . . , un)+(v1, v2, . . . , vn)

= (u1 +v1, u2 +v2, . . . , un +vn)

a(v1, v2, . . . , vn) = (av1, av2, . . . , avn)

Show that V n is a vector space.
Exercise 6.1.18 Let V n be the vector space of
n-tuples from the preceding exercise, written as
columns. If A is an m× n matrix, and X is in V n,
define AX in V m by matrix multiplication. More pre-
cisely, if

A = [ai j] and X =

 v1
...

vn

 , let AX =

 u1
...

un



where ui = ai1v1 +ai2v2 + · · ·+ainvn for each i.
Prove that:

a. B(AX) = (BA)X

b. (A+A1)X = AX +A1X

c. A(X +X1) = AX +AX1

d. (kA)X = k(AX) = A(kX) if k is any number

e. IX = X if I is the n×n identity matrix

f. Let E be an elementary matrix obtained by
performing a row operation on the rows of In

(see Section 2.5). Show that EX is the column
resulting from performing that same row op-
eration on the vectors (call them rows) of X .
[Hint: Lemma 2.5.1.]
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6.2 Subspaces and Spanning Sets

Chapter 5 is essentially about the subspaces of Rn. We now extend this notion.

Definition 6.2 Subspaces of a Vector Space

If V is a vector space, a nonempty subset U ⊆V is called a subspace of V if U is itself a
vector space using the addition and scalar multiplication of V .

Subspaces of Rn (as defined in Section 5.1) are subspaces in the present sense by Example 6.1.3.
Moreover, the defining properties for a subspace of Rn actually characterize subspaces in general.
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Theorem 6.2.1: Subspace Test

A subset U of a vector space is a subspace of V if and only if it satisfies the following three
conditions:

1. 0 lies in U where 0 is the zero vector of V .

2. If u1 and u2 are in U , then u1 +u2 is also in U .

3. If u is in U , then au is also in U for each scalar a.

Proof. If U is a subspace of V , then (2) and (3) hold by axioms A1 and S1 respectively, applied
to the vector space U . Since U is nonempty (it is a vector space), choose u in U . Then (1) holds
because 0 = 0u is in U by (3) and Theorem 6.1.3.

Conversely, if (1), (2), and (3) hold, then axioms A1 and S1 hold because of (2) and (3), and
axioms A2, A3, S2, S3, S4, and S5 hold in U because they hold in V . Axiom A4 holds because the
zero vector 0 of V is actually in U by (1), and so serves as the zero of U . Finally, given u in U ,
then its negative −u in V is again in U by (3) because −u = (−1)u (again using Theorem 6.1.3).
Hence −u serves as the negative of u in U .

Note that the proof of Theorem 6.2.1 shows that if U is a subspace of V , then U and V share the
same zero vector, and that the negative of a vector in the space U is the same as its negative in V .

Example 6.2.1

If V is any vector space, show that {0} and V are subspaces of V .

Solution. U =V clearly satisfies the conditions of the subspace test. As to U = {0}, it
satisfies the conditions because 0+0 = 0 and a0 = 0 for all a in R.

The vector space {0} is called the zero subspace of V .

Example 6.2.2

Let v be a vector in a vector space V . Show that the set

Rv = {av | a in R}

of all scalar multiples of v is a subspace of V .

Solution. Because 0 = 0v, it is clear that 0 lies in Rv. Given two vectors av and a1v in
Rv, their sum av+a1v = (a+a1)v is also a scalar multiple of v and so lies in Rv. Hence
Rv is closed under addition. Finally, given av, r(av) = (ra)v lies in Rv for all r ∈ R, so Rv
is closed under scalar multiplication. Hence the subspace test applies.

In particular, given d 6= 0 in R3, Rd is the line through the origin with direction vector d.
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The space Rv in Example 6.2.2 is described by giving the form of each vector in Rv. The next
example describes a subset U of the space Mnn by giving a condition that each matrix of U must
satisfy.

Example 6.2.3

Let A be a fixed matrix in Mnn. Show that U = {X in Mnn | AX = XA} is a subspace of Mnn.

Solution. If 0 is the n×n zero matrix, then A0 = 0A, so 0 satisfies the condition for
membership in U . Next suppose that X and X1 lie in U so that AX = XA and AX1 = X1A.
Then

A(X +X1) = AX +AX1 = XA+X1A+(X +X1)A
A(aX) = a(AX) = a(XA) = (aX)A

for all a in R, so both X +X1 and aX lie in U . Hence U is a subspace of Mnn.

Suppose p(x) is a polynomial and a is a number. Then the number p(a) obtained by replacing
x by a in the expression for p(x) is called the evaluation of p(x) at a. For example, if p(x) =
5−6x+2x2, then the evaluation of p(x) at a = 2 is p(2) = 5−12+8 = 1. If p(a) = 0, the number
a is called a root of p(x).

Example 6.2.4

Consider the set U of all polynomials in P that have 3 as a root:

U = {p(x) ∈ P | p(3) = 0}

Show that U is a subspace of P.

Solution. Clearly, the zero polynomial lies in U . Now let p(x) and q(x) lie in U so p(3) = 0
and q(3) = 0. We have (p+q)(x) = p(x)+q(x) for all x, so
(p+q)(3) = p(3)+q(3) = 0+0 = 0, and U is closed under addition. The verification that U
is closed under scalar multiplication is similar.

Recall that the space Pn consists of all polynomials of the form

a0 +a1x+a2x2 + · · ·+anxn

where a0, a1, a2, . . . , an are real numbers, and so is closed under the addition and scalar mul-
tiplication in P. Moreover, the zero polynomial is included in Pn. Thus the subspace test gives
Example 6.2.5.

Example 6.2.5

Pn is a subspace of P for each n ≥ 0.
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The next example involves the notion of the derivative f ′ of a function f . (If the reader is not
familiar with calculus, this example may be omitted.) A function f defined on the interval [a, b] is
called differentiable if the derivative f ′(r) exists at every r in [a, b].

Example 6.2.6

Show that the subset D[a, b] of all differentiable functions on [a, b] is a subspace of the
vector space F[a, b] of all functions on [a, b].

Solution. The derivative of any constant function is the constant function 0; in particular,
0 itself is differentiable and so lies in D[a, b]. If f and g both lie in D[a, b] (so that f ′ and
g′ exist), then it is a theorem of calculus that f +g and r f are both differentiable for any
r ∈ R. In fact, ( f +g)′ = f ′+g′ and (r f )′ = r f ′, so both lie in D[a, b]. This shows that
D[a, b] is a subspace of F[a, b].

Linear Combinations and Spanning Sets

Definition 6.3 Linear Combinations and Spanning

Let {v1, v2, . . . , vn} be a set of vectors in a vector space V . As in Rn, a vector v is called a
linear combination of the vectors v1, v2, . . . , vn if it can be expressed in the form

v = a1v1 +a2v2 + · · ·+anvn

where a1, a2, . . . , an are scalars, called the coefficients of v1, v2, . . . , vn. The set of all
linear combinations of these vectors is called their span, and is denoted by

span{v1, v2, . . . , vn}= {a1v1 +a2v2 + · · ·+anvn | ai in R}

If it happens that V = span{v1, v2, . . . , vn}, these vectors are called a spanning set for V . For
example, the span of two vectors v and w is the set

span{v, w}= {sv+ tw | s and t in R}

of all sums of scalar multiples of these vectors.

Example 6.2.7

Consider the vectors p1 = 1+ x+4x2 and p2 = 1+5x+ x2 in P2. Determine whether p1 and
p2 lie in span{1+2x− x2, 3+5x+2x2}.

Solution. For p1, we want to determine if s and t exist such that

p1 = s(1+2x− x2)+ t(3+5x+2x2)
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Equating coefficients of powers of x (where x0 = 1) gives

1 = s+3t, 1 = 2s+5t, and 4 =−s+2t

These equations have the solution s =−2 and t = 1, so p1 is indeed in
span{1+2x− x2, 3+5x+2x2}.
Turning to p2 = 1+5x+ x2, we are looking for s and t such that

p2 = s(1+2x− x2)+ t(3+5x+2x2)

Again equating coefficients of powers of x gives equations 1 = s+3t, 5 = 2s+5t, and
1 =−s+2t. But in this case there is no solution, so p2 is not in
span{1+2x− x2, 3+5x+2x2}.

We saw in Example 5.1.6 that Rm = span{e1, e2, . . . , em} where the vectors e1, e2, . . . , em are
the columns of the m×m identity matrix. Of course Rm = Mm1 is the set of all m×1 matrices, and
there is an analogous spanning set for each space Mmn. For example, each 2× 2 matrix has the
form [

a b
c d

]
= a

[
1 0
0 0

]
+b
[

0 1
0 0

]
+ c
[

0 0
1 0

]
+d
[

0 0
0 1

]
so

M22 = span
{[

1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
,
[

0 0
0 1

]}
Similarly, we obtain

Example 6.2.8

Mmn is the span of the set of all m×n matrices with exactly one entry equal to 1, and all
other entries zero.

The fact that every polynomial in Pn has the form a0 +a1x+a2x2 + · · ·+anxn where each ai is
in R shows that

Example 6.2.9

Pn = span{1, x, x2, . . . , xn}.

In Example 6.2.2 we saw that span{v} = {av | a in R} = Rv is a subspace for any vector v in a
vector space V . More generally, the span of any set of vectors is a subspace. In fact, the proof of
Theorem 5.1.1 goes through to prove:

Theorem 6.2.2
Let U = span{v1, v2, . . . , vn} in a vector space V . Then:

1. U is a subspace of V containing each of v1, v2, . . . , vn.
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2. U is the “smallest” subspace containing these vectors in the sense that any subspace
that contains each of v1, v2, . . . , vn must contain U .

Here is how condition 2 in Theorem 6.2.2 is used. Given vectors v1, . . . , vk in a vector space V
and a subspace U ⊆V , then:

span{v1, . . . , vn} ⊆U ⇔ each vi ∈U

The following examples illustrate this.

Example 6.2.10

Show that P3 = span{x2 + x3, x, 2x2 +1, 3}.

Solution. Write U = span{x2 + x3, x, 2x2 +1, 3}. Then U ⊆ P3, and we use the fact that
P3 = span{1, x, x2, x3} to show that P3 ⊆U . In fact, x and 1 = 1

3 ·3 clearly lie in U . But
then successively,

x2 = 1
2 [(2x2 +1)−1] and x3 = (x2 + x3)− x2

also lie in U . Hence P3 ⊆U by Theorem 6.2.2.

Example 6.2.11

Let u and v be two vectors in a vector space V . Show that

span{u, v}= span{u+2v, u−v}

Solution. We have span{u+2v, u−v} ⊆ span{u, v} by Theorem 6.2.2 because both
u+2v and u−v lie in span{u, v}. On the other hand,

u = 1
3(u+2v)+ 2

3(u−v) and v = 1
3(u+2v)− 1

3(u−v)

so span{u, v} ⊆ span{u+2v, u−v}, again by Theorem 6.2.2.

Exercises for 6.2

Exercise 6.2.1 Which of the following are sub-
spaces of P3? Support your answer.

a. U = { f (x) | f (x) ∈ P3, f (2) = 1}

b. U = {xg(x) | g(x) ∈ P2}

c. U = {xg(x) | g(x) ∈ P3}

d. U = {xg(x)+(1− x)h(x) | g(x) and h(x) ∈ P2}
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e. U = The set of all polynomials in P3 with con-
stant term 0

f. U = { f (x) | f (x) ∈ P3, deg f (x) = 3}

b. Yes

d. Yes

f. No; not closed under addition or scalar multi-
plication, and 0 is not in the set.

Exercise 6.2.2 Which of the following are sub-
spaces of M22? Support your answer.

a. U =

{[
a b
0 c

]∣∣∣∣ a, b, and c in R
}

b. U =

{[
a b
c d

]∣∣∣∣ a+b = c+d; a, b, c, d in R
}

c. U = {A | A ∈ M22, A = AT}

d. U = {A | A ∈ M22, AB = 0}, B a fixed 2 × 2
matrix

e. U = {A | A ∈ M22, A2 = A}

f. U = {A | A ∈ M22, A is not invertible}

g. U = {A | A ∈ M22, BAC =CAB}, B and C fixed
2×2 matrices

b. Yes.

d. Yes.

f. No; not closed under addition.

Exercise 6.2.3 Which of the following are sub-
spaces of F[0, 1]? Support your answer.

a. U = { f | f (0) = 0}

b. U = { f | f (0) = 1}

c. U = { f | f (0) = f (1)}

d. U = { f | f (x)≥ 0 for all x in [0, 1]}

e. U = { f | f (x) = f (y) for all x and y in [0, 1]}

f. U = { f | f (x+ y) = f (x)+ f (y) for all
x and y in [0, 1]}

g. U = { f | f is integrable and
∫ 1

0 f (x)dx = 0}

b. No; not closed under addition.

d. No; not closed under scalar multiplication.

f. Yes.

Exercise 6.2.4 Let A be an m× n matrix. For
which columns b in Rm is U = {x | x ∈ Rn, Ax = b}
a subspace of Rn? Support your answer.

Exercise 6.2.5 Let x be a vector in Rn (written
as a column), and define U = {Ax | A ∈ Mmn}.

a. Show that U is a subspace of Rm.

b. Show that U = Rm if x 6= 0.

b. If entry k of x is xk 6= 0, and if y is in Rn, then
y= Ax where the column of A is x−1

k y, and the
other columns are zero.

Exercise 6.2.6 Write each of the following as a
linear combination of x+1, x2 + x, and x2 +2.

x2 +3x+2a) 2x2 −3x+1b)
x2 +1c) xd)

b. −3(x+1)+0(x2 + x)+2(x2 +2)

d. 2
3(x+1)+ 1

3(x
2 + x)− 1

3(x
2 +2)

Exercise 6.2.7 Determine whether v lies in
span{u, w} in each case.

a. v = 3x2 −2x−1; u = x2 +1, w = x+2

b. v = x; u = x2 +1, w = x+2
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c. v=

[
1 3

−1 1

]
; u=

[
1 −1
2 1

]
, w=

[
2 1
1 0

]

d. v=

[
1 −4
5 3

]
; u=

[
1 −1
2 1

]
, w=

[
2 1
1 0

]

b. No.

d. Yes; v = 3u−w.

Exercise 6.2.8 Which of the following functions
lie in span{cos2 x, sin2 x}? (Work in F[0, π].)

cos2xa) 1b)
x2c) 1+ x2d)

b. Yes; 1 = cos2 x+ sin2 x

d. No. If 1+ x2 = acos2 x+ bsin2 x, then taking
x = 0 and x = π gives a = 1 and a = 1+π2.

Exercise 6.2.9

a. Show that R3 is spanned by
{(1, 0, 1), (1, 1, 0), (0, 1, 1)}.

b. Show that P2 is spanned by {1+2x2, 3x, 1+
x}.

c. Show that M22 is spanned by{[
1 0
0 0

]
,
[

1 0
0 1

]
,
[

0 1
1 0

]
,
[

1 1
0 1

]}
.

b. Because P2 = span{1, x, x2}, it suffices to
show that {1, x, x2}⊆ span{1+2x2, 3x, 1+x}.
But x = 1

3(3x);1 = (1+ x)− x and x2 = 1
2 [(1+

2x2)−1].

Exercise 6.2.10 If X and Y are two sets of vectors
in a vector space V , and if X ⊆ Y , show that
span X ⊆ span Y .

Exercise 6.2.11 Let u, v, and w denote vectors
in a vector space V . Show that:

a. span{u, v, w}= span{u+v, u+w, v+w}

b. span{u, v, w}= span{u−v, u+w, w}

b. u = (u+w)−w, v =−(u−v)+(u+w)−w,
and w = w

Exercise 6.2.12 Show that

span{v1, v2, . . . , vn, 0}= span{v1, v2, . . . , vn}

holds for any set of vectors {v1, v2, . . . , vn}.

Exercise 6.2.13 If X and Y are nonempty subsets
of a vector space V such that span X = span Y = V ,
must there be a vector common to both X and Y?
Justify your answer.

Exercise 6.2.14 Is it possible that
{(1, 2, 0), (1, 1, 1)} can span the subspace U =
{(a, b, 0) | a and b in R}?
No.

Exercise 6.2.15 Describe span{0}.

Exercise 6.2.16 Let v denote any vector in a vec-
tor space V . Show that span{v}= span{av} for any
a 6= 0.

Exercise 6.2.17 Determine all subspaces
of Rv where v 6= 0 in some vector space V .

b. Yes.

Exercise 6.2.18 Suppose V = span{v1, v2, . . . , vn}.
If u = a1v1 +a2v2 + · · ·+anvn where the ai are in R
and a1 6= 0, show that V = span{u, v2, . . . , vn}.

v1 = 1
a1

u − a2
a1

v2 − ·· · − an
a1

vn, so V ⊆
span{u, v2, . . . , vn}

Exercise 6.2.19 If Mnn = span{A1, A2, . . . , Ak},
show that Mnn = span{AT

1 , AT
2 , . . . , AT

k }.

Exercise 6.2.20 If Pn = span{p1(x), p2(x), . . . , pk(x)}
and a is in R, show that pi(a) 6= 0 for some i.

Exercise 6.2.21 Let U be a subspace of a vector
space V .

a. If au is in U where a 6= 0, show that u is in U .
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b. If u and u+v are in U , show that v is in U .

b. v = (u+v)−u is in U .

Exercise 6.2.22 Let U be a nonempty subset of
a vector space V . Show that U is a subspace of V if
and only if u1 +au2 lies in U for all u1 and u2 in U
and all a in R.
Given the condition and u ∈U , 0 = u+(−1)u ∈U .
The converse holds by the subspace test.

Exercise 6.2.23 Let U = {p(x) in P | p(3) = 0} be
the set in Example 6.2.4. Use the factor theorem (see
Section ??) to show that U consists of multiples of
x−3; that is, show that U = {(x−3)q(x) | q(x) ∈ P}.
Use this to show that U is a subspace of P.

Exercise 6.2.24 Let A1, A2, . . . , Am denote n× n
matrices. If 0 6= y ∈Rn and A1y = A2y = · · ·= Amy =
0, show that {A1, A2, . . . , Am} cannot span Mnn.

Exercise 6.2.25 Let {v1, v2, . . . , vn} and
{u1, u2, . . . , un} be sets of vectors in a vector space,
and let

X =

 v1
...

vn

 Y =

 u1
...

un


as in Exercise 6.1.18.

a. Show that span{v1, . . . , vn} ⊆
span{u1, . . . , un} if and only if AY = X for
some n×n matrix A.

b. If X = AY where A is invertible, show that
span{v1, . . . , vn}= span{u1, . . . , un}.

Exercise 6.2.26 If U and W are subspaces of a
vector space V , let U ∪W = {v | v is in U or v is in
W}. Show that U ∪W is a subspace if and only if
U ⊆W or W ⊆U .

Exercise 6.2.27 Show that P cannot be spanned
by a finite set of polynomials.
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6.3 Linear Independence and Dimension

Definition 6.4 Linear Independence and Dependence

As in Rn, a set of vectors {v1, v2, . . . , vn} in a vector space V is called linearly
independent (or simply independent) if it satisfies the following condition:

If s1v1 + s2v2 + · · ·+ snvn = 0, then s1 = s2 = · · ·= sn = 0.

A set of vectors that is not linearly independent is said to be linearly dependent (or
simply dependent).

The trivial linear combination of the vectors v1, v2, . . . , vn is the one with every coefficient
zero:

0v1 +0v2 + · · ·+0vn

This is obviously one way of expressing 0 as a linear combination of the vectors v1, v2, . . . , vn, and
they are linearly independent when it is the only way.

Example 6.3.1

Show that {1+ x, 3x+ x2, 2+ x− x2} is independent in P2.

Solution. Suppose a linear combination of these polynomials vanishes.

s1(1+ x)+ s2(3x+ x2)+ s3(2+ x− x2) = 0

Equating the coefficients of 1, x, and x2 gives a set of linear equations.

s1 + + 2s3 = 0
s1 + 3s2 + s3 = 0

s2 − s3 = 0

The only solution is s1 = s2 = s3 = 0.

Example 6.3.2

Show that {sinx, cosx} is independent in the vector space F[0, 2π] of functions defined on
the interval [0, 2π].

Solution. Suppose that a linear combination of these functions vanishes.

s1(sinx)+ s2(cosx) = 0

This must hold for all values of x in [0, 2π] (by the definition of equality in F[0, 2π]).
Taking x = 0 yields s2 = 0 (because sin0 = 0 and cos0 = 1). Similarly, s1 = 0 follows from
taking x = π

2 (because sin π

2 = 1 and cos π

2 = 0).



6.3. Linear Independence and Dimension 343

Example 6.3.3

Suppose that {u, v} is an independent set in a vector space V . Show that {u+2v, u−3v}
is also independent.

Solution. Suppose a linear combination of u+2v and u−3v vanishes:

s(u+2v)+ t(u−3v) = 0

We must deduce that s = t = 0. Collecting terms involving u and v gives

(s+ t)u+(2s−3t)v = 0

Because {u, v} is independent, this yields linear equations s+ t = 0 and 2s−3t = 0. The
only solution is s = t = 0.

Example 6.3.4

Show that any set of polynomials of distinct degrees is independent.

Solution. Let p1, p2, . . . , pm be polynomials where deg (pi) = di. By relabelling if
necessary, we may assume that d1 > d2 > · · ·> dm. Suppose that a linear combination
vanishes:

t1 p1 + t2 p2 + · · ·+ tm pm = 0

where each ti is in R. As deg (p1) = d1, let axd1 be the term in p1 of highest degree, where
a 6= 0. Since d1 > d2 > · · ·> dm, it follows that t1axd1 is the only term of degree d1 in the
linear combination t1 p1 + t2 p2 + · · ·+ tm pm = 0. This means that t1axd1 = 0, whence t1a = 0,
hence t1 = 0 (because a 6= 0). But then t2 p2 + · · ·+ tm pm = 0 so we can repeat the argument
to show that t2 = 0. Continuing, we obtain ti = 0 for each i, as desired.

Example 6.3.5

Suppose that A is an n×n matrix such that Ak = 0 but Ak−1 6= 0. Show that
B = {I, A, A2, . . . , Ak−1} is independent in Mnn.

Solution. Suppose r0I + r1A+ r2A2 + · · ·+ rk−1Ak−1 = 0. Multiply by Ak−1:

r0Ak−1 + r1Ak + r2Ak+1 + · · ·+ rk−1A2k−2 = 0

Since Ak = 0, all the higher powers are zero, so this becomes r0Ak−1 = 0. But Ak−1 6= 0, so
r0 = 0, and we have r1A1 + r2A2 + · · ·+ rk−1Ak−1 = 0. Now multiply by Ak−2 to conclude that
r1 = 0. Continuing, we obtain ri = 0 for each i, so B is independent.

The next example collects several useful properties of independence for reference.
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Example 6.3.6

Let V denote a vector space.

1. If v 6= 0 in V , then {v} is an independent set.

2. No independent set of vectors in V can contain the zero vector.

Solution.

1. Let tv = 0, t in R. If t 6= 0, then v = 1v = 1
t (tv) =

1
t 0 = 0, contrary to assumption. So

t = 0.

2. If {v1, v2, . . . , vk} is independent and (say) v2 = 0, then 0v1 +1v2 + · · ·+0vk = 0 is a
nontrivial linear combination that vanishes, contrary to the independence of
{v1, v2, . . . , vk}.

A set of vectors is independent if 0 is a linear combination in a unique way. The following
theorem shows that every linear combination of these vectors has uniquely determined coefficients,
and so extends Theorem 5.2.1.

Theorem 6.3.1
Let {v1, v2, . . . , vn} be a linearly independent set of vectors in a vector space V . If a vector
v has two (ostensibly different) representations

v = s1v1 + s2v2 + · · · + snvn
v = t1v1 + t2v2 + · · · + tnvn

as linear combinations of these vectors, then s1 = t1, s2 = t2, . . . , sn = tn. In other words,
every vector in V can be written in a unique way as a linear combination of the vi.

Proof. Subtracting the equations given in the theorem gives

(s1 − t1)v1 +(s2 − t2)v2 + · · ·+(sn − tn)vn = 0

The independence of {v1, v2, . . . , vn} gives si − ti = 0 for each i, as required.

The following theorem extends (and proves) Theorem 5.2.4, and is one of the most useful results
in linear algebra.

Theorem 6.3.2: Fundamental Theorem
can be spanned by n vectors. If any set of m vectors in V is linearly independent, then m ≤ n.

Proof. Let V = span{v1, v2, . . . , vn}, and suppose that {u1, u2, . . . , um} is an independent set in
V . Then u1 = a1v1+a2v2+ · · ·+anvn where each ai is in R. As u1 6= 0 (Example 6.3.6), not all of the
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ai are zero, say a1 6= 0 (after relabelling the vi). Then V = span{u1, v2, v3, . . . , vn} as the reader
can verify. Hence, write u2 = b1u1+c2v2+c3v3+ · · ·+cnvn. Then some ci 6= 0 because {u1, u2} is
independent; so, as before, V = span{u1, u2, v3, . . . , vn}, again after possible relabelling of the vi.
If m > n, this procedure continues until all the vectors vi are replaced by the vectors u1, u2, . . . , un.
In particular, V = span{u1, u2, . . . , un}. But then un+1 is a linear combination of u1, u2, . . . , un
contrary to the independence of the ui. Hence, the assumption m > n cannot be valid, so m ≤ n and
the theorem is proved.

If V = span{v1, v2, . . . , vn}, and if {u1, u2, . . . , um} is an independent set in V , the above
proof shows not only that m ≤ n but also that m of the (spanning) vectors v1, v2, . . . , vn can be
replaced by the (independent) vectors u1, u2, . . . , um and the resulting set will still span V . In this
form the result is called the Steinitz Exchange Lemma.
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Definition 6.5 Basis of a Vector Space

As in Rn, a set {e1, e2, . . . , en} of vectors in a vector space V is called a basis of V if it
satisfies the following two conditions:

1. {e1, e2, . . . , en} is linearly independent

2. V = span{e1, e2, . . . , en}

Thus if a set of vectors {e1, e2, . . . , en} is a basis, then every vector in V can be written as a linear
combination of these vectors in a unique way (Theorem 6.3.1). But even more is true: Any two
(finite) bases of V contain the same number of vectors.

Theorem 6.3.3: Invariance Theorem
Let {e1, e2, . . . , en} and {f1, f2, . . . , fm} be two bases of a vector space V . Then n = m.

Proof. Because V = span{e1, e2, . . . , en} and {f1, f2, . . . , fm} is independent, it follows from
Theorem 6.3.2 that m ≤ n. Similarly n ≤ m, so n = m, as asserted.

Theorem 6.3.3 guarantees that no matter which basis of V is chosen it contains the same number
of vectors as any other basis. Hence there is no ambiguity about the following definition.

Definition 6.6 Dimension of a Vector Space

If {e1, e2, . . . , en} is a basis of the nonzero vector space V , the number n of vectors in the
basis is called the dimension of V , and we write

dim V = n

The zero vector space {0} is defined to have dimension 0:

dim{0}= 0

In our discussion to this point we have always assumed that a basis is nonempty and hence that the
dimension of the space is at least 1. However, the zero space {0} has no basis (by Example 6.3.6)
so our insistence that dim{0}= 0 amounts to saying that the empty set of vectors is a basis of {0}.
Thus the statement that “the dimension of a vector space is the number of vectors in any basis”
holds even for the zero space.

We saw in Example 5.2.9 that dim (Rn)= n and, if e j denotes column j of In, that {e1, e2, . . . , en}
is a basis (called the standard basis). In Example 6.3.7 below, similar considerations apply to the
space Mmn of all m×n matrices; the verifications are left to the reader.



6.3. Linear Independence and Dimension 347

Example 6.3.7

The space Mmn has dimension mn, and one basis consists of all m×n matrices with exactly
one entry equal to 1 and all other entries equal to 0. We call this the standard basis of
Mmn.

Example 6.3.8

Show that dim Pn = n+1 and that {1, x, x2, . . . , xn} is a basis, called the standard basis
of Pn.

Solution. Each polynomial p(x) = a0 +a1x+ · · ·+anxn in Pn is clearly a linear combination
of 1, x, . . . , xn, so Pn = span{1, x, . . . , xn}. However, if a linear combination of these
vectors vanishes, a01+a1x+ · · ·+anxn = 0, then a0 = a1 = · · ·= an = 0 because x is an
indeterminate. So {1, x, . . . , xn} is linearly independent and hence is a basis containing
n+1 vectors. Thus, dim (Pn) = n+1.

Example 6.3.9

If v 6= 0 is any nonzero vector in a vector space V , show that span{v}=Rv has dimension 1.

Solution. {v} clearly spans Rv, and it is linearly independent by Example 6.3.6. Hence
{v} is a basis of Rv, and so dim Rv = 1.

Example 6.3.10

Let A =

[
1 1
0 0

]
and consider the subspace

U = {X in M22 | AX = XA}

of M22. Show that dim U = 2 and find a basis of U .

Solution. It was shown in Example 6.2.3 that U is a subspace for any choice of the matrix
A. In the present case, if X =

[
x y
z w

]
is in U , the condition AX = XA gives z = 0 and

x = y+w. Hence each matrix X in U can be written

X =

[
y+w y

0 w

]
= y
[

1 1
0 0

]
+w

[
1 0
0 1

]

so U = span B where B =

{[
1 1
0 0

]
,
[

1 0
0 1

]}
. Moreover, the set B is linearly

independent (verify this), so it is a basis of U and dim U = 2.
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Example 6.3.11

Show that the set V of all symmetric 2×2 matrices is a vector space, and find the
dimension of V .

Solution. A matrix A is symmetric if AT = A. If A and B lie in V , then

(A+B)T = AT +BT = A+B and (kA)T = kAT = kA

using Theorem 2.1.2. Hence A+B and kA are also symmetric. As the 2×2 zero matrix is
also in V , this shows that V is a vector space (being a subspace of M22). Now a matrix A is
symmetric when entries directly across the main diagonal are equal, so each 2×2 symmetric
matrix has the form [

a c
c b

]
= a

[
1 0
0 0

]
+b
[

0 0
0 1

]
+ c
[

0 1
1 0

]

Hence the set B =

{[
1 0
0 0

]
,
[

0 0
0 1

]
,
[

0 1
1 0

]}
spans V , and the reader can verify that

B is linearly independent. Thus B is a basis of V , so dim V = 3.

It is frequently convenient to alter a basis by multiplying each basis vector by a nonzero scalar.
The next example shows that this always produces another basis. The proof is left as Exercise
6.3.22.

Example 6.3.12

Let B = {v1, v2, . . . , vn} be nonzero vectors in a vector space V . Given nonzero scalars
a1, a2, . . . , an, write D = {a1v1, a2v2, . . . , anvn}. If B is independent or spans V , the same
is true of D. In particular, if B is a basis of V , so also is D.

Exercises for 6.3

Exercise 6.3.1 Show that each of the following
sets of vectors is independent.

a. {1+ x, 1− x, x+ x2} in P2

b. {x2, x+1, 1− x− x2} in P2

c.{[
1 1
0 0

]
,
[

1 0
1 0

]
,
[

0 0
1 −1

]
,
[

0 1
0 1

]}
in M22

d.{[
1 1
1 0

]
,
[

0 1
1 1

]
,
[

1 0
1 1

]
,
[

1 1
0 1

]}
in M22

b. If ax2+b(x+1)+c(1−x−x2) = 0, then a+c =
0, b− c = 0, b+ c = 0, so a = b = c = 0.
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d. If a
[

1 1
1 0

]
+ b

[
0 1
1 1

]
+ c

[
1 0
1 1

]
+

d
[

1 1
0 1

]
=

[
0 0
0 0

]
, then a + c + d = 0,

a+ b+ d = 0, a+ b+ c = 0, and b+ c+ d = 0,
so a = b = c = d = 0.

Exercise 6.3.2 Which of the following subsets of
V are independent?

a. V = P2; {x2 +1, x+1, x}

b. V = P2; {x2 − x+3, 2x2 + x+5, x2 +5x+1}

c. V = M22;
{[

1 1
0 1

]
,
[

1 0
1 1

]
,
[

1 0
0 1

]}
d. V = M22;{[
−1 0

0 −1

]
,
[

1 −1
−1 1

]
,
[

1 1
1 1

]
,
[

0 −1
−1 0

]}
e. V = F[1, 2];

{1
x , 1

x2 , 1
x3

}
f. V = F[0, 1];

{
1

x2+x−6 , 1
x2−5x+6 , 1

x2−9

}

b. 3(x2 − x+3)−2(2x2 + x+5)+(x2 +5x+1) = 0

d. 2
[
−1 0

0 −1

]
+

[
1 −1

−1 1

]
+

[
1 1
1 1

]
=[

0 0
0 0

]
f. 5

x2+x−6 +
1

x2−5x+6 −
6

x2−9 = 0

Exercise 6.3.3 Which of the following are inde-
pendent in F[0, 2π]?

a. {sin2 x, cos2 x}

b. {1, sin2 x, cos2 x}

c. {x, sin2 x, cos2 x}

b. Dependent: 1− sin2 x− cos2 x = 0

Exercise 6.3.4 Find all values of a such that the
following are independent in R3.

a. {(1, −1, 0), (a, 1, 0), (0, 2, 3)}

b. {(2, a, 1), (1, 0, 1), (0, 1, 3)}

b. x 6=−1
3

Exercise 6.3.5 Show that the following are bases
of the space V indicated.

a. {(1, 1, 0), (1, 0, 1), (0, 1, 1)}; V = R3

b. {(−1, 1, 1), (1, −1, 1), (1, 1, −1)}; V = R3

c.
{[

1 0
0 1

]
,
[

0 1
1 0

]
,
[

1 1
0 1

]
,
[

1 0
0 0

]}
;

V = M22

d. {1+ x, x+ x2, x2 + x3, x3}; V = P3

b. If r(−1, 1, 1) + s(1, −1, 1) + t(1, 1, −1) =
(0, 0, 0), then −r + s + t = 0, r − s + t = 0,
and r− s− t = 0, and this implies that r = s =
t = 0. This proves independence. To prove
that they span R3, observe that (0, 0, 1) =
1
2 [(−1, 1, 1)+ (1, −1, 1)] so (0, 0, 1) lies in
span{(−1, 1, 1), (1, −1, 1), (1, 1, −1)}. The
proof is similar for (0, 1, 0) and (1, 0, 0).

d. If r(1+x)+s(x+x2)+ t(x2+x3)+ux3 = 0, then
r = 0, r + s = 0, s + t = 0, and t + u = 0,
so r = s = t = u = 0. This proves indepen-
dence. To show that they span P3, observe
that x2 = (x2 + x3)− x3, x = (x+ x2)− x2, and
1 = (1+ x)− x, so {1, x, x2, x3} ⊆ span{1+
x, x+ x2, x2 + x3, x3}.

Exercise 6.3.6 Exhibit a basis and calculate the
dimension of each of the following subspaces of P2.

a. {a(1+ x)+b(x+ x2) | a and b in R}

b. {a+b(x+ x2) | a and b in R}

c. {p(x) | p(1) = 0}

d. {p(x) | p(x) = p(−x)}
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b. {1, x+ x2}; dimension = 2

d. {1, x2}; dimension = 2

Exercise 6.3.7 Exhibit a basis and calculate the
dimension of each of the following subspaces of M22.

a. {A | AT =−A}

b.
{

A
∣∣∣∣ A
[

1 1
−1 0

]
=

[
1 1

−1 0

]
A
}

c.
{

A
∣∣∣∣ A
[

1 0
−1 0

]
=

[
0 0
0 0

]}

d.
{

A
∣∣∣∣ A
[

1 1
−1 0

]
=

[
0 1

−1 1

]
A
}

b.
{[

1 1
−1 0

]
,
[

1 0
0 1

]}
; dimension = 2

d.
{[

1 0
1 1

]
,
[

0 1
−1 0

]}
; dimension = 2

Exercise 6.3.8 Let A =

[
1 1
0 0

]
and define

U = {X | X ∈ M22 and AX = X}.

a. Find a basis of U containing A.

b. Find a basis of U not containing A.

b.
{[

1 0
0 0

]
,
[

0 1
0 0

]}
Exercise 6.3.9 Show that the set C of all complex
numbers is a vector space with the usual operations,
and find its dimension.

Exercise 6.3.10

a. Let V denote the set of all 2×2 matrices with
equal column sums. Show that V is a subspace
of M22, and compute dim V .

b. Repeat part (a) for 3×3 matrices.

c. Repeat part (a) for n×n matrices.

b. dim V = 7

Exercise 6.3.11

a. Let V = {(x2 + x+ 1)p(x) | p(x) in P2}. Show
that V is a subspace of P4 and find dim V .
[Hint: If f (x)g(x) = 0 in P, then f (x) = 0 or
g(x) = 0.]

b. Repeat with V = {(x2 − x)p(x) | p(x) in P3}, a
subset of P5.

c. Generalize.

b. {x2 − x, x(x2 − x), x2(x2 − x), x3(x2 − x)};
dim V = 4

Exercise 6.3.12 In each case, either prove the as-
sertion or give an example showing that it is false.

a. Every set of four nonzero polynomials in P3 is
a basis.

b. P2 has a basis of polynomials f (x) such that
f (0) = 0.

c. P2 has a basis of polynomials f (x) such that
f (0) = 1.

d. Every basis of M22 contains a noninvertible
matrix.

e. No independent subset of M22 contains a ma-
trix A with A2 = 0.

f. If {u, v, w} is independent then, au+ bv+
cw = 0 for some a, b, c.

g. {u, v, w} is independent if au+bv+ cw = 0
for some a, b, c.

h. If {u, v} is independent, so is {u, u+v}.

i. If {u, v} is independent, so is {u, v, u+v}.

j. If {u, v, w} is independent, so is {u, v}.
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k. If {u, v, w} is independent, so is {u+w, v+
w}.

l. If {u, v, w} is independent, so is {u+v+w}.

m. If u 6= 0 and v 6= 0 then {u, v} is dependent
if and only if one is a scalar multiple of the
other.

n. If dim V = n, then no set of more than n vec-
tors can be independent.

o. If dim V = n, then no set of fewer than n vec-
tors can span V .

b. No. Any linear combination f of such polyno-
mials has f (0) = 0.

d. No.{[
1 0
0 1

]
,
[

1 1
0 1

]
,
[

1 0
1 1

]
,
[

0 1
1 1

]}
;

consists of invertible matrices.

f. Yes. 0u+0v+0w= 0 for every set {u, v, w}.

h. Yes. su+ t(u+v) = 0 gives (s+ t)u+ tv = 0,
whence s+ t = 0 = t.

j. Yes. If ru+ sv = 0, then ru+ sv+0w = 0, so
r = 0 = s.

l. Yes. u+v+w 6= 0 because {u, v, w} is inde-
pendent.

n. Yes. If I is independent, then |I| ≤ n by the
fundamental theorem because any basis spans
V .

Exercise 6.3.13 Let A 6= 0 and B 6= 0 be n×n ma-
trices, and assume that A is symmetric and B is skew-
symmetric (that is, BT = −B). Show that {A, B} is
independent.

Exercise 6.3.14 Show that every set of vectors
containing a dependent set is again dependent.

Exercise 6.3.15 Show that every nonempty sub-
set of an independent set of vectors is again indepen-
dent.
If a linear combination of the subset vanishes, it is
a linear combination of the vectors in the larger set

(coefficients outside the subset are zero) so it is triv-
ial.

Exercise 6.3.16 Let f and g be functions on [a, b],
and assume that f (a) = 1 = g(b) and f (b) = 0 = g(a).
Show that { f , g} is independent in F[a, b].

Exercise 6.3.17 Let {A1, A2, . . . , Ak} be indepen-
dent in Mmn, and suppose that U and V are invert-
ible matrices of size m×m and n× n, respectively.
Show that {UA1V , UA2V , . . . , UAkV} is indepen-
dent.

Exercise 6.3.18 Show that {v, w} is independent
if and only if neither v nor w is a scalar multiple of
the other.

Exercise 6.3.19 Assume that {u, v} is indepen-
dent in a vector space V . Write u′ = au+ bv and
v′ = cu+dv, where a, b, c, and d are numbers. Show
that {u′, v′} is independent if and only if the ma-

trix
[

a c
b d

]
is invertible. [Hint: Theorem 2.4.5.]

Because {u, v} is linearly independent, su′+ tv′ = 0

is equivalent to
[

a c
b d

][
s
t

]
=

[
0
0

]
. Now apply

Theorem 2.4.5.

Exercise 6.3.20 If {v1, v2, . . . , vk} is independent
and w is not in span{v1, v2, . . . , vk}, show that:

a. {w, v1, v2, . . . , vk} is independent.

b. {v1 +w, v2 +w, . . . , vk +w} is independent.

Exercise 6.3.21 If {v1, v2, . . . , vk} is indepen-
dent, show that {v1, v1 +v2, . . . , v1 +v2 + · · ·+vk}
is also independent.

Exercise 6.3.22 Prove Example 6.3.12.

Exercise 6.3.23 Let {u, v, w, z} be independent.
Which of the following are dependent?

a. {u−v, v−w, w−u}

b. {u+v, v+w, w+u}

c. {u−v, v−w, w−z, z−u}

d. {u+v, v+w, w+z, z+u}

b. Independent.
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d. Dependent. For example, (u+v)− (v+w)+
(w+z)− (z+u) = 0.

Exercise 6.3.24 Let U and W be subspaces of V
with bases {u1, u2, u3} and {w1, w2} respectively.
If U and W have only the zero vector in common,
show that {u1, u2, u3, w1, w2} is independent.

Exercise 6.3.25 Let {p, q} be independent poly-
nomials. Show that {p, q, pq} is independent if and
only if deg p ≥ 1 and deg q ≥ 1.

Exercise 6.3.26 If z is a complex number, show
that {z, z2} is independent if and only if z is not real.

If z is not real and az+bz2 = 0, then a+bz= 0(z 6= 0).
Hence if b 6= 0, then z = −ab−1 is real. So b = 0,
and so a = 0. Conversely, if z is real, say z = a,
then (−a)z+ 1z2 = 0, contrary to the independence
of {z, z2}.

Exercise 6.3.27 Let B = {A1, A2, . . . , An} ⊆ Mmn,
and write B′ = {AT

1 , AT
2 , . . . , AT

n } ⊆ Mnm. Show that:

a. B is independent if and only if B′ is indepen-
dent.

b. B spans Mmn if and only if B′ spans Mnm.

Exercise 6.3.28 If V =F[a, b] as in Example 6.1.7,
show that the set of constant functions is a subspace
of dimension 1 ( f is constant if there is a number c
such that f (x) = c for all x).

Exercise 6.3.29

a. If U is an invertible n × n matrix and
{A1, A2, . . . , Amn} is a basis of Mmn, show
that {A1U , A2U , . . . , AmnU} is also a basis.

b. Show that part (a) fails if U is not invertible.
[Hint: Theorem 2.4.5.]

b. If Ux = 0, x 6= 0 in Rn, then Rx = 0 where
R 6= 0 is row 1 of U . If B ∈ Mmn has each row
equal to R, then Bx 6= 0. But if B = ∑riAiU ,
then Bx=∑riAiUx=0. So {AiU} cannot span
Mmn.

Exercise 6.3.30 Show that {(a, b), (a1, b1)} is a
basis of R2 if and only if {a+bx, a1 +b1x} is a basis
of P1.
Exercise 6.3.31 Find the dimension of the sub-
space span{1, sin2

θ , cos2θ} of F[0, 2π].
Exercise 6.3.32 Show that F[0, 1] is not finite
dimensional.
Exercise 6.3.33 If U and W are subspaces of V ,
define their intersection U ∩W as follows: U ∩W =
{v | v is in both U and W}

a. Show that U ∩W is a subspace contained in U
and W .

b. Show that U ∩W = {0} if and only if {u, w}
is independent for any nonzero vectors u in U
and w in W .

c. If B and D are bases of U and W , and
if U ∩ W = {0}, show that B ∪ D = {v |
v is in B or D} is independent.

b. If U ∩W = 0 and ru+ sw = 0, then ru =−sw
is in U ∩W , so ru = 0 = sw. Hence r = 0 = s
because u 6= 0 6= w. Conversely, if v 6= 0 lies
in U ∩W , then 1v+ (−1)v = 0, contrary to
hypothesis.

Exercise 6.3.34 If U and W are vector spaces, let
V = {(u, w) | u in U and w in W}.

a. Show that V is a vector space if (u, w) +
(u1, w1) = (u+u1, w+w1) and a(u, w) =
(au, aw).

b. If dim U = m and dim W = n, show that
dim V = m+n.

c. If V1, . . . , Vm are vector spaces, let
V =V1 ×·· ·×Vm

= {(v1, . . . , vm) | vi ∈Vi for each i}

denote the space of n-tuples from the Vi

with componentwise operations (see Exer-
cise 6.1.17). If dim Vi = ni for each i, show
that dim V = n1 + · · ·+nm.

Exercise 6.3.35 Let Dn denote the set of all func-
tions f from the set {1, 2, . . . , n} to R.
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a. Show that Dn is a vector space with pointwise
addition and scalar multiplication.

b. Show that {S1, S2, . . . , Sn} is a basis of Dn

where, for each k = 1, 2, . . . , n, the function
Sk is defined by Sk(k) = 1, whereas Sk( j) = 0 if
j 6= k.

Exercise 6.3.36 A polynomial p(x) is called even
if p(−x) = p(x) and odd if p(−x) = −p(x). Let En

and On denote the sets of even and odd polynomials
in Pn.

a. Show that En is a subspace of Pn and find
dim En.

b. Show that On is a subspace of Pn and find
dim On.

b. dim On =
n
2 if n is even and dim On =

n+1
2 if n

is odd.

Exercise 6.3.37 Let {v1, . . . , vn} be independent
in a vector space V , and let A be an n× n matrix.
Define u1, . . . , un by u1

...
un

= A

 v1
...

vn


(See Exercise 6.1.18.) Show that {u1, . . . , un} is
independent if and only if A is invertible.
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6.4 Finite Dimensional Spaces

Up to this point, we have had no guarantee that an arbitrary vector space has a basis—and hence
no guarantee that one can speak at all of the dimension of V . However, Theorem 6.4.1 will show
that any space that is spanned by a finite set of vectors has a (finite) basis: The proof requires the
following basic lemma, of interest in itself, that gives a way to enlarge a given independent set of
vectors.

Lemma 6.4.1: Independent Lemma

Let {v1, v2, . . . , vk} be an independent set of vectors in a vector space V . If u ∈V but5

u /∈ span{v1, v2, . . . , vk}, then {u, v1, v2, . . . , vk} is also independent.

Proof. Let tu+ t1v1 + t2v2 + · · ·+ tkvk = 0; we must show that all the coefficients are zero. First,
t = 0 because, otherwise, u =− t1

t v1 − t2
t v2 −·· ·− tk

t vk is in span{v1, v2, . . . , vk}, contrary to our
assumption. Hence t = 0. But then t1v1 + t2v2 + · · ·+ tkvk = 0 so the rest of the ti are zero by the
independence of {v1, v2, . . . , vk}. This is what we wanted.

0

u

v1

v2

span{v1 , v2}
x

y

z Note that the converse of Lemma 6.4.1 is also true:
if {u, v1, v2, . . . , vk} is independent, then u is not
in span{v1, v2, . . . , vk}.

As an illustration, suppose that {v1, v2} is inde-
pendent in R3. Then v1 and v2 are not parallel, so
span{v1, v2} is a plane through the origin (shaded
in the diagram). By Lemma 6.4.1, u is not in this
plane if and only if {u, v1, v2} is independent.

Definition 6.7 Finite Dimensional and Infinite Dimensional Vector Spaces

A vector space V is called finite dimensional if it is spanned by a finite set of vectors.
Otherwise, V is called infinite dimensional.

Thus the zero vector space {0} is finite dimensional because {0} is a spanning set.

Lemma 6.4.2
Let V be a finite dimensional vector space. If U is any subspace of V , then any independent
subset of U can be enlarged to a finite basis of U .

Proof. span I =U then I is already a basis of U . If span I 6=U , choose u1 ∈U such that u1 /∈ span I.
Hence the set I∪{u1} is independent by Lemma 6.4.1. If span (I∪{u1}) =U we are done; otherwise
choose u2 ∈ U such that u2 /∈ span (I ∪{u1}). Hence I ∪{u1, u2} is independent, and the process

5If X is a set, we write a ∈ X to indicate that a is an element of the set X . If a is not an element of X , we write
a /∈ X .
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continues. We claim that a basis of U will be reached eventually. Indeed, if no basis of U is ever
reached, the process creates arbitrarily large independent sets in V . But this is impossible by the
fundamental theorem because V is finite dimensional and so is spanned by a finite set of vectors.

Theorem 6.4.1
Let V be a finite dimensional vector space spanned by m vectors.

1. V has a finite basis, and dim V ≤ m.

2. Every independent set of vectors in V can be enlarged to a basis of V by adding
vectors from any fixed basis of V .

3. If U is a subspace of V , then

a. U is finite dimensional and dim U ≤ dim V .
b. If dim U = dim V then U =V .

Proof.

1. If V = {0}, then V has an empty basis and dim V = 0 ≤ m. Otherwise, let v 6= 0 be a vector
in V . Then {v} is independent, so (1) follows from Lemma 6.4.2 with U =V .

2. We refine the proof of Lemma 6.4.2. Fix a basis B of V and let I be an independent subset
of V . If span I =V then I is already a basis of V . If span I 6=V , then B is not contained in I
(because B spans V ). Hence choose b1 ∈ B such that b1 /∈ span I. Hence the set I ∪{b1} is
independent by Lemma 6.4.1. If span (I∪{b1}) =V we are done; otherwise a similar argument
shows that (I ∪{b1, b2}) is independent for some b2 ∈ B. Continue this process. As in the
proof of Lemma 6.4.2, a basis of V will be reached eventually.

3. a. This is clear if U = {0}. Otherwise, let u 6= 0 in U . Then {u} can be enlarged to a finite
basis B of U by Lemma 6.4.2, proving that U is finite dimensional. But B is independent
in V , so dim U ≤ dim V by the fundamental theorem.

b. This is clear if U = {0} because V has a basis; otherwise, it follows from (2).

Theorem 6.4.1 shows that a vector space V is finite dimensional if and only if it has a finite basis
(possibly empty), and that every subspace of a finite dimensional space is again finite dimensional.

Example 6.4.1

Enlarge the independent set D =

{[
1 1
1 0

]
,
[

0 1
1 1

]
,
[

1 0
1 1

]}
to a basis of M22.

Solution. The standard basis of M22 is
{[

1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
,
[

0 0
0 1

]}
, so

including one of these in D will produce a basis by Theorem 6.4.1. In fact including any of
these matrices in D produces an independent set (verify), and hence a basis by
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Theorem 6.4.4. Of course these vectors are not the only possibilities, for example, including[
1 1
0 1

]
works as well.

Example 6.4.2

Find a basis of P3 containing the independent set {1+ x, 1+ x2}.

Solution. The standard basis of P3 is {1, x, x2, x3}, so including two of these vectors will
do. If we use 1 and x3, the result is {1, 1+ x, 1+ x2, x3}. This is independent because the
polynomials have distinct degrees (Example 6.3.4), and so is a basis by Theorem 6.4.1. Of
course, including {1, x} or {1, x2} would not work!

Example 6.4.3

Show that the space P of all polynomials is infinite dimensional.

Solution. For each n ≥ 1, P has a subspace Pn of dimension n+1. Suppose P is finite
dimensional, say dim P = m. Then dim Pn ≤ dim P by Theorem 6.4.1, that is n+1 ≤ m.
This is impossible since n is arbitrary, so P must be infinite dimensional.

The next example illustrates how (2) of Theorem 6.4.1 can be used.

Example 6.4.4

If c1, c2, . . . , ck are independent columns in Rn, show that they are the first k columns in
some invertible n×n matrix.

Solution. By Theorem 6.4.1, expand {c1, c2, . . . , ck} to a basis
{c1, c2, . . . , ck, ck+1, . . . , cn} of Rn. Then the matrix A =

[
c1 c2 . . . ck ck+1 . . . cn

]
with this basis as its columns is an n×n matrix and it is invertible by Theorem 5.2.3.

Theorem 6.4.2
Let U and W be subspaces of the finite dimensional space V .

1. If U ⊆W , then dim U ≤ dim W .

2. If U ⊆W and dim U = dim W , then U =W .

Proof. Since W is finite dimensional, (1) follows by taking V = W in part (3) of Theorem 6.4.1.
Now assume dim U = dim W = n, and let B be a basis of U . Then B is an independent set in W .
If U 6=W , then span B 6=W , so B can be extended to an independent set of n+1 vectors in W by
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Lemma 6.4.1. This contradicts the fundamental theorem (Theorem 6.3.2) because W is spanned by
dim W = n vectors. Hence U =W , proving (2).

Theorem 6.4.2 is very useful. This was illustrated in Example 5.2.13 for R2 and R3; here is
another example.

Example 6.4.5

If a is a number, let W denote the subspace of all polynomials in Pn that have a as a root:

W = {p(x) | p(x) ∈ Pn and p(a) = 0}

Show that {(x−a), (x−a)2, . . . , (x−a)n} is a basis of W .

Solution. Observe first that (x−a), (x−a)2, . . . , (x−a)n are members of W , and that they
are independent because they have distinct degrees (Example 6.3.4). Write

U = span{(x−a), (x−a)2, . . . , (x−a)n}

Then we have U ⊆W ⊆ Pn, dim U = n, and dim Pn = n+1. Hence n ≤ dim W ≤ n+1 by
Theorem 6.4.2. Since dim W is an integer, we must have dim W = n or dim W = n+1. But
then W =U or W = Pn, again by Theorem 6.4.2. Because W 6= Pn, it follows that W =U , as
required.

A set of vectors is called dependent if it is not independent, that is if some nontrivial linear
combination vanishes. The next result is a convenient test for dependence.

Lemma 6.4.3: Dependent Lemma

A set D = {v1, v2, . . . , vk} of vectors in a vector space V is dependent if and only if some
vector in D is a linear combination of the others.

Proof. Let v2 (say) be a linear combination of the rest: v2 = s1v1 + s3v3 + · · ·+ skvk. Then

s1v1 +(−1)v2 + s3v3 + · · ·+ skvk = 0

is a nontrivial linear combination that vanishes, so D is dependent. Conversely, if D is dependent,
let t1v1 + t2v2 + · · ·+ tkvk = 0 where some coefficient is nonzero. If (say) t2 6= 0, then v2 =− t1

t2
v1 −

t3
t2

v3 −·· ·− tk
t2

vk is a linear combination of the others.

Lemma 6.4.1 gives a way to enlarge independent sets to a basis; by contrast, Lemma 6.4.3 shows
that spanning sets can be cut down to a basis.

Theorem 6.4.3
Let V be a finite dimensional vector space. Any spanning set for V can be cut down (by
deleting vectors) to a basis of V .
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Proof. Since V is finite dimensional, it has a finite spanning set S. Among all spanning sets
contained in S, choose S0 containing the smallest number of vectors. It suffices to show that S0
is independent (then S0 is a basis, proving the theorem). Suppose, on the contrary, that S0 is
not independent. Then, by Lemma 6.4.3, some vector u ∈ S0 is a linear combination of the set
S1 = S0 \{u} of vectors in S0 other than u. It follows that span S0 = span S1, that is, V = span S1.
But S1 has fewer elements than S0 so this contradicts the choice of S0. Hence S0 is independent
after all.

Note that, with Theorem 6.4.1, Theorem 6.4.3 completes the promised proof of Theorem 5.2.6 for
the case V = Rn.

Example 6.4.6

Find a basis of P3 in the spanning set S = {1, x+ x2, 2x−3x2, 1+3x−2x2, x3}.

Solution. Since dim P3 = 4, we must eliminate one polynomial from S. It cannot be x3

because the span of the rest of S is contained in P2. But eliminating 1+3x−2x2 does leave
a basis (verify). Note that 1+3x−2x2 is the sum of the first three polynomials in S.

Theorems 6.4.1 and 6.4.3 have other useful consequences.

Theorem 6.4.4
Let V be a vector space with dim V = n, and suppose S is a set of exactly n vectors in V .
Then S is independent if and only if S spans V .

Proof. Assume first that S is independent. By Theorem 6.4.1, S is contained in a basis B of V .
Hence |S|= n = |B| so, since S ⊆ B, it follows that S = B. In particular S spans V .

Conversely, assume that S spans V , so S contains a basis B by Theorem 6.4.3. Again |S|= n = |B|
so, since S ⊇ B, it follows that S = B. Hence S is independent.

One of independence or spanning is often easier to establish than the other when showing that a set
of vectors is a basis. For example if V =Rn it is easy to check whether a subset S of Rn is orthogonal
(hence independent) but checking spanning can be tedious. Here are three more examples.

Example 6.4.7

Consider the set S = {p0(x), p1(x), . . . , pn(x)} of polynomials in Pn. If deg pk(x) = k for
each k, show that S is a basis of Pn.

Solution. The set S is independent—the degrees are distinct—see Example 6.3.4. Hence S
is a basis of Pn by Theorem 6.4.4 because dim Pn = n+1.
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Example 6.4.8

Let V denote the space of all symmetric 2×2 matrices. Find a basis of V consisting of
invertible matrices.

Solution. We know that dim V = 3 (Example 6.3.11), so what is needed is a set of three
invertible, symmetric matrices that (using Theorem 6.4.4) is either independent or spans V .

The set
{[

1 0
0 1

]
,
[

1 0
0 −1

]
,
[

0 1
1 0

]}
is independent (verify) and so is a basis of the

required type.

Example 6.4.9

Let A be any n×n matrix. Show that there exist n2 +1 scalars a0, a1, a2, . . . , an2 not all
zero, such that

a0I +a1A+a2A2 + · · ·+an2An2
= 0

where I denotes the n×n identity matrix.

Solution. The space Mnn of all n×n matrices has dimension n2 by Example 6.3.7. Hence
the n2 +1 matrices I, A, A2, . . . , An2 cannot be independent by Theorem 6.4.4, so a
nontrivial linear combination vanishes. This is the desired conclusion.

The result in Example 6.4.9 can be written as f (A) = 0 where f (x) = a0 +a1x+a2x2 + · · ·+an2xn2 .
In other words, A satisfies a nonzero polynomial f (x) of degree at most n2. In fact we know that A
satisfies a nonzero polynomial of degree n (this is the Cayley-Hamilton theorem—see Theorem ??),
but the brevity of the solution in Example 6.4.6 is an indication of the power of these methods.

If U and W are subspaces of a vector space V , there are two related subspaces that are of interest,
their sum U +W and their intersection U ∩W , defined by

U +W = {u+w | u ∈U and w ∈W}
U ∩W = {v ∈V | v ∈U and v ∈W}

It is routine to verify that these are indeed subspaces of V , that U ∩W is contained in both U and
W , and that U +W contains both U and W . We conclude this section with a useful fact about the
dimensions of these spaces. The proof is a good illustration of how the theorems in this section are
used.

Theorem 6.4.5
Suppose that U and W are finite dimensional subspaces of a vector space V . Then U +W is
finite dimensional and

dim (U +W ) = dim U + dim W − dim (U ∩W ).

Proof. Since U∩W ⊆U , it has a finite basis, say {x1, . . . , xd}. Extend it to a basis {x1, . . . , xd , u1, . . . , um}
of U by Theorem 6.4.1. Similarly extend {x1, . . . , xd} to a basis {x1, . . . , xd , w1, . . . , wp} of W .
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Then
U +W = span{x1, . . . , xd , u1, . . . , um, w1, . . . , wp}

as the reader can verify, so U +W is finite dimensional. For the rest, it suffices to show that
{x1, . . . , xd , u1, . . . , um, w1, . . . , wp} is independent (verify). Suppose that

r1x1 + · · ·+ rdxd + s1u1 + · · ·+ smum + t1w1 + · · ·+ tpwp = 0 (6.1)

where the ri, s j, and tk are scalars. Then

r1x1 + · · ·+ rdxd + s1u1 + · · ·+ smum =−(t1w1 + · · ·+ tpwp)

is in U (left side) and also in W (right side), and so is in U ∩W . Hence (t1w1+ · · ·+ tpwp) is a linear
combination of {x1, . . . , xd}, so t1 = · · ·= tp = 0, because {x1, . . . , xd , w1, . . . , wp} is independent.
Similarly, s1 = · · ·= sm = 0, so (6.1) becomes r1x1 + · · ·+ rdxd = 0. It follows that r1 = · · ·= rd = 0,
as required.

Theorem 6.4.5 is particularly interesting if U ∩W = {0}. Then there are no vectors xi in the
above proof, and the argument shows that if {u1, . . . , um} and {w1, . . . , wp} are bases of U and
W respectively, then {u1, . . . , um, w1, . . . , wp} is a basis of U + W . In this case U +W is said to
be a direct sum (written U ⊕W ); we return to this in Chapter ??.

Exercises for 6.4

Exercise 6.4.1 In each case, find a basis for V that
includes the vector v.

a. V = R3, v = (1, −1, 1)

b. V = R3, v = (0, 1, 1)

c. V = M22, v =

[
1 1
1 1

]
d. V = P2, v = x2 − x+1

b. {(0, 1, 1), (1, 0, 0), (0, 1, 0)}

d. {x2 − x+1, 1, x}

Exercise 6.4.2 In each case, find a basis for V
among the given vectors.

a. V = R3,
{(1, 1, −1), (2, 0, 1), (−1, 1, −2), (1, 2, 1)}

b. V = P2, {x2 +3, x+2, x2 −2x−1, x2 + x}

b. Any three except {x2 +3, x+2, x2 −2x−1}

Exercise 6.4.3 In each case, find a basis of V con-
taining v and w.

a. V = R4, v = (1, −1, 1, −1), w = (0, 1, 0, 1)

b. V = R4, v = (0, 0, 1, 1), w = (1, 1, 1, 1)

c. V = M22, v =

[
1 0
0 1

]
, w =

[
0 1
1 0

]
d. V = P3, v = x2 +1, w = x2 + x

b. Add (0, 1, 0, 0) and (0, 0, 1, 0).

d. Add 1 and x3.



6.4. Finite Dimensional Spaces 361

Exercise 6.4.4

a. If z is not a real number, show that {z, z2} is a
basis of the real vector space C of all complex
numbers.

b. If z is neither real nor pure imaginary, show
that {z, z} is a basis of C.

b. If z= a+bi, then a 6= 0 and b 6= 0. If rz+sz= 0,
then (r+ s)a = 0 and (r− s)b = 0. This means
that r+ s = 0 = r− s, so r = s = 0. Thus {z, z}
is independent; it is a basis because dim C= 2.

Exercise 6.4.5 In each case use Theorem 6.4.4 to
decide if S is a basis of V .

a. V = M22;

S =

{[
1 1
1 1

]
,
[

0 1
1 1

]
,
[

0 0
1 1

]
,
[

0 0
0 1

]}
b. V = P3; S = {2x2, 1+ x, 3, 1+ x+ x2 + x3}

b. The polynomials in S have distinct degrees.

Exercise 6.4.6

a. Find a basis of M22 consisting of matrices with
the property that A2 = A.

b. Find a basis of P3 consisting of polynomials
whose coefficients sum to 4. What if they sum
to 0?

b. {4, 4x, 4x2, 4x3} is one such basis of P3. How-
ever, there is no basis of P3 consisting of poly-
nomials that have the property that their coef-
ficients sum to zero. For if such a basis exists,
then every polynomial in P3 would have this
property (because sums and scalar multiples
of such polynomials have the same property).

Exercise 6.4.7 If {u, v, w} is a basis of V , deter-
mine which of the following are bases.

a. {u+v, u+w, v+w}

b. {2u+v+3w, 3u+v−w, u−4w}

c. {u, u+v+w}

d. {u, u+w, u−w, v+w}

b. Not a basis.

d. Not a basis.

Exercise 6.4.8

a. Can two vectors span R3? Can they be lin-
early independent? Explain.

b. Can four vectors span R3? Can they be lin-
early independent? Explain.

b. Yes; no.

Exercise 6.4.9 Show that any nonzero vector in a
finite dimensional vector space is part of a basis.

Exercise 6.4.10 If A is a square matrix, show that
det A = 0 if and only if some row is a linear combi-
nation of the others.
det A = 0 if and only if A is not invertible; if and only
if the rows of A are dependent (Theorem 5.2.3); if
and only if some row is a linear combination of the
others (Lemma 6.4.2).

Exercise 6.4.11 Let D, I, and X denote finite,
nonempty sets of vectors in a vector space V . As-
sume that D is dependent and I is independent. In
each case answer yes or no, and defend your answer.

a. If X ⊇ D, must X be dependent?

b. If X ⊆ D, must X be dependent?

c. If X ⊇ I, must X be independent?

d. If X ⊆ I, must X be independent?
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b. No. {(0, 1), (1, 0)} ⊆ {(0, 1), (1, 0), (1, 1)}.

d. Yes. See Exercise 6.3.15.

Exercise 6.4.12 If U and W are subspaces of V and
dim U = 2, show that either U ⊆W or dim (U ∩W )≤
1.

Exercise 6.4.13 Let A be a nonzero 2×2 matrix
and write U = {X in M22 | XA = AX}. Show that
dim U ≥ 2. [Hint: I and A are in U .]

Exercise 6.4.14 If U ⊆R2 is a subspace, show that
U = {0}, U = R2, or U is a line through the origin.

Exercise 6.4.15 Given v1, v2, v3, . . . , vk,
and v, let U = span{v1, v2, . . . , vk} and
W = span{v1, v2, . . . , vk, v}. Show that
either dim W = dim U or dim W = 1 + dim U .

If v ∈ U then W = U ; if v /∈ U then
{v1, v2, . . . , vk, v} is a basis of W by the inde-
pendent lemma.

Exercise 6.4.16 Suppose U is a subspace of P1,
U 6= {0}, and U 6= P1. Show that either U = R or
U = R(a+ x) for some a in R.

Exercise 6.4.17 Let U be a subspace of V and
assume dim V = 4 and dim U = 2. Does every basis
of V result from adding (two) vectors to some basis
of U? Defend your answer.

Exercise 6.4.18 Let U and W be subspaces of a
vector space V .

a. If dim V = 3, dim U = dim W = 2, and U 6=W ,
show that dim (U ∩W ) = 1.

b. Interpret (a.) geometrically if V = R3.

b. Two distinct planes through the origin (U and
W ) meet in a line through the origin (U ∩W ).

Exercise 6.4.19 Let U ⊆W be subspaces of V with
dim U = k and dim W = m, where k < m. If k < l < m,
show that a subspace X exists where U ⊆ X ⊆W and
dim X = l.

Exercise 6.4.20 Let B = {v1, . . . , vn} be a maxi-
mal independent set in a vector space V . That is, no
set of more than n vectors S is independent. Show
that B is a basis of V .

Exercise 6.4.21 Let B = {v1, . . . , vn} be a min-
imal spanning set for a vector space V . That is, V
cannot be spanned by fewer than n vectors. Show
that B is a basis of V .

Exercise 6.4.22

a. Let p(x) and q(x) lie in P1 and suppose that
p(1) 6= 0, q(2) 6= 0, and p(2) = 0 = q(1). Show
that {p(x), q(x)} is a basis of P1. [Hint: If
rp(x)+ sq(x) = 0, evaluate at x = 1, x = 2.]

b. Let B = {p0(x), p1(x), . . . , pn(x)} be a set of
polynomials in Pn. Assume that there exist
numbers a0, a1, . . . , an such that pi(ai) 6= 0 for
each i but pi(a j) = 0 if i is different from j.
Show that B is a basis of Pn.

Exercise 6.4.23 Let V be the set of all infinite
sequences (a0, a1, a2, . . .) of real numbers. Define
addition and scalar multiplication by

(a0, a1, . . .)+(b0, b1, . . .) = (a0 +b0, a1 +b1, . . .)

and
r(a0, a1, . . .) = (ra0, ra1, . . .)

a. Show that V is a vector space.

b. Show that V is not finite dimensional.

c. [For those with some calculus.] Show that the
set of convergent sequences (that is, lim

n→∞
an ex-

ists) is a subspace, also of infinite dimension.

b. The set {(1, 0, 0, 0, . . .), (0, 1, 0, 0, 0, . . .),
(0, 0, 1, 0, 0, . . .), . . .} contains independent
subsets of arbitrary size.

Exercise 6.4.24 Let A be an n × n matrix of
rank r. If U = {X in Mnn | AX = 0}, show that
dim U = n(n− r). [Hint: Exercise 6.3.34.]

Exercise 6.4.25 Let U and W be subspaces of V .
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a. Show that U +W is a subspace of V containing
both U and W .

b. Show that span{u, w}=Ru+Rw for any vec-
tors u and w.

c. Show that

span{u1, . . . , um, w1, . . . , wn}
= span{u1, . . . , um}+ span{w1, . . . , wn}

for any vectors ui in U and w j in W .

b. Ru+Rw= {ru+sw | r, s in R}= span{u, w}

Exercise 6.4.26 If A and B are m× n matrices,
show that rank (A+B)≤ rank A+ rank B. [Hint: If U
and V are the column spaces of A and B, respectively,
show that the column space of A+B is contained in
U +V and that dim (U +V ) ≤ dim U + dim V . (See
Theorem 6.4.5.)]
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Supplementary Exercises for Chapter 6

Exercise 6.1 (Requires calculus) Let V denote the
space of all functions f : R→R for which the deriva-
tives f ′ and f ′′ exist. Show that f1, f2, and f3 in V
are linearly independent provided that their wron-
skian w(x) is nonzero for some x, where

w(x) = det


f1(x) f2(x) f3(x)

f ′1(x) f ′2(x) f ′3(x)

f ′′1 (x) f ′′2 (x) f ′′3 (x)


Exercise 6.2 Let {v1, v2, . . . , vn} be a basis of Rn

(written as columns), and let A be an n×n matrix.

a. If A is invertible, show that {Av1, Av2, . . . , Avn}
is a basis of Rn.

b. If {Av1, Av2, . . . , Avn} is a basis of Rn, show
that A is invertible.

b. If YA = 0, Y a row, we show that Y =
0; thus AT (and hence A) is invertible.

Given a column c in Rn write c = ∑
i

ri(Avi)

where each ri is in R. Then Yc =

∑
i

riYAvi, so Y =Y In =Y
[

e1 e2 · · · en
]
=[

Ye1 Ye2 · · · Yen
]
=
[

0 0 · · · 0
]
=

0, as required.

Exercise 6.3 If A is an m×n matrix, show that A
has rank m if and only if col A contains every column
of Im.

Exercise 6.4 Show that null A= null (AT A) for any
real matrix A.
We have null A ⊆ null (AT A) because Ax = 0 im-
plies (AT A)x = 0. Conversely, if (AT A)x = 0, then
‖Ax‖2 = (Ax)T (Ax) = xT AT Ax = 0. Thus Ax = 0.

Exercise 6.5 Let A be an m× n matrix of rank
r. Show that dim (null A) = n− r (Theorem 5.4.3) as
follows. Choose a basis {x1, . . . , xk} of null A and
extend it to a basis {x1, . . . , xk, z1, . . . , zm} of Rn.
Show that {Az1, . . . , Azm} is a basis of col A.
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If V and W are vector spaces, a function T : V → W is a rule that assigns to each vector v in V
a uniquely determined vector T (v) in W . As mentioned in Section 2.2, two functions S : V → W
and T : V →W are equal if S(v) = T (v) for every v in V . A function T : V →W is called a linear
transformation if T (v+v1) = T (v)+T (v1) for all v, v1 in V and T (rv) = rT (v) for all v in V and
all scalars r. T (v) is called the image of v under T . We have already studied linear transformation
T : Rn → Rm and shown (in Section 2.6) that they are all given by multiplication by a uniquely
determined m× n matrix A; that is T (x) = Ax for all x in Rn. In the case of linear operators
R2 →R2, this yields an important way to describe geometric functions such as rotations about the
origin and reflections in a line through the origin.

In the present chapter we will describe linear transformations in general, introduce the kernel
and image of a linear transformation, and prove a useful result (called the dimension theorem)
that relates the dimensions of the kernel and image, and unifies and extends several earlier results.
Finally we study the notion of isomorphic vector spaces, that is, spaces that are identical except
for notation, and relate this to composition of transformations that was introduced in Section 2.3.

365



366 Linear Transformations

7.1 Examples and Elementary Properties

Definition 7.1 Linear Transformations of Vector Spaces

V W

T

v T (v)

If V and W are two vector spaces, a function T : V →W is called
a linear transformation if it satisfies the following axioms.

T1. T (v+v1) = T (v)+T (v1) for all v and v1 in V .
T2. T (rv) = rT (v) for all v in V and r in R.

A linear transformation T : V →V is called a linear operator on V . The situation can be
visualized as in the diagram.

Axiom T1 is just the requirement that T preserves vector addition. It asserts that the result
T (v+v1) of adding v and v1 first and then applying T is the same as applying T first to get T (v)
and T (v1) and then adding. Similarly, axiom T2 means that T preserves scalar multiplication.
Note that, even though the additions in axiom T1 are both denoted by the same symbol +, the
addition on the left forming v+v1 is carried out in V , whereas the addition T (v)+T (v1) is done
in W . Similarly, the scalar multiplications rv and rT (v) in axiom T2 refer to the spaces V and W ,
respectively.

We have already seen many examples of linear transformations T :Rn →Rm. In fact, writing vec-
tors in Rn as columns, Theorem 2.6.2 shows that, for each such T , there is an m×n matrix A such that
T (x) = Ax for every x in Rn. Moreover, the matrix A is given by A =

[
T (e1) T (e2) · · · T (en)

]
where {e1, e2, . . . , en} is the standard basis of Rn. We denote this transformation by TA : Rn →Rm,
defined by

TA(x) = Ax for all x in Rn

Example 7.1.1 lists three important linear transformations that will be referred to later. The
verification of axioms T1 and T2 is left to the reader.

Example 7.1.1

If V and W are vector spaces, the following are linear transformations:

Identity operator V →V 1V : V →V where 1V (v) = v for all v in V
Zero transformation V →W 0 : V →W where 0(v) = 0 for all v in V
Scalar operator V →V a : V →V where a(v) = av for all v in V

(Here a is any real number.)

The symbol 0 will be used to denote the zero transformation from V to W for any spaces V and
W . It was also used earlier to denote the zero function [a, b]→ R.

The next example gives two important transformations of matrices. Recall that the trace tr A
of an n×n matrix A is the sum of the entries on the main diagonal.
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Example 7.1.2

Show that the transposition and trace are linear transformations. More precisely,

R : Mmn → Mnm where R(A) = AT for all A in Mmn
S : Mmn → R where S(A) = tr A for all A in Mnn

are both linear transformations.

Solution. Axioms T1 and T2 for transposition are (A+B)T = AT +BT and (rA)T = r(AT ),
respectively (using Theorem 2.1.2). The verifications for the trace are left to the reader.

Example 7.1.3

If a is a scalar, define Ea : Pn → R by Ea(p) = p(a) for each polynomial p in Pn. Show that
Ea is a linear transformation (called evaluation at a).

Solution. If p and q are polynomials and r is in R, we use the fact that the sum p+q and
scalar product rp are defined as for functions:

(p+q)(x) = p(x)+q(x) and (rp)(x) = rp(x)

for all x. Hence, for all p and q in Pn and all r in R:

Ea(p+q) = (p+q)(a) = p(a)+q(a) = Ea(p)+Ea(q), and
Ea(rp) = (rp)(a) = rp(a) = rEa(p).

Hence Ea is a linear transformation.

The next example involves some calculus.

Example 7.1.4

Show that the differentiation and integration operations on Pn are linear transformations.
More precisely,

D : Pn → Pn−1 where D [p(x)] = p′(x) for all p(x) in Pn

I : Pn → Pn+1 where I [p(x)] =
∫ x

0
p(t)dt for all p(x) in Pn

are linear transformations.

Solution. These restate the following fundamental properties of differentiation and
integration.

[p(x)+q(x)]′ = p′(x)+q′(x) and [rp(x)]′ = (rp)′(x)∫ x
0 [p(t)+q(t)]dt =

∫ x
0 p(t)dt +

∫ x
0 q(t)dt and

∫ x
0 rp(t)dt = r

∫ x
0 p(t)dt
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The next theorem collects three useful properties of all linear transformations. They can be
described by saying that, in addition to preserving addition and scalar multiplication (these are the
axioms), linear transformations preserve the zero vector, negatives, and linear combinations.

Theorem 7.1.1
Let T : V →W be a linear transformation.

1. T (0) = 0.

2. T (−v) =−T (v) for all v in V .

3. T (r1v1 + r2v2 + · · ·+ rkvk) = r1T (v1)+ r2T (v2)+ · · ·+ rkT (vk) for all vi in V and all ri
in R.

Proof.

1. T (0) = T (0v) = 0T (v) = 0 for any v in V .

2. T (−v) = T [(−1)v] = (−1)T (v) =−T (v) for any v in V .

3. The proof of Theorem 2.6.1 goes through.

The ability to use the last part of Theorem 7.1.1 effectively is vital to obtaining the benefits of
linear transformations. Example 7.1.5 and Theorem 7.1.2 provide illustrations.

Example 7.1.5

Let T : V →W be a linear transformation. If T (v−3v1) = w and T (2v−v1) = w1, find
T (v) and T (v1) in terms of w and w1.

Solution. The given relations imply that

T (v)−3T (v1) = w
2T (v)−T (v1) = w1

by Theorem 7.1.1. Subtracting twice the first from the second gives T (v1) =
1
5(w1 −2w).

Then substitution gives T (v) = 1
5(3w1 −w).

The full effect of property (3) in Theorem 7.1.1 is this: If T : V → W is a linear transforma-
tion and T (v1), T (v2), . . . , T (vn) are known, then T (v) can be computed for every vector v in
span{v1, v2, . . . , vn}. In particular, if {v1, v2, . . . , vn} spans V , then T (v) is determined for all v
in V by the choice of T (v1), T (v2), . . . , T (vn). The next theorem states this somewhat differently.
As for functions in general, two linear transformations T : V →W and S : V →W are called equal
(written T = S) if they have the same action; that is, if T (v) = S(v) for all v in V .
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Theorem 7.1.2
Let T : V →W and S : V →W be two linear transformations. Suppose that
V = span{v1, v2, . . . , vn}. If T(vi) = S(vi) for each i, then T = S.

Proof. If v is any vector in V = span{v1, v2, . . . , vn}, write v = a1v1 + a2v2 + · · ·+ anvn where
each ai is in R. Since T (vi) = S(vi) for each i, Theorem 7.1.1 gives

T (v) = T (a1v1 +a2v2 + · · ·+anvn)

= a1T (v1)+a2T (v2)+ · · ·+anT (vn)

= a1S(v1)+a2S(v2)+ · · ·+anS(vn)

= S(a1v1 +a2v2 + · · ·+anvn)

= S(v)

Since v was arbitrary in V , this shows that T = S.

Example 7.1.6

Let V = span{v1, . . . , vn}. Let T : V →W be a linear transformation. If
T (v1) = · · ·= T (vn) = 0, show that T = 0, the zero transformation from V to W .

Solution. The zero transformation 0 : V →W is defined by 0(v) = 0 for all v in V
(Example 7.1.1), so T (vi) = 0(vi) holds for each i. Hence T = 0 by Theorem 7.1.2.

Theorem 7.1.2 can be expressed as follows: If we know what a linear transformation T : V →W
does to each vector in a spanning set for V , then we know what T does to every vector in V . If the
spanning set is a basis, we can say much more.

Theorem 7.1.3
Let V and W be vector spaces and let {b1, b2, . . . , bn} be a basis of V . Given any vectors
w1, w2, . . . , wn in W (they need not be distinct), there exists a unique linear
transformation T : V →W satisfying T (bi) = wi for each i = 1, 2, . . . , n. In fact, the action
of T is as follows:
Given v = v1b1 + v2b2 + · · ·+ vnbn in V , vi in R, then

T (v) = T (v1b1 + v2b2 + · · ·+ vnbn) = v1w1 + v2w2 + · · ·+ vnwn.

Proof. If a transformation T does exist with T (bi) = wi for each i, and if S is any other such
transformation, then T (bi) = wi = S(bi) holds for each i, so S = T by Theorem 7.1.2. Hence T is
unique if it exists, and it remains to show that there really is such a linear transformation. Given v in
V , we must specify T (v) in W . Because {b1, . . . , bn} is a basis of V , we have v = v1b1+ · · ·+vnbn,
where v1, . . . , vn are uniquely determined by v (this is Theorem 6.3.1). Hence we may define
T : V →W by

T (v) = T (v1b1 + v2b2 + · · ·+ vnbn) = v1w1 + v2w2 + · · ·+ vnwn
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for all v = v1b1+ · · ·+vnbn in V . This satisfies T (bi) = wi for each i; the verification that T is linear
is left to the reader.

This theorem shows that linear transformations can be defined almost at will: Simply specify
where the basis vectors go, and the rest of the action is dictated by the linearity. Moreover,
Theorem 7.1.2 shows that deciding whether two linear transformations are equal comes down to
determining whether they have the same effect on the basis vectors. So, given a basis {b1, . . . , bn}
of a vector space V , there is a different linear transformation V → W for every ordered selection
w1, w2, . . . , wn of vectors in W (not necessarily distinct).

Example 7.1.7

Find a linear transformation T : P2 → M22 such that

T (1+ x) =
[

1 0
0 0

]
, T (x+ x2) =

[
0 1
1 0

]
, and T (1+ x2) =

[
0 0
0 1

]
.

Solution. The set {1+ x, x+ x2, 1+ x2} is a basis of P2, so every vector p = a+bx+ cx2 in
P2 is a linear combination of these vectors. In fact

p(x) = 1
2(a+b− c)(1+ x)+ 1

2(−a+b+ c)(x+ x2)+ 1
2(a−b+ c)(1+ x2)

Hence Theorem 7.1.3 gives

T [p(x)] = 1
2(a+b− c)

[
1 0
0 0

]
+ 1

2(−a+b+ c)
[

0 1
1 0

]
+ 1

2(a−b+ c)
[

0 0
0 1

]
= 1

2

[
a+b− c −a+b+ c

−a+b+ c a−b+ c

]

Exercises for 7.1

Exercise 7.1.1 Show that each of the following
functions is a linear transformation.

a. T : R2 → R2; T (x, y) = (x, −y) (reflection in
the x axis)

b. T : R3 →R3; T (x, y, z) = (x, y, −z) (reflection
in the x-y plane)

c. T : C→ C; T (z) = z (conjugation)

d. T : Mmn →Mkl; T (A) = PAQ, P a k×m matrix,
Q an n× l matrix, both fixed

e. T : Mnn → Mnn; T (A) = AT +A

f. T : Pn → R; T [p(x)] = p(0)

g. T : Pn → R; T (r0 + r1x+ · · ·+ rnxn) = rn

h. T : Rn →R; T (x) = x ·z, z a fixed vector in Rn

i. T : Pn → Pn; T [p(x)] = p(x+1)

j. T : Rn → V ; T (r1, · · · , rn) = r1e1 + · · ·+ rnen

where {e1, . . . , en} is a fixed basis of V

k. T : V → R; T (r1e1 + · · ·+ rnen) = r1, where
{e1, . . . , en} is a fixed basis of V
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b. T (v) = vA where A =

 1 0 0
0 1 0
0 0 −1


d. T (A+B) = P(A+B)Q = PAQ+PBQ = T (A)+

T (B);T (rA) = P(rA)Q = rPAQ = rT (A)

f. T [(p+q)(x)] = (p + q)(0) = p(0) + q(0) =
T [p(x)]+T [q(x)];
T [(rp)(x)] = (rp)(0) = r(p(0)) = rT [p(x)]

h. T (X +Y ) = (X +Y ) ·Z = X ·Z +Y ·Z = T (X)+
T (Y ), and T (rX) = (rX) ·Z = r(X ·Z) = rT (X)

j. If v = (v1, . . . , vn) and w = (w1, . . . , wn),
then T (v + w) = (v1 + w1)e1 + · · · + (vn +
wn)en = (v1e1 + · · · + vnen) + (w1e1 + · · · +
wnen) = T (v)+T (w)
T (av) = (av1)e + · · ·+ (avn)en = a(ve + · · ·+
vnen) = aT (v)

Exercise 7.1.2 In each case, show that T is not a
linear transformation.

a. T : Mnn → R; T (A) = det A

b. T : Mnm → R; T (A) = rank A

c. T : R→ R; T (x) = x2

d. T : V →V ; T (v) = v+u where u 6= 0 is a fixed
vector in V (T is called the translation by u)

b. rank (A+B) 6= rank A+ rank B in general. For

example, A =

[
1 0
0 1

]
and B =

[
1 0
0 −1

]
.

d. T (0) = 0+u = u 6= 0, so T is not linear by
Theorem 7.1.1.

Exercise 7.1.3 In each case, assume that T is a
linear transformation.

a. If T : V → R and T (v1) = 1, T (v2) = −1, find
T (3v1 −5v2).

b. If T : V → R and T (v1) = 2, T (v2) = −3, find
T (3v1 +2v2).

c. If T : R2 → R2 and T
[

1
3

]
=

[
1
1

]
,

T
[

1
1

]
=

[
0
1

]
, find T

[
−1

3

]
.

d. If T : R2 → R2 and T
[

1
−1

]
=

[
0
1

]
,

T
[

1
1

]
=

[
1
0

]
, find T

[
1

−7

]
.

e. If T : P2 → P2 and T (x+1) = x, T (x−1) = 1,
T (x2) = 0, find T (2+3x− x2).

f. If T : P2 → R and T (x+2) = 1, T (1) = 5,
T (x2 + x) = 0, find T (2− x+3x2).

b. T (3v1 +2v2) = 0

d. T
[

1
−7

]
=

[
−3

4

]
f. T (2− x+3x2) = 46

Exercise 7.1.4 In each case, find a linear transfor-
mation with the given properties and compute T (v).

a. T : R2 → R3; T (1, 2) = (1, 0, 1),
T (−1, 0) = (0, 1, 1); v = (2, 1)

b. T : R2 → R3; T (2, −1) = (1, −1, 1),
T (1, 1) = (0, 1, 0); v = (−1, 2)

c. T : P2 → P3; T (x2) = x3, T (x+1) = 0,
T (x−1) = x; v = x2 + x+1

d. T : M22 →R; T
[

1 0
0 0

]
= 3, T

[
0 1
1 0

]
=−1,

T
[

1 0
1 0

]
= 0 = T

[
0 0
0 1

]
; v =

[
a b
c d

]

b. T (x, y) = 1
3(x − y, 3y, x − y); T (−1, 2) =

(−1, 2, −1)

d. T
[

a b
c d

]
= 3a−3c+2b

Exercise 7.1.5 If T : V →V is a linear transforma-
tion, find T (v) and T (w) if:
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a. T (v+w) = v−2w and T (2v−w) = 2v

b. T (v+2w) = 3v−w and T (v−w) = 2v−4w

b. T (v) = 1
3(7v−9w), T (w) = 1

3(v+3w)

Exercise 7.1.6 If T : V → W is a linear transfor-
mation, show that T (v−v1) = T (v)−T (v1) for all
v and v1 in V .

Exercise 7.1.7 Let {e1, e2} be the standard basis
of R2. Is it possible to have a linear transformation
T such that T (e1) lies in R while T (e2) lies in R2?
Explain your answer.

Exercise 7.1.8 Let {v1, . . . , vn} be a basis of V
and let T : V →V be a linear transformation.

a. If T (vi) = vi for each i, show that T = 1V .

b. If T (vi) =−vi for each i, show that T =−1 is
the scalar operator (see Example 7.1.1).

b. T (v) = (−1)v for all v in V , so T is the scalar
operator −1.

Exercise 7.1.9 If A is an m× n matrix, let Ck(A)
denote column k of A. Show that Ck : Mmn → Rm is
a linear transformation for each k = 1, . . . , n.

Exercise 7.1.10 Let {e1, . . . , en} be a basis of Rn.
Given k, 1 ≤ k ≤ n, define Pk : Rn → Rn by
Pk(r1e1 + · · ·+ rnen) = rkek. Show that Pk a linear
transformation for each k.

Exercise 7.1.11 Let S : V →W and T : V →W be
linear transformations. Given a in R, define func-
tions
(S+T ) : V → W and (aT ) : V → W by (S+T )(v) =
S(v)+T (v) and (aT )(v)= aT (v) for all v in V . Show
that S+T and aT are linear transformations.

Exercise 7.1.12 Describe all linear transforma-
tions
T : R→V .
If T (1) = v, then T (r) = T (r ·1) = rT (1) = rv for all
r in R.

Exercise 7.1.13 Let V and W be vector spaces, let
V be finite dimensional, and let v 6= 0 in V . Given
any w in W , show that there exists a linear trans-
formation T : V → W with T (v) = w. [Hint: Theo-
rem 6.4.1 and Theorem 7.1.3.]

Exercise 7.1.14 Given y in Rn, define Sy : Rn →R
by Sy(x) = x ·y for all x in Rn (where · is the dot
product introduced in Section 5.3).

a. Show that Sy : Rn → R is a linear transforma-
tion for any y in Rn.

b. Show that every linear transformation T :
Rn → R arises in this way; that is, T = Sy for
some y in Rn. [Hint: If {e1, . . . , en} is the
standard basis of Rn, write Sy(ei) = yi for each
i. Use Theorem 7.1.1.]

Exercise 7.1.15 Let T : V →W be a linear trans-
formation.

a. If U is a subspace of V , show that
T (U) = {T (u) | u in U} is a subspace of W
(called the image of U under T ).

b. If P is a subspace of W , show that
{v in V | T (v) in P} is a subspace of V (called
the preimage of P under T ).

b. 0 is in U = {v∈V | T (v)∈P} because T (0)= 0
is in P. If v and w are in U , then T (v) and
T (w) are in P. Hence T (v+w) = T (v)+T (w)
is in P and T (rv) = rT (v) is in P, so v+w and
rv are in U .

Exercise 7.1.16 Show that differentiation is the
only linear transformation Pn → Pn that satisfies
T (xk) = kxk−1 for each k = 0, 1, 2, . . . , n.

Exercise 7.1.17 Let T : V →W be a linear trans-
formation and let v1, . . . , vn denote vectors in V .

a. If {T (v1), . . . , T (vn)} is linearly independent,
show that {v1, . . . , vn} is also independent.

b. Find T : R2 → R2 for which the converse of
part (a) is false.
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Exercise 7.1.18 Suppose T : V →V is a linear op-
erator with the property that T [T (v)] = v for all v
in V . (For example, transposition in Mnn or conju-
gation in C.) If v 6= 0 in V , show that {v, T (v)}
is linearly independent if and only if T (v) 6= v and
T (v) 6=−v.
Suppose rv+sT (v) = 0. If s = 0, then r = 0 (because
v 6= 0). If s 6= 0, then T (v) = av where a = −s−1r.
Thus v = T 2(v) = T (av) = a2v, so a2 = 1, again be-
cause v 6= 0. Hence a = ±1. Conversely, if T (v) =
±v, then {v, T (v)} is certainly not independent.

Exercise 7.1.19 If a and b are real numbers, de-
fine Ta, b : C→C by Ta, b(r+si) = ra+sbi for all r+si
in C.

a. Show that Ta, b is linear and Ta, b(z) = Ta, b(z)
for all z in C. (Here z denotes the conjugate
of z.)

b. If T : C→ C is linear and T (z) = T (z) for all z
in C, show that T = Ta, b for some real a and
b.

Exercise 7.1.20 Show that the following con-
ditions are equivalent for a linear transformation
T : M22 → M22.

1. tr [T (A)] = tr A for all A in M22.

2. T
[

r11 r12
r21 r22

]
= r11B11 + r12B12 + r21B21 +

r22B22 for matrices Bi j such that
tr B11 = 1 = tr B22 and tr B12 = 0 = tr B21.

Exercise 7.1.21 Given a in R, consider the eval-
uation map Ea : Pn → R defined in Example 7.1.3.

a. Show that Ea is a linear transformation sat-
isfying the additional condition that Ea(xk) =
[Ea(x)]

k holds for all k = 0, 1, 2, . . . . [Note:
x0 = 1.]

b. If T : Pn → R is a linear transformation sat-
isfying T (xk) = [T (x)]k for all k = 0, 1, 2, . . . ,
show that T = Ea for some a in R.

b. Given such a T , write T (x) = a. If p = p(x) =
∑

n
i=0 aixi, then T (p) = ∑aiT (xi) = ∑ai [T (x)]

i =

∑aiai = p(a) = Ea(p). Hence T = Ea.

Exercise 7.1.22 If T : Mnn →R is any linear trans-
formation satisfying T (AB) = T (BA) for all A and
B in Mnn, show that there exists a number k such
that T (A) = k tr A for all A. (See Lemma 5.5.1.)
[Hint: Let Ei j denote the n × n matrix with 1 in
the (i, j) position and zeros elsewhere. Show that

EikEl j =

{
0 if k 6= l

Ei j if k = l
. Use this to show that

T (Ei j) = 0 if i 6= j and
T (E11) = T (E22) = · · · = T (Enn). Put k = T (E11) and
use the fact that {Ei j | 1≤ i, j ≤ n} is a basis of Mnn.]

Exercise 7.1.23 Let T :C→C be a linear transfor-
mation of the real vector space C and assume that
T (a) = a for every real number a. Show that the
following are equivalent:

a. T (zw) = T (z)T (w) for all z and w in C.

b. Either T = 1C or T (z)= z for each z in C (where
z denotes the conjugate).
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7.2 Kernel and Image of a Linear Transformation

This section is devoted to two important subspaces associated with a linear transformation T : V →
W .

Definition 7.2 Kernel and Image of a Linear Transformation

The kernel of T (denoted ker T ) and the image of T (denoted im T or T (V )) are defined by

ker T = {v in V | T (v) = 0}
im T = {T (v) | v in V}= T (V )

ker T

T

V

W
0

im TV W
T

The kernel of T is often called the nullspace of T because it consists
of all vectors v in V satisfying the condition that T (v) = 0. The image
of T is often called the range of T and consists of all vectors w in W
of the form w = T (v) for some v in V . These subspaces are depicted
in the diagrams.

Example 7.2.1

Let TA : Rn → Rm be the linear transformation induced by the
m×n matrix A, that is TA(x) = Ax for all columns x in Rn.
Then

ker TA = {x | Ax = 0}= null A and
im TA = {Ax | x in Rn}= im A

Hence the following theorem extends Example 5.1.2.

Theorem 7.2.1
Let T : V →W be a linear transformation.

1. ker T is a subspace of V .

2. im T is a subspace of W .

Proof. The fact that T (0) = 0 shows that ker T and im T contain the zero vector of V and W
respectively.

1. If v and v1 lie in ker T , then T (v) = 0 = T (v1), so

T (v+v1) = T (v)+T (v1) = 0+0 = 0
T (rv) = rT (v) = r0 = 0 for all r in R
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Hence v+v1 and rv lie in ker T (they satisfy the required condition), so ker T is a subspace
of V by the subspace test (Theorem 6.2.1).

2. If w and w1 lie in im T , write w = T (v) and w1 = T (v1) where v, v1 ∈V . Then

w+w1 = T (v)+T (v1) = T (v+v1)

rw = rT (v) = T (rv) for all r in R

Hence w+w1 and rw both lie in im T (they have the required form), so im T is a subspace
of W .

Given a linear transformation T : V →W :

dim (ker T ) is called the nullity of T and denoted as nullity (T )
dim ( im T ) is called the rank of T and denoted as rank (T )

The rank of a matrix A was defined earlier to be the dimension of col A, the column space of A.
The two usages of the word rank are consistent in the following sense. Recall the definition of TA
in Example 7.2.1.

Example 7.2.2

Given an m×n matrix A, show that im TA = col A, so rank TA = rank A.

Solution. Write A =
[

c1 · · · cn
]

in terms of its columns. Then

im TA = {Ax | x in Rn}= {x1c1 + · · ·+ xncn | xi in R}

using Definition 2.5. Hence im TA is the column space of A; the rest follows.

Often, a useful way to study a subspace of a vector space is to exhibit it as the kernel or image
of a linear transformation. Here is an example.

Example 7.2.3

Define a transformation P : Mnn → Mnn by P(A) = A−AT for all A in Mnn. Show that P is
linear and that:

a. ker P consists of all symmetric matrices.

b. im P consists of all skew-symmetric matrices.

Solution. The verification that P is linear is left to the reader. To prove part (a), note that
a matrix A lies in ker P just when 0 = P(A) = A−AT , and this occurs if and only if
A = AT —that is, A is symmetric. Turning to part (b), the space im P consists of all matrices
P(A), A in Mnn. Every such matrix is skew-symmetric because

P(A)T = (A−AT )T = AT −A =−P(A)
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On the other hand, if S is skew-symmetric (that is, ST =−S), then S lies in im P. In fact,

P
[1

2S
]
= 1

2S−
[1

2S
]T

= 1
2(S−ST ) = 1

2(S+S) = S

One-to-One and Onto Transformations

Definition 7.3 One-to-one and Onto Linear Transformations
Let T : V →W be a linear transformation.

1. T is said to be onto if im T =W .

2. T is said to be one-to-one if T (v) = T (v1) implies v = v1.

A vector w in W is said to be hit by T if w = T (v) for some v in V . Then T is onto if every
vector in W is hit at least once, and T is one-to-one if no element of W gets hit twice. Clearly the
onto transformations T are those for which im T =W is as large a subspace of W as possible. By
contrast, Theorem 7.2.2 shows that the one-to-one transformations T are the ones with ker T as
small a subspace of V as possible.

Theorem 7.2.2
If T : V →W is a linear transformation, then T is one-to-one if and only if ker T = {0}.

Proof. If T is one-to-one, let v be any vector in ker T . Then T (v) = 0, so T (v) = T (0). Hence
v = 0 because T is one-to-one. Hence ker T = {0}.

Conversely, assume that ker T = {0} and let T (v) = T (v1) with v and v1 in V . Then
T (v−v1) = T (v)−T (v1) = 0, so v−v1 lies in ker T = {0}. This means that v−v1 = 0, so v = v1,
proving that T is one-to-one.

Example 7.2.4

The identity transformation 1V : V →V is both one-to-one and onto for any vector space V .

Example 7.2.5

Consider the linear transformations

S : R3 → R2 given by S(x, y, z) = (x+ y, x− y)

T : R2 → R3 given by T (x, y) = (x+ y, x− y, x)

Show that T is one-to-one but not onto, whereas S is onto but not one-to-one.
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Solution. The verification that they are linear is omitted. T is one-to-one because

ker T = {(x, y) | x+ y = x− y = x = 0}= {(0, 0)}

However, it is not onto. For example (0, 0, 1) does not lie in im T because if
(0, 0, 1) = (x+ y, x− y, x) for some x and y, then x+ y = 0 = x− y and x = 1, an
impossibility. Turning to S, it is not one-to-one by Theorem 7.2.2 because (0, 0, 1) lies in
ker S. But every element (s, t) in R2 lies in im S because (s, t) = (x+ y, x− y) = S(x, y, z)
for some x, y, and z (in fact, x = 1

2(s+ t), y = 1
2(s− t), and z = 0). Hence S is onto.

Example 7.2.6

Let U be an invertible m×m matrix and define

T : Mmn → Mmn by T (X) =UX for all X in Mmn

Show that T is a linear transformation that is both one-to-one and onto.

Solution. The verification that T is linear is left to the reader. To see that T is one-to-one,
let T (X) = 0. Then UX = 0, so left-multiplication by U−1 gives X = 0. Hence ker T = {0},
so T is one-to-one. Finally, if Y is any member of Mmn, then U−1Y lies in Mmn too, and
T (U−1Y ) =U(U−1Y ) = Y . This shows that T is onto.

The linear transformations Rn → Rm all have the form TA for some m× n matrix A (Theo-
rem 2.6.2). The next theorem gives conditions under which they are onto or one-to-one. Note the
connection with Theorem 5.4.3 and Theorem 5.4.4.

Theorem 7.2.3
Let A be an m×n matrix, and let TA : Rn → Rm be the linear transformation induced by A,
that is TA(x) = Ax for all columns x in Rn.

1. TA is onto if and only if rank A = m.

2. TA is one-to-one if and only if rank A = n.

Proof.

1. We have that im TA is the column space of A (see Example 7.2.2), so TA is onto if and only
if the column space of A is Rm. Because the rank of A is the dimension of the column space,
this holds if and only if rank A = m.

2. ker TA = {x in Rn | Ax = 0}, so (using Theorem 7.2.2) TA is one-to-one if and only if Ax = 0
implies x = 0. This is equivalent to rank A = n by Theorem 5.4.3.
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The Dimension Theorem

Let A denote an m× n matrix of rank r and let TA : Rn → Rm denote the corresponding matrix
transformation given by TA(x) = Ax for all columns x in Rn. It follows from Example 7.2.1 and Ex-
ample 7.2.2 that im TA = col A, so dim ( im TA) = dim (col A) = r. On the other hand Theorem 5.4.2
shows that dim (ker TA) = dim (null A) = n− r. Combining these we see that

dim ( im TA)+ dim (ker TA) = n for every m×n matrix A

The main result of this section is a deep generalization of this observation.

Theorem 7.2.4: Dimension Theorem
Let T : V →W be any linear transformation and assume that ker T and im T are both finite
dimensional. Then V is also finite dimensional and

dim V = dim (ker T )+ dim ( im T )

In other words, dim V = nullity (T )+ rank (T ).

Proof. Every vector in im T =T (V ) has the form T (v) for some v in V . Hence let {T (e1), T (e2), . . . , T (er)}
be a basis of im T , where the ei lie in V . Let {f1, f2, . . . , fk} be any basis of ker T . Then
dim ( im T ) = r and dim (ker T ) = k, so it suffices to show that B = {e1, . . . , er, f1, . . . , fk} is a basis
of V .

1. B spans V . If v lies in V , then T (v) lies in im V , so

T (v) = t1T (e1)+ t2T (e2)+ · · ·+ trT (er) ti in R

This implies that v− t1e1 − t2e2 − ·· · − trer lies in ker T and so is a linear combination of
f1, . . . , fk. Hence v is a linear combination of the vectors in B.

2. B is linearly independent. Suppose that ti and s j in R satisfy

t1e1 + · · ·+ trer + s1f1 + · · ·+ skfk = 0 (7.1)

Applying T gives t1T (e1)+ · · ·+ trT (er) = 0 (because T (fi) = 0 for each i). Hence the inde-
pendence of {T (e1), . . . , T (er)} yields t1 = · · ·= tr = 0. But then (7.1) becomes

s1f1 + · · ·+ skfk = 0

so s1 = · · · = sk = 0 by the independence of {f1, . . . , fk}. This proves that B is linearly
independent.

Note that the vector space V is not assumed to be finite dimensional in Theorem 7.2.4. In fact,
verifying that ker T and im T are both finite dimensional is often an important way to prove that
V is finite dimensional.
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Note further that r+ k = n in the proof so, after relabelling, we end up with a basis

B = {e1, e2, . . . , er, er+1, . . . , en}

of V with the property that {er+1, . . . , en} is a basis of ker T and {T (e1), . . . , T (er)} is a basis of
im T . In fact, if V is known in advance to be finite dimensional, then any basis {er+1, . . . , en} of
ker T can be extended to a basis {e1, e2, . . . , er, er+1, . . . , en} of V by Theorem 6.4.1. Moreover, it
turns out that, no matter how this is done, the vectors {T (e1), . . . , T (er)} will be a basis of im T .
This result is useful, and we record it for reference. The proof is much like that of Theorem 7.2.4
and is left as Exercise 7.2.26.

Theorem 7.2.5
Let T : V →W be a linear transformation, and let {e1, . . . , er, er+1, . . . , en} be a basis of V
such that {er+1, . . . , en} is a basis of ker T . Then {T (e1), . . . , T (er)} is a basis of im T ,
and hence r = rank T .

The dimension theorem is one of the most useful results in all of linear algebra. It shows that
if either dim (ker T ) or dim ( im T ) can be found, then the other is automatically known. In many
cases it is easier to compute one than the other, so the theorem is a real asset. The rest of this
section is devoted to illustrations of this fact. The next example uses the dimension theorem to
give a different proof of the first part of Theorem 5.4.2.

Example 7.2.7

Let A be an m×n matrix of rank r. Show that the space null A of all solutions of the system
Ax = 0 of m homogeneous equations in n variables has dimension n− r.

Solution. The space in question is just ker TA, where TA : Rn →Rm is defined by TA(x) = Ax
for all columns x in Rn. But dim ( im TA) = rank TA = rank A = r by Example 7.2.2, so
dim (ker TA) = n− r by the dimension theorem.

Example 7.2.8

If T : V →W is a linear transformation where V is finite dimensional, then

dim (ker T )≤ dim V and dim ( im T )≤ dim V

Indeed, dim V = dim (ker T )+ dim ( im T ) by Theorem 7.2.4. Of course, the first inequality
also follows because ker T is a subspace of V .

Example 7.2.9

Let D : Pn → Pn−1 be the differentiation map defined by D [p(x)] = p′(x). Compute ker D
and hence conclude that D is onto.
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Solution. Because p′(x) = 0 means p(x) is constant, we have dim (ker D) = 1. Since
dim Pn = n+1, the dimension theorem gives

dim ( im D) = (n+1)− dim (ker D) = n = dim (Pn−1)

This implies that im D = Pn−1, so D is onto.

Of course it is not difficult to verify directly that each polynomial q(x) in Pn−1 is the derivative
of some polynomial in Pn (simply integrate q(x)!), so the dimension theorem is not needed in this
case. However, in some situations it is difficult to see directly that a linear transformation is onto,
and the method used in Example 7.2.9 may be by far the easiest way to prove it. Here is another
illustration.

Example 7.2.10

Given a in R, the evaluation map Ea : Pn → R is given by Ea [p(x)] = p(a). Show that Ea is
linear and onto, and hence conclude that {(x−a), (x−a)2, . . . , (x−a)n} is a basis of ker Ea,
the subspace of all polynomials p(x) for which p(a) = 0.

Solution. Ea is linear by Example 7.1.3; the verification that it is onto is left to the reader.
Hence dim ( im Ea) = dim (R) = 1, so dim (ker Ea) = (n+1)−1 = n by the dimension
theorem. Now each of the n polynomials (x−a), (x−a)2, . . . , (x−a)n clearly lies in ker Ea,
and they are linearly independent (they have distinct degrees). Hence they are a basis
because dim (ker Ea) = n.

We conclude by applying the dimension theorem to the rank of a matrix.

Example 7.2.11

If A is any m×n matrix, show that rank A = rank AT A = rank AAT .

Solution. It suffices to show that rank A = rank AT A (the rest follows by replacing A with
AT ). Write B = AT A, and consider the associated matrix transformations

TA : Rn → Rm and TB : Rn → Rn

The dimension theorem and Example 7.2.2 give

rank A = rank TA = dim ( im TA) = n− dim (ker TA)

rank B = rank TB = dim ( im TB) = n− dim (ker TB)

so it suffices to show that ker TA = ker TB. Now Ax = 0 implies that Bx = AT Ax = 0, so
ker TA is contained in ker TB. On the other hand, if Bx = 0, then AT Ax = 0, so

‖Ax‖2 = (Ax)T (Ax) = xT AT Ax = xT 0 = 0

This implies that Ax = 0, so ker TB is contained in ker TA.
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Exercises for 7.2

Exercise 7.2.1 For each matrix A, find a basis for
the kernel and image of TA, and find the rank and
nullity of TA. 1 2 −1 1

3 1 0 2
1 −3 2 0

a)

 2 1 −1 3
1 0 3 1
1 1 −4 2

b)


1 2 −1
3 1 2
4 −1 5
0 2 −2

c)


2 1 0
1 −1 3
1 2 −3
0 3 −6

d)

b.


−3
7
1
0

 ,


1
1
0

−1


;


 1

0
1

 ,

 0
1

−1

; 2, 2

d.


 −1

2
1

;




1
0
1
1

 ,


0
1

−1
−2


; 2, 1

Exercise 7.2.2 In each case, (i) find a basis of
ker T , and (ii) find a basis of im T . You may assume
that T is linear.

a. T : P2 → R2; T (a+bx+ cx2) = (a, b)

b. T : P2 → R2; T (p(x)) = (p(0), p(1))

c. T : R3 → R3; T (x, y, z) = (x+ y, x+ y, 0)

d. T : R3 → R4; T (x, y, z) = (x, x, y, y)

e. T : M22 →M22; T
[

a b
c d

]
=

[
a+b b+ c
c+d d +a

]

f. T : M22 → R; T
[

a b
c d

]
= a+d

g. T : Pn → R; T (r0 + r1x+ · · ·+ rnxn) = rn

h. T : Rn →R; T (r1, r2, . . . , rn) = r1+ r2+ · · ·+ rn

i. T : M22 → M22; T (X) = XA−AX , where

A =

[
0 1
1 0

]
j. T : M22 → M22; T (X) = XA, where A =[

1 1
0 0

]

b. {x2 − x}; {(1, 0), (0, 1)}

d. {(0, 0, 1)}; {(1, 1, 0, 0), (0, 0, 1, 1)}

f.
{[

1 0
0 −1

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]}
; {1}

h. {(1, 0, 0, . . . , 0, −1), (0, 1, 0, . . . , 0, −1),
. . . , (0, 0, 0, . . . , 1, −1)}; {1}

j.
{[

0 1
0 0

]
,
[

0 0
0 1

]}
;{[

1 1
0 0

]
,
[

0 0
1 1

]}
Exercise 7.2.3 Let P : V → R and Q : V → R be
linear transformations, where V is a vector space.
Define T : V → R2 by T (v) = (P(v), Q(v)).

a. Show that T is a linear transformation.

b. Show that ker T = ker P∩ ker Q, the set of vec-
tors in both ker P and ker Q.

b. T (v) = 0 = (0, 0) if and only if P(v) = 0
and Q(v) = 0; that is, if and only if v is in
ker P∩ ker Q.

Exercise 7.2.4 In each case, find a basis
B = {e1, . . . , er, er+1, . . . , en} of V such that
{er+1, . . . , en} is a basis of ker T , and verify The-
orem 7.2.5.

a. T : R3 → R4; T (x, y, z) = (x− y+ 2z, x+ y−
z, 2x+ z, 2y−3z)

b. T : R3 → R4; T (x, y, z) = (x+ y+ z, 2x− y+
3z, z−3y, 3x+4z)
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b. ker T = span{(−4, 1, 3)}; B =
{(1, 0, 0), (0, 1, 0), (−4, 1, 3)}, im T =
span{(1, 2, 0, 3), (1, −1, −3, 0)}

Exercise 7.2.5 Show that every matrix X in Mnn

has the form X = AT −2A for some matrix A in Mnn.
[Hint: The dimension theorem.]

Exercise 7.2.6 In each case either prove the
statement or give an example in which it is false.
Throughout, let T : V → W be a linear transforma-
tion where V and W are finite dimensional.

a. If V =W , then ker T ⊆ im T .

b. If dim V = 5, dim W = 3, and dim (ker T ) = 2,
then T is onto.

c. If dim V = 5 and dim W = 4, then ker T 6= {0}.

d. If ker T =V , then W = {0}.

e. If W = {0}, then ker T =V .

f. If W =V , and im T ⊆ ker T , then T = 0.

g. If {e1, e2, e3} is a basis of V and
T (e1) = 0 = T (e2), then dim ( im T )≤ 1.

h. If dim (ker T ) ≤ dim W , then dim W ≥
1
2 dim V .

i. If T is one-to-one, then dim V ≤ dim W .

j. If dim V ≤ dim W , then T is one-to-one.

k. If T is onto, then dim V ≥ dim W .

l. If dim V ≥ dim W , then T is onto.

m. If {T (v1), . . . , T (vk)} is independent, then
{v1, . . . , vk} is independent.

n. If {v1, . . . , vk} spans V , then
{T (v1), . . . , T (vk)} spans W .

b. Yes. dim ( im T ) = 5 − dim (ker T ) = 3, so
im T =W as dim W = 3.

d. No. T = 0 : R2 → R2

f. No. T : R2 → R2, T (x, y) = (y, 0). Then
ker T = im T

h. Yes. dim V = dim (ker T ) + dim ( im T ) ≤
dim W + dim W = 2 dim W

j. No. Consider T : R2 → R2 with T (x, y) =
(y, 0).

l. No. Same example as (j).

n. No. Define T : R2 → R2 by T (x, y) = (x, 0).
If v1 = (1, 0) and v2 = (0, 1), then R2 =
span{v1, v2} but R2 6= span{T (v1), T (v2)}.

Exercise 7.2.7 Show that linear independence is
preserved by one-to-one transformations and that
spanning sets are preserved by onto transformations.
More precisely, if T : V → W is a linear transforma-
tion, show that:

a. If T is one-to-one and {v1, . . . , vn} is inde-
pendent in V , then {T (v1), . . . , T (vn)} is in-
dependent in W .

b. If T is onto and V = span{v1, . . . , vn}, then
W = span{T (v1), . . . , T (vn)}.

b. Given w in W , let w = T (v), v in V , and
write v = r1v1 + · · ·+ rnvn. Then w = T (v) =
r1T (v1)+ · · ·+ rnT (vn).

Exercise 7.2.8 Given {v1, . . . , vn} in a vec-
tor space V , define T : Rn → V by T (r1, . . . , rn) =
r1v1 + · · ·+ rnvn. Show that T is linear, and that:

a. T is one-to-one if and only if {v1, . . . , vn} is
independent.

b. T is onto if and only if V = span{v1, . . . , vn}.

b. im T = {∑i rivi | ri in R}= span{vi}.
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Exercise 7.2.9 Let T : V → V be a linear trans-
formation where V is finite dimensional. Show that
exactly one of (i) and (ii) holds: (i) T (v) = 0 for
some v 6= 0 in V ; (ii) T (x) = v has a solution x in V
for every v in V .

Exercise 7.2.10 Let T : Mnn →R denote the trace
map: T (A) = tr A for all A in Mnn. Show that
dim (ker T ) = n2 −1.
T is linear and onto. Hence 1 = dim R =
dim ( im T ) = dim (Mnn) − dim (ker T ) = n2 −
dim (ker T ).

Exercise 7.2.11 Show that the following are equiv-
alent for a linear transformation T : V →W .

ker T =V1. im T = {0}2.
T = 03.

Exercise 7.2.12 Let A and B be m× n and k× n
matrices, respectively. Assume that Ax = 0 im-
plies Bx = 0 for every n-column x. Show that
rank A ≥ rank B.
[Hint: Theorem 7.2.4.]
The condition means ker (TA) ⊆ ker (TB), so
dim [ker (TA)] ≤ dim [ker (TB)]. Then Theorem 7.2.4
gives dim [ im (TA)]≥ dim [ im (TB)]; that is, rank A ≥
rank B.

Exercise 7.2.13 Let A be an m × n matrix of
rank r. Thinking of Rn as rows, define V = {x in
Rm | xA = 0}. Show that dim V = m− r.

Exercise 7.2.14 Consider

V =

{[
a b
c d

]∣∣∣∣a+ c = b+d
}

a. Consider S : M22 → R with S
[

a b
c d

]
= a+

c−b−d. Show that S is linear and onto and
that V is a subspace of M22. Compute dim V .

b. Consider T : V → R with T
[

a b
c d

]
= a+ c.

Show that T is linear and onto, and use this
information to compute dim (ker T ).

Exercise 7.2.15 Define T : Pn → R by T [p(x)] =
the sum of all the coefficients of p(x).

a. Use the dimension theorem to show that
dim (ker T ) = n.

b. Conclude that {x− 1, x2 − 1, . . . , xn − 1} is a
basis of ker T .

b. B= {x−1, . . . , xn−1} is independent (distinct
degrees) and contained in ker T . Hence B is a
basis of ker T by (a).

Exercise 7.2.16 Use the dimension theorem to
prove Theorem 1.3.1: If A is an m× n matrix with
m < n, the system Ax = 0 of m homogeneous equa-
tions in n variables always has a nontrivial solution.

Exercise 7.2.17 Let B be an n×n matrix, and con-
sider the subspaces U = {A | A in Mmn, AB = 0} and
V = {AB | A in Mmn}. Show that dim U + dim V =
mn.

Exercise 7.2.18 Let U and V denote, respec-
tively, the spaces of even and odd polynomials in Pn.
Show that dim U + dim V = n+ 1. [Hint: Consider
T : Pn → Pn where T [p(x)] = p(x)− p(−x).]

Exercise 7.2.19 Show that every polynomial f (x)
in Pn−1 can be written as f (x) = p(x + 1)− p(x)
for some polynomial p(x) in Pn. [Hint: Define
T : Pn → Pn−1 by T [p(x)] = p(x+1)− p(x).]

Exercise 7.2.20 Let U and V denote the spaces of
symmetric and skew-symmetric n×n matrices. Show
that dim U + dim V = n2.
Define T : Mnn → Mnn by T (A) = A−AT for all A
in Mnn. Then ker T = U and im T = V by Ex-
ample 7.2.3, so the dimension theorem gives n2 =
dim Mnn = dim (U)+ dim (V ).

Exercise 7.2.21 Assume that B in Mnn satisfies
Bk = 0 for some k ≥ 1. Show that every matrix in
Mnn has the form BA−A for some A in Mnn. [Hint:
Show that T : Mnn → Mnn is linear and one-to-one
where
T (A) = BA−A for each A.]

Exercise 7.2.22 Fix a column y 6= 0 in Rn and let
U = {A in Mnn | Ay = 0}. Show that dim U =
n(n−1).
Define T : Mnn → Rn by T (A) = Ay for all A in
Mnn. Then T is linear with ker T = U , so it
is enough to show that T is onto (then dim U =
n2 − dim ( im T ) = n2 − n). We have T (0) = 0.
Let y =

[
y1 y2 · · · yn

]T 6= 0 in Rn. If yk 6= 0
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let ck = y−1
k y, and let c j = 0 if j 6= k. If A =[

c1 c2 · · · cn
]
, then T (A) = Ay = y1c1 + · · ·+

ykck + · · ·+ yncn = y. This shows that T is onto, as
required.

Exercise 7.2.23 If B in Mmn has rank r, let U = {A
in Mnn |BA= 0} and W = {BA |A in Mnn}. Show that
dim U = n(n− r) and dim W = nr. [Hint: Show that
U consists of all matrices A whose columns are in the
null space of B. Use Example 7.2.7.]

Exercise 7.2.24 Let T : V →V be a linear transfor-
mation where dim V = n. If ker T ∩ im T = {0}, show
that every vector v in V can be written v=u+w for
some u in ker T and w in im T . [Hint: Choose bases
B ⊆ ker T and D ⊆ im T , and use Exercise 6.3.33.]

Exercise 7.2.25 Let T :Rn →Rn be a linear opera-
tor of rank 1, where Rn is written as rows. Show that
there exist numbers a1, a2, . . . , an and b1, b2, . . . , bn

such that T (X) = XA for all rows X in Rn, where

A =


a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn
...

...
...

anb1 anb2 · · · anbn


[Hint: im T = Rw for w = (b1, . . . , bn) in Rn.]

Exercise 7.2.26 Prove Theorem 7.2.5.

Exercise 7.2.27 Let T : V →R be a nonzero linear
transformation, where dim V = n. Show that there
is a basis {e1, . . . , en} of V so that T (r1e1 + r2e2 +
· · ·+ rnen) = r1.

Exercise 7.2.28 Let f 6= 0 be a fixed polynomial
of degree m ≥ 1. If p is any polynomial, recall that
(p◦ f )(x) = p [ f (x)]. Define Tf : Pn → Pn+m by
Tf (p) = p◦ f .

a. Show that Tf is linear.

b. Show that Tf is one-to-one.

Exercise 7.2.29 Let U be a subspace of a finite
dimensional vector space V .

a. Show that U = ker T for some linear operator
T : V →V .

b. Show that U = im S for some linear operator
S : V → V . [Hint: Theorem 6.4.1 and Theo-
rem 7.1.3.]

b. By Lemma 6.4.2, let {u1, . . . , um, . . . , un}
be a basis of V where {u1, . . . , um} is a ba-
sis of U . By Theorem 7.1.3 there is a linear
transformation S : V →V such that S(ui) = ui

for 1 ≤ i ≤ m, and S(ui) = 0 if i > m. Because
each ui is in im S, U ⊆ im S. But if S(v) is in
im S, write v = r1u1 + · · ·+ rmum + · · ·+ rnun.
Then S(v) = r1S(u1)+ · · ·+ rmS(um) = r1u1 +
· · ·+ rmum is in U . So im S ⊆U .

Exercise 7.2.30 Let V and W be finite dimensional
vector spaces.

a. Show that dim W ≤ dim V if and only if there
exists an onto linear transformation T : V →
W . [Hint: Theorem 6.4.1 and Theorem 7.1.3.]

b. Show that dim W ≥ dim V if and only if there
exists a one-to-one linear transformation T :
V → W . [Hint: Theorem 6.4.1 and Theo-
rem 7.1.3.]

Exercise 7.2.31 Let A and B be n×n matrices, and
assume that AXB = 0, X ∈ Mnn, implies X = 0. Show
that A and B are both invertible. [Hint: Dimension
Theorem.]
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7.3 Isomorphisms and Composition

Often two vector spaces can consist of quite different types of vectors but, on closer examination,
turn out to be the same underlying space displayed in different symbols. For example, consider the
spaces

R2 = {(a, b) | a, b ∈ R} and P1 = {a+bx | a, b ∈ R}

Compare the addition and scalar multiplication in these spaces:

(a, b)+(a1, b1) = (a+a1, b+b1) (a+bx)+(a1 +b1x) = (a+a1)+(b+b1)x
r(a, b) = (ra, rb) r(a+bx) = (ra)+(rb)x

Clearly these are the same vector space expressed in different notation: if we change each (a, b) in
R2 to a+bx, then R2 becomes P1, complete with addition and scalar multiplication. This can be
expressed by noting that the map (a, b) 7→ a+bx is a linear transformation R2 → P1 that is both
one-to-one and onto. In this form, we can describe the general situation.

Definition 7.4 Isomorphic Vector Spaces

A linear transformation T : V →W is called an isomorphism if it is both onto and
one-to-one. The vector spaces V and W are said to be isomorphic if there exists an
isomorphism T : V →W , and we write V ∼=W when this is the case.

Example 7.3.1

The identity transformation 1V : V →V is an isomorphism for any vector space V .

Example 7.3.2

If T : Mmn → Mnm is defined by T (A) = AT for all A in Mmn, then T is an isomorphism
(verify). Hence Mmn ∼= Mnm.

Example 7.3.3

Isomorphic spaces can “look” quite different. For example, M22 ∼= P3 because the map
T : M22 → P3 given by T

[
a b
c d

]
= a+bx+ cx2 +dx3 is an isomorphism (verify).

The word isomorphism comes from two Greek roots: iso, meaning “same,” and morphos, mean-
ing “form.” An isomorphism T : V →W induces a pairing

v ↔ T (v)
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between vectors v in V and vectors T (v) in W that preserves vector addition and scalar multiplica-
tion. Hence, as far as their vector space properties are concerned, the spaces V and W are identical
except for notation. Because addition and scalar multiplication in either space are completely de-
termined by the same operations in the other space, all vector space properties of either space are
completely determined by those of the other.

One of the most important examples of isomorphic spaces was considered in Chapter 4. Let A
denote the set of all “arrows” with tail at the origin in space, and make A into a vector space using
the parallelogram law and the scalar multiple law (see Section 4.1). Then define a transformation
T : R3 → A by taking

T

 x
y
z

= the arrow v from the origin to the point P(x, y, z).

In Section 4.1 matrix addition and scalar multiplication were shown to correspond to the parallelo-
gram law and the scalar multiplication law for these arrows, so the map T is a linear transformation.
Moreover T is an isomorphism: it is one-to-one by Theorem 4.1.2, and it is onto because, given an

arrow v in A with tip P(x, y, z), we have T

 x
y
z

 = v. This justifies the identification v =

 x
y
z


in Chapter 4 of the geometric arrows with the algebraic matrices. This identification is very useful.
The arrows give a “picture” of the matrices and so bring geometric intuition into R3; the matrices
are useful for detailed calculations and so bring analytic precision into geometry. This is one of the
best examples of the power of an isomorphism to shed light on both spaces being considered.

The following theorem gives a very useful characterization of isomorphisms: They are the linear
transformations that preserve bases.

Theorem 7.3.1
If V and W are finite dimensional spaces, the following conditions are equivalent for a linear
transformation T : V →W .

1. T is an isomorphism.

2. If {e1, e2, . . . , en} is any basis of V , then {T (e1), T (e2), . . . , T (en)} is a basis of W .

3. There exists a basis {e1, e2, . . . , en} of V such that {T (e1), T (e2), . . . , T (en)} is a
basis of W .

Proof. (1) ⇒ (2). Let {e1, . . . , en} be a basis of V . If t1T (e1)+ · · ·+ tnT (en) = 0 with ti in R, then
T (t1e1 + · · ·+ tnen) = 0, so t1e1 + · · ·+ tnen = 0 (because ker T = {0}). But then each ti = 0 by the
independence of the ei, so {T (e1), . . . , T (en)} is independent. To show that it spans W , choose w
in W . Because T is onto, w = T (v) for some v in V , so write v = t1e1 + · · ·+ tnen. Hence we obtain
w = T (v) = t1T (e1)+ · · ·+ tnT (en), proving that {T (e1), . . . , T (en)} spans W .

(2) ⇒ (3). This is because V has a basis.
(3) ⇒ (1). If T (v) = 0, write v = v1e1 + · · ·+ vnen where each vi is in R. Then

0 = T (v) = v1T (e1)+ · · ·+ vnT (en)
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so v1 = · · · = vn = 0 by (3). Hence v = 0, so ker T = {0} and T is one-to-one. To show that T is
onto, let w be any vector in W . By (3) there exist w1, . . . , wn in R such that

w = w1T (e1)+ · · ·+wnT (en) = T (w1e1 + · · ·+wnen)

Thus T is onto.

Theorem 7.3.1 dovetails nicely with Theorem 7.1.3 as follows. Let V and W be vector spaces
of dimension n, and suppose that {e1, e2, . . . , en} and {f1, f2, . . . , fn} are bases of V and W ,
respectively. Theorem 7.1.3 asserts that there exists a linear transformation T : V →W such that

T (ei) = fi for each i = 1, 2, . . . , n

Then {T (e1), . . . , T (en)} is evidently a basis of W , so T is an isomorphism by Theorem 7.3.1.
Furthermore, the action of T is prescribed by

T (r1e1 + · · ·+ rnen) = r1f1 + · · ·+ rnfn

so isomorphisms between spaces of equal dimension can be easily defined as soon as bases are known.
In particular, this shows that if two vector spaces V and W have the same dimension then they are
isomorphic, that is V ∼=W . This is half of the following theorem.

Theorem 7.3.2
If V and W are finite dimensional vector spaces, then V ∼=W if and only if dim V = dim W .

Proof. It remains to show that if V ∼= W then dim V = dim W . But if V ∼= W , then there exists
an isomorphism T : V → W . Since V is finite dimensional, let {e1, . . . , en} be a basis of V . Then
{T (e1), . . . , T (en)} is a basis of W by Theorem 7.3.1, so dim W = n = dim V .

Corollary 7.3.1

Let U , V , and W denote vector spaces. Then:

1. V ∼=V for every vector space V .

2. If V ∼=W then W ∼=V .

3. If U ∼=V and V ∼=W , then U ∼=W .

The proof is left to the reader. By virtue of these properties, the relation ∼= is called an equivalence
relation on the class of finite dimensional vector spaces. Since dim (Rn) = n it follows that

Corollary 7.3.2

If V is a vector space and dim V = n, then V is isomorphic to Rn.
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If V is a vector space of dimension n, note that there are important explicit isomorphisms
V → Rn. Fix a basis B = {b1, b2, . . . , bn} of V and write {e1, e2, . . . , en} for the standard basis
of Rn. By Theorem 7.1.3 there is a unique linear transformation CB : V → Rn given by

CB(v1b1 + v2b2 + · · ·+ vnbn) = v1e1 + v2e2 + · · ·+ vnen =


v1
v2
...

vn


where each vi is in R. Moreover, CB(bi) = ei for each i so CB is an isomorphism by Theorem 7.3.1,
called the coordinate isomorphism corresponding to the basis B. These isomorphisms will play
a central role in Chapter ??.

The conclusion in the above corollary can be phrased as follows: As far as vector space properties
are concerned, every n-dimensional vector space V is essentially the same as Rn; they are the “same”
vector space except for a change of symbols. This appears to make the process of abstraction seem
less important—just study Rn and be done with it! But consider the different “feel” of the spaces P8
and M33 even though they are both the “same” as R9: For example, vectors in P8 can have roots,
while vectors in M33 can be multiplied. So the merit in the abstraction process lies in identifying
common properties of the vector spaces in the various examples. This is important even for finite
dimensional spaces. However, the payoff from abstraction is much greater in the infinite dimensional
case, particularly for spaces of functions.

Example 7.3.4

Let V denote the space of all 2×2 symmetric matrices. Find an isomorphism T : P2 →V
such that T (1) = I, where I is the 2×2 identity matrix.

Solution. {1, x, x2} is a basis of P2, and we want a basis of V containing I. The set{[
1 0
0 1

]
,
[

0 1
1 0

]
,
[

0 0
0 1

]}
is independent in V , so it is a basis because dim V = 3 (by

Example 6.3.11). Hence define T : P2 →V by taking T (1) =
[

1 0
0 1

]
, T (x) =

[
0 1
1 0

]
,

T (x2) =

[
0 0
0 1

]
, and extending linearly as in Theorem 7.1.3. Then T is an isomorphism by

Theorem 7.3.1, and its action is given by

T (a+bx+ cx2) = aT (1)+bT (x)+ cT (x2) =

[
a b
b a+ c

]

The dimension theorem (Theorem 7.2.4) gives the following useful fact about isomorphisms.

Theorem 7.3.3
If V and W have the same dimension n, a linear transformation T : V →W is an
isomorphism if it is either one-to-one or onto.
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Proof. The dimension theorem asserts that dim (ker T )+ dim ( im T ) = n, so dim (ker T ) = 0 if and
only if dim ( im T ) = n. Thus T is one-to-one if and only if T is onto, and the result follows.

Composition

Suppose that T : V → W and S : W → U are linear transformations. They link together as in the
diagram so, as in Section 2.3, it is possible to define a new function V →U by first applying T and
then S.

Definition 7.5 Composition of Linear Transformations

T S

V W U

Given linear transformations V T−→W S−→U , the composite
ST : V →U of T and S is defined by

ST (v) = S [T (v)] for all v in V

The operation of forming the new function ST is called
composition.1

The action of ST can be described compactly as follows: ST means first T then S.
Not all pairs of linear transformations can be composed. For example, if T :V →W and S :W →U

are linear transformations then ST :V →U is defined, but T S cannot be formed unless U =V because
S : W →U and T : V →W do not “link” in that order.2

Moreover, even if ST and T S can both be formed, they may not be equal. In fact, if S : Rm →Rn

and T : Rn →Rm are induced by matrices A and B respectively, then ST and T S can both be formed
(they are induced by AB and BA respectively), but the matrix products AB and BA may not be
equal (they may not even be the same size). Here is another example.

Example 7.3.5

Define: S : M22 → M22 and T : M22 → M22 by S
[

a b
c d

]
=

[
c d
a b

]
and T (A) = AT for

A ∈ M22. Describe the action of ST and T S, and show that ST 6= T S.

Solution. ST
[

a b
c d

]
= S

[
a c
b d

]
=

[
b d
a c

]
, whereas

T S
[

a b
c d

]
= T

[
c d
a b

]
=

[
c a
d b

]
.

It is clear that T S
[

a b
c d

]
need not equal ST

[
a b
c d

]
, so T S 6= ST .

The next theorem collects some basic properties of the composition operation.
1In Section 2.3 we denoted the composite as S◦T . However, it is more convenient to use the simpler notation ST .
2Actually, all that is required is U ⊆V .
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Theorem 7.3.4: 3

Let V T−→W S−→U R−→ Z be linear transformations.

1. The composite ST is again a linear transformation.

2. T 1V = T and 1W T = T .

3. (RS)T = R(ST ).

Proof. The proofs of (1) and (2) are left as Exercise 7.3.25. To prove (3), observe that, for all v in
V :

{(RS)T}(v) = (RS) [T (v)] = R{S [T (v)]}= R{(ST )(v)}= {R(ST )}(v)

Up to this point, composition seems to have no connection with isomorphisms. In fact, the two
notions are closely related.

Theorem 7.3.5
Let V and W be finite dimensional vector spaces. The following conditions are equivalent for
a linear transformation T : V →W .

1. T is an isomorphism.

2. There exists a linear transformation S : W →V such that ST = 1V and T S = 1W .

Moreover, in this case S is also an isomorphism and is uniquely determined by T :

If w in W is written as w = T (v), then S(w) = v.

Proof. (1) ⇒ (2). If B = {e1, . . . , en} is a basis of V , then D = {T (e1), . . . , T (en)} is a basis of W
by Theorem 7.3.1. Hence (using Theorem 7.1.3), define a linear transformation S : W →V by

S[T (ei)] = ei for each i (7.2)

Since ei = 1V (ei), this gives ST = 1V by Theorem 7.1.2. But applying T gives T [S [T (ei)]] = T (ei)
for each i, so T S = 1W (again by Theorem 7.1.2, using the basis D of W ).

(2) ⇒ (1). If T (v) = T (v1), then S [T (v)] = S [T (v1)]. Because ST = 1V by (2), this reads v= v1;
that is, T is one-to-one. Given w in W , the fact that T S = 1W means that w = T [S(w)], so T is
onto.

3Theorem 7.3.4 can be expressed by saying that vector spaces and linear transformations are an example of a
category. In general a category consists of certain objects and, for any two objects X and Y , a set mor (X , Y ). The
elements α of mor (X , Y ) are called morphisms from X to Y and are written α : X → Y . It is assumed that identity
morphisms and composition are defined in such a way that Theorem 7.3.4 holds. Hence, in the category of vector
spaces the objects are the vector spaces themselves and the morphisms are the linear transformations. Another
example is the category of metric spaces, in which the objects are sets equipped with a distance function (called a
metric), and the morphisms are continuous functions (with respect to the metric). The category of sets and functions
is a very basic example.
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Finally, S is uniquely determined by the condition ST = 1V because this condition implies (7.2).
S is an isomorphism because it carries the basis D to B. As to the last assertion, given w in W ,
write w = r1T (e1)+ · · ·+ rnT (en). Then w = T (v), where v = r1e1 + · · ·+ rnen. Then S(w) = v by
(7.2).

Given an isomorphism T : V →W , the unique isomorphism S : W →V satisfying condition (2) of
Theorem 7.3.5 is called the inverse of T and is denoted by T−1. Hence T : V →W and T−1 : W →V
are related by the fundamental identities:

T−1 [T (v)] = v for all v in V and T
[
T−1(w)

]
= w for all w in W

In other words, each of T and T−1 reverses the action of the other. In particular, equation (7.2) in the
proof of Theorem 7.3.5 shows how to define T−1 using the image of a basis under the isomorphism
T . Here is an example.

Example 7.3.6

Define T : P1 → P1 by T (a+bx) = (a−b)+ax. Show that T has an inverse, and find the
action of T−1.

Solution. The transformation T is linear (verify). Because T (1) = 1+ x and T (x) =−1, T
carries the basis B = {1, x} to the basis D = {1+ x, −1}. Hence T is an isomorphism, and
T−1 carries D back to B, that is,

T−1(1+ x) = 1 and T−1(−1) = x

Because a+bx = b(1+ x)+(b−a)(−1), we obtain

T−1(a+bx) = bT−1(1+ x)+(b−a)T−1(−1) = b+(b−a)x

Sometimes the action of the inverse of a transformation is apparent.

Example 7.3.7

If B = {b1, b2, . . . , bn} is a basis of a vector space V , the coordinate transformation
CB : V → Rn is an isomorphism defined by

CB(v1b1 + v2b2 + · · ·+ vnbn) = (v1, v2, . . . , vn)
T

The way to reverse the action of CB is clear: C−1
B : Rn →V is given by

C−1
B (v1, v2, . . . , vn) = v1b1 + v2b2 + · · ·+ vnbn for all vi in V

Condition (2) in Theorem 7.3.5 characterizes the inverse of a linear transformation T : V →W as
the (unique) transformation S : W →V that satisfies ST = 1V and T S = 1W . This often determines
the inverse.
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Example 7.3.8

Define T : R3 → R3 by T (x, y, z) = (z, x, y). Show that T 3 = 1R3 , and hence find T−1.

Solution. T 2(x, y, z) = T [T (x, y, z)] = T (z, x, y) = (y, z, x). Hence

T 3(x, y, z) = T
[
T 2(x, y, z)

]
= T (y, z, x) = (x, y, z)

Since this holds for all (x, y, z), it shows that T 3 = 1R3 , so T (T 2) = 1R3 = (T 2)T . Thus
T−1 = T 2 by (2) of Theorem 7.3.5.

Example 7.3.9

Define T : Pn →Rn+1 by T (p) = (p(0), p(1), . . . , p(n)) for all p in Pn. Show that T−1 exists.

Solution. The verification that T is linear is left to the reader. If T (p) = 0, then p(k) = 0
for k = 0, 1, . . . , n, so p has n+1 distinct roots. Because p has degree at most n, this
implies that p = 0 is the zero polynomial (Theorem ??) and hence that T is one-to-one. But
dim Pn = n+1 = dim Rn+1, so this means that T is also onto and hence is an isomorphism.
Thus T−1 exists by Theorem 7.3.5. Note that we have not given a description of the action
of T−1, we have merely shown that such a description exists. To give it explicitly requires
some ingenuity; one method involves the Lagrange interpolation expansion (Theorem ??).

Exercises for 7.3

Exercise 7.3.1 Verify that each of the following is
an isomorphism (Theorem 7.3.3 is useful).

a. T : R3 → R3; T (x, y, z) = (x+ y, y+ z, z+ x)

b. T : R3 → R3; T (x, y, z) = (x, x+ y, x+ y+ z)

c. T : C→ C; T (z) = z

d. T : Mmn → Mmn; T (X) = UXV , U and V in-
vertible

e. T : P1 → R2; T [p(x)] = [p(0), p(1)]

f. T : V →V ; T (v) = kv, k 6= 0 a fixed number, V
any vector space

g. T : M22 →R4; T
[

a b
c d

]
= (a+b, d, c, a−b)

h. T : Mmn → Mnm; T (A) = AT

b. T is onto because T (1, −1, 0) = (1, 0, 0),
T (0, 1, −1) = (0, 1, 0), and T (0, 0, 1) =
(0, 0, 1). Use Theorem 7.3.3.

d. T is one-to-one because 0 = T (X) = UXV im-
plies that X = 0 (U and V are invertible). Use
Theorem 7.3.3.

f. T is one-to-one because 0 = T (v) = kv implies
that v = 0 (because k 6= 0). T is onto because
T
(1

k v
)
=v for all v. [Here Theorem 7.3.3 does

not apply if dim V is not finite.]

h. T is one-to-one because T (A) = 0 implies AT =
0, whence A = 0. Use Theorem 7.3.3.
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Exercise 7.3.2 Show that

{a+bx+ cx2, a1 +b1x+ c1x2, a2 +b2x+ c2x2}

is a basis of P2 if and only if
{(a, b, c), (a1, b1, c1), (a2, b2, c2)} is a basis of R3.

Exercise 7.3.3 If V is any vector space, let V n

denote the space of all n-tuples (v1, v2, . . . , vn),
where each vi lies in V . (This is a vector space with
component-wise operations; see Exercise 6.1.17.) If
C j(A) denotes the jth column of the m×n matrix A,
show that T : Mmn → (Rm)n is an isomorphism if
T (A) =

[
C1(A) C2(A) · · · Cn(A)

]
. (Here Rm con-

sists of columns.)

Exercise 7.3.4 In each case, compute the action
of ST and T S, and show that ST 6= T S.

a. S : R2 → R2 with S(x, y) = (y, x); T : R2 → R2

with T (x, y) = (x, 0)

b. S : R3 → R3 with S(x, y, z) = (x, 0, z);
T : R3 → R3 with T (x, y, z) = (x+ y, 0, y+ z)

c. S : P2 → P2 with S(p) = p(0)+ p(1)x+ p(2)x2;
T : P2 → P2 with T (a+bx+cx2) = b+cx+ax2

d. S : M22 → M22 with S
[

a b
c d

]
=

[
a 0
0 d

]
;

T : M22 → M22 with T
[

a b
c d

]
=

[
c a
d b

]

b. ST (x, y, z) = (x+ y, 0, y+ z), T S(x, y, z) =
(x, 0, z)

d. ST
[

a b
c d

]
=

[
c 0
0 d

]
, T S

[
a b
c d

]
=[

0 a
d 0

]
Exercise 7.3.5 In each case, show that the linear
transformation T satisfies T 2 = T .

a. T : R4 → R4; T (x, y, z, w) = (x, 0, z, 0)

b. T : R2 → R2; T (x, y) = (x+ y, 0)

c. T : P2 → P2;
T (a+bx+ cx2) = (a+b− c)+ cx+ cx2

d. T : M22 → M22;

T
[

a b
c d

]
= 1

2

[
a+ c b+d
a+ c b+d

]

b. T 2(x, y) = T (x+ y, 0) = (x+ y, 0) = T (x, y).
Hence T 2 = T .

d. T 2
[

a b
c d

]
= 1

2 T
[

a+ c b+d
a+ c b+d

]
=

1
2

[
a+ c b+d
a+ c b+d

]
Exercise 7.3.6 Determine whether each of the fol-
lowing transformations T has an inverse and, if so,
determine the action of T−1.

a. T : R3 → R3;
T (x, y, z) = (x+ y, y+ z, z+ x)

b. T : R4 → R4;
T (x, y, z, t) = (x+ y, y+ z, z+ t, t + x)

c. T : M22 → M22;

T
[

a b
c d

]
=

[
a− c b−d
2a− c 2b−d

]
d. T : M22 → M22;

T
[

a b
c d

]
=

[
a+2c b+2d
3c−a 3d −b

]
e. T : P2 →R3; T (a+bx+cx2) = (a−c, 2b, a+c)

f. T : P2 → R3; T (p) = [p(0), p(1), p(−1)]

b. No inverse; (1, −1, 1, −1) is in ker T .

d. T−1
[

a b
c d

]
= 1

5

[
3a−2c 3b−2d
a+ c b+d

]
f. T−1(a, b, c) = 1

2

[
2a+(b− c)x− (2a−b− c)x2

]
Exercise 7.3.7 In each case, show that T is self-
inverse, that is: T−1 = T .

a. T : R4 → R4; T (x, y, z, w) = (x, −y, −z, w)

b. T : R2 → R2; T (x, y) = (ky− x, y), k any fixed
number

c. T : Pn → Pn; T (p(x)) = p(3− x)
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d. T : M22 → M22; T (X) = AX where

A = 1
4

[
5 −3
3 −5

]

b. T 2(x, y) = T (ky− x, y) = (ky− (ky− x), y) =
(x, y)

d. T 2(X) = A2X = IX = X

Exercise 7.3.8 In each case, show that T 6 = 1R4

and so determine T−1.

a. T : R4 → R4; T (x, y, z, w) = (−x, z, w, y)

b. T : R4 →R4; T (x, y, z, w) = (−y, x−y, z, −w)

b. T 3(x, y, z, w)= (x, y, z, −w) so T 6(x, y, z, w)=
T 3
[
T 3(x, y, z, w)

]
= (x, y, z, w). Hence T−1 =

T 5. So T−1(x, y, z, w) = (y− x, −x, z, −w).

Exercise 7.3.9 In each case, show that T is an
isomorphism by defining T−1 explicitly.

a. T : Pn → Pn is given by T [p(x)] = p(x+1).

b. T : Mnn → Mnn is given by T (A) = UA where
U is invertible in Mnn.

b. T−1(A) =U−1A.

Exercise 7.3.10 Given linear transformations
V T−→W S−→U :

a. If S and T are both one-to-one, show that ST
is one-to-one.

b. If S and T are both onto, show that ST is onto.

b. Given u in U , write u = S(w), w in W (be-
cause S is onto). Then write w = T (v), v in V
(T is onto). Hence u = ST (v), so ST is onto.

Exercise 7.3.11 Let T : V →W be a linear trans-
formation.

a. If T is one-to-one and T R = T R1 for transfor-
mations R and R1 : U →V , show that R = R1.

b. If T is onto and ST = S1T for transformations
S and S1 : W →U , show that S = S1.

Exercise 7.3.12 Consider the linear transforma-
tions V T−→W R−→U .

a. Show that ker T ⊆ ker RT .

b. Show that im RT ⊆ im R.

b. For all v in V , (RT )(v) = R [T (v)] is in im (R).

Exercise 7.3.13 Let V T−→U S−→W be linear trans-
formations.

a. If ST is one-to-one, show that T is one-to-one
and that dim V ≤ dim U .

b. If ST is onto, show that S is onto and that
dim W ≤ dim U .

b. Given w in W , write w = ST (v), v in V (ST
is onto). Then w = S [T (v)], T (v) in U , so
S is onto. But then im S = W , so dim U =
dim (ker S)+ dim ( im S)≥ dim ( im S)= dim W .

Exercise 7.3.14 Let T : V → V be a linear trans-
formation. Show that T 2 = 1V if and only if T is
invertible and T = T−1.

Exercise 7.3.15 Let N be a nilpotent n×n matrix
(that is, Nk = 0 for some k). Show that T : Mnm →
Mnm is an isomorphism if T (X) = X −NX . [Hint: If
X is in ker T , show that X = NX = N2X = · · · . Then
use Theorem 7.3.3.]

Exercise 7.3.16 Let T : V →W be a linear trans-
formation, and let {e1, . . . , er, er+1, . . . , en} be any
basis of V such that {er+1, . . . , en} is a basis of ker T .



7.3. Isomorphisms and Composition 395

Show that im T ∼= span{e1, . . . , er}. [Hint: See The-
orem 7.2.5.]
{T (e1), T (e2), . . . , T (er)} is a basis of im T by The-
orem 7.2.5. So T : span{e1, . . . , er} → im T is an
isomorphism by Theorem 7.3.1.

Exercise 7.3.17 Is every isomorphism T : M22 →
M22 given by an invertible matrix U such that
T (X) =UX for all X in M22? Prove your answer.

Exercise 7.3.18 Let Dn denote the space of all
functions f from {1, 2, . . . , n} to R (see Exer-
cise 6.3.35). If T : Dn → Rn is defined by

T ( f ) = ( f (1), f (2), . . . , f (n)),

show that T is an isomorphism.

Exercise 7.3.19

a. Let V be the vector space of Exercise 6.1.3.
Find an isomorphism T : V → R1.

b. Let V be the vector space of Exercise 6.1.4.
Find an isomorphism T : V → R2.

b. T (x, y) = (x, y+1)

Exercise 7.3.20 Let V T−→W S−→V be linear trans-
formations such that ST = 1V . If dim V = dim W = n,
show that S = T−1 and T = S−1. [Hint: Exer-
cise 7.3.13 and Theorem 7.3.3, Theorem 7.3.4, and
Theorem 7.3.5.]

Exercise 7.3.21 Let V T−→W S−→V be functions such
that T S = 1W and ST = 1V . If T is linear, show that
S is also linear.

Exercise 7.3.22 Let A and B be matrices of size
p × m and n × q. Assume that mn = pq. Define
R : Mmn → Mpq by R(X) = AXB.

a. Show that Mmn ∼= Mpq by comparing dimen-
sions.

b. Show that R is a linear transformation.

c. Show that if R is an isomorphism, then m = p
and n = q. [Hint: Show that T : Mmn → Mpn

given by T (X) = AX and S : Mmn → Mmq given
by S(X) = XB are both one-to-one, and use the
dimension theorem.]

Exercise 7.3.23 Let T : V →V be a linear transfor-
mation such that T 2 = 0 is the zero transformation.

a. If V 6= {0}, show that T cannot be invertible.

b. If R : V →V is defined by R(v) = v+T (v) for
all v in V , show that R is linear and invertible.

Exercise 7.3.24 Let V consist of all sequences
[x0, x1, x2, . . .) of numbers, and define vector op-
erations

[xo, x1, . . .)+ [y0, y1, . . .) = [x0 + y0, x1 + y1, . . .)

r[x0, x1, . . .) = [rx0, rx1, . . .)

a. Show that V is a vector space of infinite di-
mension.

b. Define T : V → V and S : V → V by
T [x0, x1, . . .) = [x1, x2, . . .) and
S[x0, x1, . . .) = [0, x0, x1, . . .). Show that
T S = 1V , so T S is one-to-one and onto, but
that T is not one-to-one and S is not onto.

b. T S[x0, x1, . . .) = T [0, x0, x1, . . .) = [x0, x1, . . .),
so T S = 1V . Hence T S is both onto and one-
to-one, so T is onto and S is one-to-one by
Exercise 7.3.13. But [1, 0, 0, . . .) is in ker T
while [1, 0, 0, . . .) is not in im S.

Exercise 7.3.25 Prove (1) and (2) of Theo-
rem 7.3.4.

Exercise 7.3.26 Define T : Pn → Pn by
T (p) = p(x)+ xp′(x) for all p in Pn.

a. Show that T is linear.

b. Show that ker T = {0} and conclude that
T is an isomorphism. [Hint: Write p(x) =
a0 + a1x+ · · ·+ anxn and compare coefficients
if p(x) =−xp′(x).]

c. Conclude that each q(x) in Pn has the form
q(x) = p(x) + xp′(x) for some unique polyno-
mial p(x).

d. Does this remain valid if T is defined by
T [p(x)] = p(x)− xp′(x)? Explain.
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b. If T (p) = 0, then p(x) = −xp′(x). We write
p(x) = a0 + a1x + a2x2 + · · ·+ anxn, and this
becomes a0 + a1x+ a2x2 + · · ·+ anxn = −a1x−
2a2x2−·· ·−nanxn. Equating coefficients yields
a0 = 0, 2a1 = 0, 3a2 = 0, . . . , (n + 1)an = 0,
whence p(x) = 0. This means that ker T = 0,
so T is one-to-one. But then T is an isomor-
phism by Theorem 7.3.3.

Exercise 7.3.27 Let T : V →W be a linear trans-
formation, where V and W are finite dimensional.

a. Show that T is one-to-one if and only if there
exists a linear transformation S : W → V with
ST = 1V . [Hint: If {e1, . . . , en} is a basis of
V and T is one-to-one, show that W has a ba-
sis {T (e1), . . . , T (en), fn+1, . . . , fn+k} and use
Theorem 7.1.2 and Theorem 7.1.3.]

b. Show that T is onto if and only if there exists a
linear transformation S : W →V with T S = 1W .
[Hint: Let {e1, . . . , er, . . . , en} be a basis of
V such that {er+1, . . . , en} is a basis of ker T .
Use Theorem 7.2.5, Theorem 7.1.2 and Theo-
rem 7.1.3.]

b. If ST = 1V for some S, then T is onto by Exer-
cise 7.3.13. If T is onto, let {e1, . . . , er, . . . , en}
be a basis of V such that {er+1, . . . , en}
is a basis of ker T . Since T is onto,
{T (e1), . . . , T (er)} is a basis of im T = W
by Theorem 7.2.5. Thus S : W → V is an
isomorphism where by S{T (ei)] = ei for i =
1, 2, . . . , r. Hence T S[T (ei)] = T (ei) for each
i, that is T S[T (ei)] = 1W [T (ei)]. This means
that T S = 1W because they agree on the basis
{T (e1), . . . , T (er)} of W .

Exercise 7.3.28 Let S and T be linear transfor-
mations V →W , where dim V = n and dim W = m.

a. Show that ker S = ker T if and only if T = RS
for some isomorphism R : W →W . [Hint: Let
{e1, . . . , er, . . . , en} be a basis of V such that

{er+1, . . . , en} is a basis of ker S = ker T . Use
Theorem 7.2.5 to extend {S(e1), . . . , S(er)}
and {T (e1), . . . , T (er)} to bases of W .]

b. Show that im S = im T if and only if
T = SR for some isomorphism R : V → V .
[Hint: Show that dim (ker S) = dim (ker T )
and choose bases {e1, . . . , er, . . . , en} and
{f1, . . . , fr, . . . , fn} of V where {er+1, . . . , en}
and {fr+1, . . . , fn} are bases of ker S and
ker T , respectively. If 1 ≤ i ≤ r, show that
S(ei) = T (gi) for some gi in V , and prove that
{g1, . . . , gr, fr+1, . . . , fn} is a basis of V .]

b. If T = SR, then every vector T (v) in im T has
the form T (v) = S[R(v)], whence im T ⊆ im S.
Since R is invertible, S = T R−1 implies im S ⊆
im T . Conversely, assume that im S = im T .
Then dim (ker S) = dim (ker T ) by the dimen-
sion theorem. Let {e1, . . . , er, er+1, . . . , en}
and {f1, . . . , fr, fr+1, . . . , fn} be bases of V
such that {er+1, . . . , en} and {fr+1, . . . , fn}
are bases of ker S and ker T , respectively.
By Theorem 7.2.5, {S(e1), . . . , S(er)} and
{T (f1), . . . , T (fr)} are both bases of im S =
im T . So let g1, . . . , gr in V be such that
S(ei) = T (gi) for each i = 1, 2, . . . , r. Show
that

B = {g1, . . . , gr, fr+1, . . . , fn} is a basis of V .

Then define R : V → V by R(gi) = ei for i =
1, 2, . . . , r, and R(f j) = e j for j = r+1, . . . , n.
Then R is an isomorphism by Theorem 7.3.1.
Finally SR = T since they have the same effect
on the basis B.

Exercise 7.3.29 If T : V → V is a linear trans-
formation where dim V = n, show that T ST = T
for some isomorphism S : V → V . [Hint: Let
{e1, . . . , er, er+1, . . . , en} be as in Theorem 7.2.5.
Extend {T (e1), . . . , T (er)} to a basis of V , and use
Theorem 7.3.1, Theorem 7.1.2 and Theorem 7.1.3.]

Let B = {e1, . . . , er, er+1, . . . , en} be a basis
of V with {er+1, . . . , en} a basis of ker T . If
{T (e1), . . . , T (er), wr+1, . . . , wn} is a basis of V ,
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define S by S[T (ei)] = ei for 1 ≤ i ≤ r, and S(w j) = e j

for r+1 ≤ j ≤ n. Then S is an isomorphism by The-
orem 7.3.1, and T ST (ei) = T (ei) clearly holds for
1 ≤ i ≤ r. But if i ≥ r+1, then T (ei) = 0 = T ST (ei),
so T = T ST by Theorem 7.1.2.

Exercise 7.3.30 Let A and B denote m×n matri-
ces. In each case show that (1) and (2) are equiva-
lent.

a. (1) A and B have the same null space. (2)
B = PA for some invertible m×m matrix P.

b. (1) A and B have the same range. (2) B = AQ
for some invertible n×n matrix Q.

[Hint: Use Exercise 7.3.28.]
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In Section 5.3 we introduced the dot product in Rn and extended the basic geometric notions of
length and distance. A set {f1, f2, . . . , fm} of nonzero vectors in Rn was called an orthogonal set
if fi · f j = 0 for all i 6= j, and it was proved that every orthogonal set is independent. In particular,
it was observed that the expansion of a vector as a linear combination of orthogonal basis vectors
is easy to obtain because formulas exist for the coefficients. Hence the orthogonal bases are the
“nice” bases, and much of this chapter is devoted to extending results about bases to orthogonal
bases. This leads to some very powerful methods and theorems. Our first task is to show that every
subspace of Rn has an orthogonal basis.
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8.1 Orthogonal Complements and Projections

If {v1, . . . , vm} is linearly independent in a general vector space, and if vm+1 is not in span{v1, . . . , vm},
then {v1, . . . , vm, vm+1} is independent (Lemma 6.4.1). Here is the analog for orthogonal sets in
Rn.

Lemma 8.1.1: Orthogonal Lemma

Let {f1, f2, . . . , fm} be an orthogonal set in Rn. Given x in Rn, write

fm+1 = x− x·f1
‖f1‖2 f1 − x·f2

‖f2‖2 f2 −·· ·− x·fm
‖fm‖2 fm

Then:

1. fm+1 · fk = 0 for k = 1, 2, . . . , m.

2. If x is not in span{f1, . . . , fm}, then fm+1 6= 0 and {f1, . . . , fm, fm+1} is an orthogonal
set.

Proof. For convenience, write ti = (x · fi)/‖fi‖2 for each i. Given 1 ≤ k ≤ m:

fm+1 · fk = (x− t1f1 −·· ·− tkfk −·· ·− tmfm) · fk

= x · fk − t1(f1 · fk)−·· ·− tk(fk · fk)−·· ·− tm(fm · fk)

= x · fk − tk‖fk‖2

= 0

This proves (1), and (2) follows because fm+1 6= 0 if x is not in span{f1, . . . , fm}.

The orthogonal lemma has three important consequences for Rn. The first is an extension for
orthogonal sets of the fundamental fact that any independent set is part of a basis (Theorem 6.4.1).

Theorem 8.1.1
Let U be a subspace of Rn.

1. Every orthogonal subset {f1, . . . , fm} in U is a subset of an orthogonal basis of U .

2. U has an orthogonal basis.

Proof.

1. If span{f1, . . . , fm} = U , it is already a basis. Otherwise, there exists x in U outside
span{f1, . . . , fm}. If fm+1 is as given in the orthogonal lemma, then fm+1 is in U and
{f1, . . . , fm, fm+1} is orthogonal. If span{f1, . . . , fm, fm+1} = U , we are done. Otherwise,
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the process continues to create larger and larger orthogonal subsets of U . They are all in-
dependent by Theorem 5.3.5, so we have a basis when we reach a subset containing dim U
vectors.

2. If U = {0}, the empty basis is orthogonal. Otherwise, if f 6= 0 is in U , then {f} is orthogonal,
so (2) follows from (1).

We can improve upon (2) of Theorem 8.1.1. In fact, the second consequence of the orthogonal
lemma is a procedure by which any basis {x1, . . . , xm} of a subspace U of Rn can be systematically
modified to yield an orthogonal basis {f1, . . . , fm} of U . The fi are constructed one at a time from
the xi.

To start the process, take f1 = x1. Then x2 is not in span{f1} because {x1, x2} is independent,
so take

f2 = x2 − x2·f1
‖f1‖2 f1

Thus {f1, f2} is orthogonal by Lemma 8.1.1. Moreover, span{f1, f2}= span{x1, x2} (verify), so x3
is not in span{f1, f2}. Hence {f1, f2, f3} is orthogonal where

f3 = x3 − x3·f1
‖f1‖2 f1 − x3·f2

‖f2‖2 f2

Again, span{f1, f2, f3}= span{x1, x2, x3}, so x4 is not in span{f1, f2, f3} and the process continues.
At the mth iteration we construct an orthogonal set {f1, . . . , fm} such that

span{f1, f2, . . . , fm}= span{x1, x2, . . . , xm}=U

Hence {f1, f2, . . . , fm} is the desired orthogonal basis of U . The procedure can be summarized as
follows.
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0

x3

f2

f1
span{f1, f2}

Gram-Schmidt

0

f3

f2

f1
span{f1, f2}

Theorem 8.1.2: Gram-Schmidt Orthogonalization Al-
gorithm1

If {x1, x2, . . . , xm} is any basis of a subspace U of Rn,
construct f1, f2, . . . , fm in U successively as follows:

f1 = x1

f2 = x2 − x2·f1
‖f1‖2 f1

f3 = x3 − x3·f1
‖f1‖2 f1 − x3·f2

‖f2‖2 f2
...
fk = xk − xk·f1

‖f1‖2 f1 − xk·f2
‖f2‖2 f2 −·· ·− xk·fk−1

‖fk−1‖2 fk−1

for each k = 2, 3, . . . , m. Then

1. {f1, f2, . . . , fm} is an orthogonal basis of U .

2. span{f1, f2, . . . , fk}= span{x1, x2, . . . , xk} for each
k = 1, 2, . . . , m.

The process (for k = 3) is depicted in the diagrams. Of course, the algorithm converts any basis
of Rn itself into an orthogonal basis.

Example 8.1.1

Find an orthogonal basis of the row space of A =

 1 1 −1 −1
3 2 0 1
1 0 1 0

.

Solution. Let x1, x2, x3 denote the rows of A and observe that {x1, x2, x3} is linearly
independent. Take f1 = x1. The algorithm gives

f2 = x2 − x2·f1
‖f1‖2 f1 = (3, 2, 0, 1)− 4

4(1, 1, −1, −1) = (2, 1, 1, 2)

f3 = x3 − x3·f1
‖f1‖2 f1 − x3·f2

‖f2‖2 f2 = x3 − 0
4f1 − 3

10f2 =
1

10(4, −3, 7, −6)

Hence {(1, 1, −1, −1), (2, 1, 1, 2), 1
10(4, −3, 7, −6)} is the orthogonal basis provided by

the algorithm. In hand calculations it may be convenient to eliminate fractions (see the
Remark below), so {(1, 1, −1, −1), (2, 1, 1, 2), (4, −3, 7, −6)} is also an orthogonal
basis for row A.

1Erhardt Schmidt (1876–1959) was a German mathematician who studied under the great David Hilbert and later
developed the theory of Hilbert spaces. He first described the present algorithm in 1907. Jörgen Pederson Gram
(1850–1916) was a Danish actuary.
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Remark
Observe that the vector x·fi

‖fi‖2 fi is unchanged if a nonzero scalar multiple of fi is used in place of fi.
Hence, if a newly constructed fi is multiplied by a nonzero scalar at some stage of the Gram-Schmidt
algorithm, the subsequent fs will be unchanged. This is useful in actual calculations.

Projections

x

p

x−p
0

U

Suppose a point x and a plane U through the origin in R3 are given,
and we want to find the point p in the plane that is closest to x.
Our geometric intuition assures us that such a point p exists. In
fact (see the diagram), p must be chosen in such a way that x−p is
perpendicular to the plane.

Now we make two observations: first, the plane U is a subspace
of R3 (because U contains the origin); and second, that the condition that x−p is perpendicular
to the plane U means that x−p is orthogonal to every vector in U . In these terms the whole
discussion makes sense in Rn. Furthermore, the orthogonal lemma provides exactly what is needed
to find p in this more general setting.

Definition 8.1 Orthogonal Complement of a Subspace of Rn

If U is a subspace of Rn, define the orthogonal complement U⊥ of U (pronounced
“U-perp”) by

U⊥ = {x in Rn | x ·y = 0 for all y in U}

The following lemma collects some useful properties of the orthogonal complement; the proof of
(1) and (2) is left as Exercise 8.1.6.

Lemma 8.1.2
Let U be a subspace of Rn.

1. U⊥ is a subspace of Rn.

2. {0}⊥ = Rn and (Rn)⊥ = {0}.

3. If U = span{x1, x2, . . . , xk}, then U⊥ = {x in Rn | x ·xi = 0 for i = 1, 2, . . . , k}.

Proof.
3. Let U = span{x1, x2, . . . , xk}; we must show that U⊥ = {x | x ·xi = 0 for each i}. If x is in U⊥

then x ·xi = 0 for all i because each xi is in U . Conversely, suppose that x ·xi = 0 for all i; we
must show that x is in U⊥, that is, x ·y= 0 for each y in U . Write y= r1x1+r2x2+ · · ·+rkxk,
where each ri is in R. Then, using Theorem 5.3.1,

x ·y = r1(x ·x1)+ r2(x ·x2)+ · · ·+ rk(x ·xk) = r10+ r20+ · · ·+ rk0 = 0

as required.
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Example 8.1.2

Find U⊥ if U = span{(1, −1, 2, 0), (1, 0, −2, 3)} in R4.

Solution. By Lemma 8.1.2, x = (x, y, z, w) is in U⊥ if and only if it is orthogonal to both
(1, −1, 2, 0) and (1, 0, −2, 3); that is,

x − y + 2z = 0
x − 2z + 3w = 0

Gaussian elimination gives U⊥ = span{(2, 4, 1, 0), (3, 3, 0, −1)}.

x

0

p
d

U

Now consider vectors x and d 6= 0 in R3. The projection p =
projd x of x on d was defined in Section 4.2 as in the diagram.

The following formula for p was derived in Theorem 4.2.4

p = projd x =
(

x·d
‖d‖2

)
d

where it is shown that x−p is orthogonal to d. Now observe that
the line U = Rd = {td | t ∈ R} is a subspace of R3, that {d} is an

orthogonal basis of U , and that p ∈U and x−p ∈U⊥ (by Theorem 4.2.4).
In this form, this makes sense for any vector x in Rn and any subspace U of Rn, so we generalize

it as follows. If {f1, f2, . . . , fm} is an orthogonal basis of U , we define the projection p of x on U
by the formula

p =
(

x·f1
‖f1‖2

)
f1 +

(
x·f2
‖f2‖2

)
f2 + · · ·+

(
x·fm
‖fm‖2

)
fm (8.1)

Then p ∈U and (by the orthogonal lemma) x−p ∈U⊥, so it looks like we have a generalization of
Theorem 4.2.4.

However there is a potential problem: the formula (8.1) for p must be shown to be independent
of the choice of the orthogonal basis {f1, f2, . . . , fm}. To verify this, suppose that {f′1, f′2, . . . , f′m}
is another orthogonal basis of U , and write

p′ =
(

x·f′1
‖f′1‖2

)
f′1 +

(
x·f′2
‖f′2‖2

)
f′2 + · · ·+

(
x·f′m
‖f′m‖2

)
f′m

As before, p′ ∈ U and x−p′ ∈ U⊥, and we must show that p′ = p. To see this, write the vector
p−p′ as follows:

p−p′ = (x−p′)− (x−p)

This vector is in U (because p and p′ are in U) and it is in U⊥ (because x−p′ and x−p are in
U⊥), and so it must be zero (it is orthogonal to itself!). This means p′ = p as desired.

Hence, the vector p in equation (8.1) depends only on x and the subspace U , and not on the
choice of orthogonal basis {f1, . . . , fm} of U used to compute it. Thus, we are entitled to make the
following definition:
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Definition 8.2 Projection onto a Subspace of Rn

Let U be a subspace of Rn with orthogonal basis {f1, f2, . . . , fm}. If x is in Rn, the vector

projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 + · · ·+ x·fm

‖fm‖2 fm

is called the orthogonal projection of x on U . For the zero subspace U = {0}, we define

proj{0} x = 0

The preceding discussion proves (1) of the following theorem.

Theorem 8.1.3: Projection Theorem

If U is a subspace of Rn and x is in Rn, write p = projU x. Then:

1. p is in U and x−p is in U⊥.

2. p is the vector in U closest to x in the sense that

‖x−p‖< ‖x−y‖ for all y ∈U , y 6= p

Proof.

1. This is proved in the preceding discussion (it is clear if U = {0}).

2. Write x−y = (x−p)+ (p−y). Then p−y is in U and so is orthogonal to x−p by (1).
Hence, the Pythagorean theorem gives

‖x−y‖2 = ‖x−p‖2 +‖p−y‖2 > ‖x−p‖2

because p−y 6= 0. This gives (2).

Example 8.1.3

Let U = span{x1, x2} in R4 where x1 = (1, 1, 0, 1) and x2 = (0, 1, 1, 2). If
x = (3, −1, 0, 2), find the vector in U closest to x and express x as the sum of a vector in
U and a vector orthogonal to U .

Solution. {x1, x2} is independent but not orthogonal. The Gram-Schmidt process gives an
orthogonal basis {f1, f2} of U where f1 = x1 = (1, 1, 0, 1) and

f2 = x2 − x2·f1
‖f1‖2 f1 = x2 − 3

3f1 = (−1, 0, 1, 1)

Hence, we can compute the projection using {f1, f2}:

p = projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 =

4
3f1 +

−1
3 f2 =

1
3

[
5 4 −1 3

]
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Thus, p is the vector in U closest to x, and x−p = 1
3(4, −7, 1, 3) is orthogonal to every

vector in U . (This can be verified by checking that it is orthogonal to the generators x1 and
x2 of U .) The required decomposition of x is thus

x = p+(x−p) = 1
3(5, 4, −1, 3)+ 1

3(4, −7, 1, 3)

Example 8.1.4

Find the point in the plane with equation 2x+ y− z = 0 that is closest to the point
(2, −1, −3).

Solution. We write R3 as rows. The plane is the subspace U whose points (x, y, z) satisfy
z = 2x+ y. Hence

U = {(s, t, 2s+ t) | s, t in R}= span{(0, 1, 1), (1, 0, 2)}

The Gram-Schmidt process produces an orthogonal basis {f1, f2} of U where f1 = (0, 1, 1)
and f2 = (1, −1, 1). Hence, the vector in U closest to x = (2, −1, −3) is

projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 =−2f1 +0f2 = (0, −2, −2)

Thus, the point in U closest to (2, −1, −3) is (0, −2, −2).

The next theorem shows that projection on a subspace of Rn is actually a linear operator
Rn → Rn.

Theorem 8.1.4
Let U be a fixed subspace of Rn. If we define T : Rn → Rn by

T (x) = projU x for all x in Rn

1. T is a linear operator.

2. im T =U and ker T =U⊥.

3. dim U + dim U⊥ = n.

Proof. If U = {0}, then U⊥ = Rn, and so T (x) = proj{0} x = 0 for all x. Thus T = 0 is the zero
(linear) operator, so (1), (2), and (3) hold. Hence assume that U 6= {0}.

1. If {f1, f2, . . . , fm} is an orthonormal basis of U , then

T (x) = (x · f1)f1 +(x · f2)f2 + · · ·+(x · fm)fm for all x in Rn (8.2)

by the definition of the projection. Thus T is linear because

(x+y) · fi = x · fi +y · fi and (rx) · fi = r(x · fi) for each i
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2. We have im T ⊆U by (8.2) because each fi is in U . But if x is in U , then x = T (x) by (8.2)
and the expansion theorem applied to the space U . This shows that U ⊆ im T , so im T =U .
Now suppose that x is in U⊥. Then x · fi = 0 for each i (again because each fi is in U) so x is
in ker T by (8.2). Hence U⊥ ⊆ ker T . On the other hand, Theorem 8.1.3 shows that x−T (x)
is in U⊥ for all x in Rn, and it follows that ker T ⊆U⊥. Hence ker T =U⊥, proving (2).

3. This follows from (1), (2), and the dimension theorem (Theorem 7.2.4).

Exercises for 8.1

Exercise 8.1.1 In each case, use the Gram-
Schmidt algorithm to convert the given basis B of
V into an orthogonal basis.

a. V = R2, B = {(1, −1), (2, 1)}

b. V = R2, B = {(2, 1), (1, 2)}

c. V = R3, B = {(1, −1, 1), (1, 0, 1), (1, 1, 2)}

d. V = R3, B = {(0, 1, 1), (1, 1, 1), (1, −2, 2)}

b. {(2, 1), 3
5(−1, 2)}

d. {(0, 1, 1), (1, 0, 0), (0, −2, 2)}

Exercise 8.1.2 In each case, write x as the sum of
a vector in U and a vector in U⊥.

a. x = (1, 5, 7), U = span{(1, −2, 3), (−1, 1, 1)}

b. x = (2, 1, 6), U = span{(3, −1, 2), (2, 0, −3)}

c. x = (3, 1, 5, 9),
U = span{(1, 0, 1, 1), (0, 1, −1, 1), (−2, 0, 1, 1)}

d. x = (2, 0, 1, 6),
U = span{(1, 1, 1, 1), (1, 1, −1, −1), (1, −1, 1, −1)}

e. x = (a, b, c, d),
U = span{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)}

f. x = (a, b, c, d),
U = span{(1, −1, 2, 0), (−1, 1, 1, 1)}

b. x = 1
182(271, −221, 1030)+ 1

182(93, 403, 62)

d. x = 1
4(1, 7, 11, 17)+ 1

4(7, −7, −7, 7)

f. x = 1
12(5a−5b+c−3d, −5a+5b−c+3d, a−

b+11c+3d, −3a+3b+3c+3d)+ 1
12(7a+5b−

c+3d, 5a+7b+ c−3d, −a+b+ c−3d, 3a−
3b−3c+9d)

Exercise 8.1.3 Let x = (1, −2, 1, 6) in R4, and
let U = span{(2, 1, 3, −4), (1, 2, 0, 1)}.

a. Compute projU x.

b. Show that {(1, 0, 2, −3), (4, 7, 1, 2)} is an-
other orthogonal basis of U .

c. Use the basis in part (b) to compute projU x.

a. 1
10(−9, 3, −21, 33) = 3

10(−3, 1, −7, 11)

c. 1
70(−63, 21, −147, 231) = 3

10(−3, 1, −7, 11)

Exercise 8.1.4 In each case, use the Gram-
Schmidt algorithm to find an orthogonal basis of the
subspace U , and find the vector in U closest to x.

a. U = span{(1, 1, 1), (0, 1, 1)}, x = (−1, 2, 1)

b. U = span{(1, −1, 0), (−1, 0, 1)}, x= (2, 1, 0)

c. U = span{(1, 0, 1, 0), (1, 1, 1, 0), (1, 1, 0, 0)},
x = (2, 0, −1, 3)
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d. U = span{(1, −1, 0, 1), (1, 1, 0, 0), (1, 1, 0, 1)},
x = (2, 0, 3, 1)

b. {(1, −1, 0), 1
2(−1, −1, 2)}; projU x =

(1, 0, −1)

d. {(1, −1, 0, 1), (1, 1, 0, 0), 1
3(−1, 1, 0, 2)};

projU x = (2, 0, 0, 1)

Exercise 8.1.5 Let U = span{v1, v2, . . . , vk}, vi

in Rn, and let A be the k× n matrix with the vi as
rows.

a. Show that U⊥ = {x | x in Rn, AxT = 0}.

b. Use part (a) to find U⊥ if
U = span{(1, −1, 2, 1), (1, 0, −1, 1)}.

b. U⊥ = span{(1, 3, 1, 0), (−1, 0, 0, 1)}

Exercise 8.1.6

a. Prove part 1 of Lemma 8.1.2.

b. Prove part 2 of Lemma 8.1.2.

Exercise 8.1.7 Let U be a subspace of Rn. If x in
Rn can be written in any way at all as x = p+q
with p in U and q in U⊥, show that necessarily
p = projU x.

Exercise 8.1.8 Let U be a subspace of Rn and let
x be a vector in Rn. Using Exercise 8.1.7, or other-
wise, show that x is in U if and only if x = projU x.

Write p = projU x. Then p is in U by definition. If
x is U , then x−p is in U . But x−p is also in U⊥

by Theorem 8.1.3, so x−p is in U ∩U⊥ = {0}. Thus
x = p.

Exercise 8.1.9 Let U be a subspace of Rn.

a. Show that U⊥ = Rn if and only if U = {0}.

b. Show that U⊥ = {0} if and only if U = Rn.

Exercise 8.1.10 If U is a subspace of Rn, show that
projU x = x for all x in U .
Let {f1, f2, . . . , fm} be an orthonormal basis of
U . If x is in U the expansion theorem gives x =
(x · f1)f1 +(x · f2)f2 + · · ·+(x · fm)fm = projU x.

Exercise 8.1.11 If U is a subspace of Rn, show
that x = projU x+ projU⊥ x for all x in Rn.

Exercise 8.1.12 If {f1, . . . , fn} is an orthogonal
basis of Rn and U = span{f1, . . . , fm}, show that
U⊥ = span{fm+1, . . . , fn}.

Exercise 8.1.13 If U is a subspace of Rn, show
that U⊥⊥ =U . [Hint: Show that U ⊆U⊥⊥, then use
Theorem 8.1.4 (3) twice.]

Exercise 8.1.14 If U is a subspace of Rn, show how
to find an n×n matrix A such that U = {x | Ax = 0}.
[Hint: Exercise 8.1.13.]
Let {y1, y2, . . . , ym} be a basis of U⊥, and let A be
the n×n matrix with rows yT

1 , yT
2 , . . . , yT

m, 0, . . . , 0.
Then Ax = 0 if and only if yi ·x = 0 for each i =
1, 2, . . . , m; if and only if x is in U⊥⊥ =U .

Exercise 8.1.15 Write Rn as rows. If A is an n×n
matrix, write its null space as null A = {x in Rn |
AxT = 0}. Show that:

null A = ( row A)⊥;a) null AT = (col A)⊥.b)

Exercise 8.1.16 If U and W are subspaces, show
that (U +W )⊥ =U⊥∩W⊥. [See Exercise 5.1.22.]

Exercise 8.1.17 Think of Rn as consisting of rows.

a. Let E be an n×n matrix, and let
U = {xE | x in Rn}. Show that the following
are equivalent.

i. E2 = E = ET (E is a projection ma-
trix).

ii. (x−xE) · (yE) = 0 for all x and y in Rn.
iii. projU x = xE for all x in Rn. [Hint: For

(ii) implies (iii): Write x=xE+(x−xE)
and use the uniqueness argument pre-
ceding the definition of projU x. For (iii)
implies (ii): x−xE is in U⊥ for all x in
Rn.]

b. If E is a projection matrix, show that I −E is
also a projection matrix.
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c. If EF = 0 = FE and E and F are projection
matrices, show that E +F is also a projection
matrix.

d. If A is m×n and AAT is invertible, show that
E = AT (AAT )−1A is a projection matrix.

d. ET = AT [(AAT )−1]T (AT )T = AT [(AAT )T ]−1A =
AT [AAT ]−1A=E E2 =AT (AAT )−1AAT (AAT )−1A=
AT (AAT )−1A = E

Exercise 8.1.18 Let A be an n×n matrix of rank
r. Show that there is an invertible n× n matrix U
such that UA is a row-echelon matrix with the prop-
erty that the first r rows are orthogonal. [Hint: Let
R be the row-echelon form of A, and use the Gram-
Schmidt process on the nonzero rows of R from the
bottom up. Use Lemma 2.4.1.]

Exercise 8.1.19 Let A be an (n− 1)× n matrix
with rows x1, x2, . . . , xn−1 and let Ai denote the

(n−1)× (n−1) matrix obtained from A by deleting
column i. Define the vector y in Rn by

y =
[

det A1 − det A2 det A3 · · · (−1)n+1 det An
]

Show that:

a. xi · y = 0 for all i = 1, 2, . . . , n − 1. [Hint:

Write Bi =

[
xi

A

]
and show that det Bi = 0.]

b. y 6= 0 if and only if {x1, x2, . . . , xn−1} is lin-
early independent. [Hint: If some det Ai 6= 0,
the rows of Ai are linearly independent. Con-
versely, if the xi are independent, consider
A = UR where R is in reduced row-echelon
form.]

c. If {x1, x2, . . . , xn−1} is linearly independent,
use Theorem 8.1.3(3) to show that all solu-
tions to the system of n−1 homogeneous equa-
tions

AxT = 0

are given by ty, t a parameter.
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8.2 Orthogonal Diagonalization

Recall (Theorem 5.5.3) that an n×n matrix A is diagonalizable if and only if it has n linearly inde-
pendent eigenvectors. Moreover, the matrix P with these eigenvectors as columns is a diagonalizing
matrix for A, that is

P−1AP is diagonal.
As we have seen, the really nice bases of Rn are the orthogonal ones, so a natural question is:
which n×n matrices have an orthogonal basis of eigenvectors? These turn out to be precisely the
symmetric matrices, and this is the main result of this section.

Before proceeding, recall that an orthogonal set of vectors is called orthonormal if ‖v‖= 1 for
each vector v in the set, and that any orthogonal set {v1, v2, . . . , vk} can be “normalized”, that is
converted into an orthonormal set { 1

‖v1‖v1, 1
‖v2‖v2, . . . , 1

‖vk‖vk}. In particular, if a matrix A has n
orthogonal eigenvectors, they can (by normalizing) be taken to be orthonormal. The corresponding
diagonalizing matrix P has orthonormal columns, and such matrices are very easy to invert.

Theorem 8.2.1
The following conditions are equivalent for an n×n matrix P.

1. P is invertible and P−1 = PT .

2. The rows of P are orthonormal.

3. The columns of P are orthonormal.

Proof. First recall that condition (1) is equivalent to PPT = I by Corollary 2.4.1 of Theorem 2.4.5.
Let x1, x2, . . . , xn denote the rows of P. Then xT

j is the jth column of PT , so the (i, j)-entry of
PPT is xi ·x j. Thus PPT = I means that xi ·x j = 0 if i 6= j and xi ·x j = 1 if i = j. Hence condition
(1) is equivalent to (2). The proof of the equivalence of (1) and (3) is similar.

Definition 8.3 Orthogonal Matrices

An n×n matrix P is called an orthogonal matrix2if it satisfies one (and hence all) of the
conditions in Theorem 8.2.1.

Example 8.2.1

The rotation matrix
[

cosθ −sinθ

sinθ cosθ

]
is orthogonal for any angle θ .

These orthogonal matrices have the virtue that they are easy to invert—simply take the trans-
pose. But they have many other important properties as well. If T : Rn → Rn is a linear operator,

2In view of (2) and (3) of Theorem 8.2.1, orthonormal matrix might be a better name. But orthogonal matrix is
standard.
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we will prove (Theorem ??) that T is distance preserving if and only if its matrix is orthogonal. In
particular, the matrices of rotations and reflections about the origin in R2 and R3 are all orthogonal
(see Example 8.2.1).

It is not enough that the rows of a matrix A are merely orthogonal for A to be an orthogonal
matrix. Here is an example.

Example 8.2.2

The matrix

 2 1 1
−1 1 1

0 −1 1

 has orthogonal rows but the columns are not orthogonal.

However, if the rows are normalized, the resulting matrix


2√
6

1√
6

1√
6

−1√
3

1√
3

1√
3

0 −1√
2

1√
2

 is orthogonal (so

the columns are now orthonormal as the reader can verify).

Example 8.2.3

If P and Q are orthogonal matrices, then PQ is also orthogonal, as is P−1 = PT .

Solution. P and Q are invertible, so PQ is also invertible and

(PQ)−1 = Q−1P−1 = QT PT = (PQ)T

Hence PQ is orthogonal. Similarly,

(P−1)−1 = P = (PT )T = (P−1)T

shows that P−1 is orthogonal.

Definition 8.4 Orthogonally Diagonalizable Matrices

An n×n matrix A is said to be orthogonally diagonalizable when an orthogonal matrix
P can be found such that P−1AP = PT AP is diagonal.

This condition turns out to characterize the symmetric matrices.

Theorem 8.2.2: Principal Axes Theorem

The following conditions are equivalent for an n×n matrix A.

1. A has an orthonormal set of n eigenvectors.

2. A is orthogonally diagonalizable.
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3. A is symmetric.

Proof. (1) ⇔ (2). Given (1), let x1, x2, . . . , xn be orthonormal eigenvectors of A. Then P =[
x1 x2 . . . xn

]
is orthogonal, and P−1AP is diagonal by Theorem 3.3.4. This proves (2). Con-

versely, given (2) let P−1AP be diagonal where P is orthogonal. If x1, x2, . . . , xn are the columns
of P then {x1, x2, . . . , xn} is an orthonormal basis of Rn that consists of eigenvectors of A by
Theorem 3.3.4. This proves (1).

(2) ⇒ (3). If PT AP = D is diagonal, where P−1 = PT , then A = PDPT . But DT = D, so this gives
AT = PT T DT PT = PDPT = A.

(3) ⇒ (2). If A is an n×n symmetric matrix, we proceed by induction on n. If n = 1, A is already
diagonal. If n> 1, assume that (3) ⇒ (2) for (n−1)×(n−1) symmetric matrices. By Theorem 5.5.7
let λ1 be a (real) eigenvalue of A, and let Ax1 = λ1x1, where ‖x1‖ = 1. Use the Gram-Schmidt
algorithm to find an orthonormal basis {x1, x2, . . . , xn} for Rn. Let P1 =

[
x1 x2 . . . xn

]
, so

P1 is an orthogonal matrix and PT
1 AP1 =

[
λ1 B
0 A1

]
in block form by Lemma 5.5.2. But PT

1 AP1 is

symmetric (A is), so it follows that B = 0 and A1 is symmetric. Then, by induction, there exists an

(n−1)×(n−1) orthogonal matrix Q such that QT A1Q=D1 is diagonal. Observe that P2 =

[
1 0
0 Q

]
is orthogonal, and compute:

(P1P2)
T A(P1P2) = PT

2 (PT
1 AP1)P2

=

[
1 0
0 QT

][
λ1 0
0 A1

][
1 0
0 Q

]
=

[
λ1 0
0 D1

]
is diagonal. Because P1P2 is orthogonal, this proves (2).

A set of orthonormal eigenvectors of a symmetric matrix A is called a set of principal axes for
A. The name comes from geometry, and this is discussed in Section ??. Because the eigenvalues of
a (real) symmetric matrix are real, Theorem 8.2.2 is also called the real spectral theorem, and
the set of distinct eigenvalues is called the spectrum of the matrix. In full generality, the spectral
theorem is a similar result for matrices with complex entries (Theorem ??).

Example 8.2.4

Find an orthogonal matrix P such that P−1AP is diagonal, where A =

 1 0 −1
0 1 2

−1 2 5

.

Solution. The characteristic polynomial of A is (adding twice row 1 to row 2):

cA(x) = det

 x−1 0 1
0 x−1 −2
1 −2 x−5

= x(x−1)(x−6)
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Thus the eigenvalues are λ = 0, 1, and 6, and corresponding eigenvectors are

x1 =

 1
−2

1

 x2 =

 2
1
0

 x3 =

 −1
2
5


respectively. Moreover, by what appears to be remarkably good luck, these eigenvectors are
orthogonal. We have ‖x1‖2 = 6, ‖x2‖2 = 5, and ‖x3‖2 = 30, so

P =
[

1√
6
x1

1√
5
x2

1√
30

x3

]
= 1√

30


√

5 2
√

6 −1
−2

√
5

√
6 2√

5 0 5


is an orthogonal matrix. Thus P−1 = PT and

PT AP =

 0 0 0
0 1 0
0 0 6


by the diagonalization algorithm.

Actually, the fact that the eigenvectors in Example 8.2.4 are orthogonal is no coincidence.
Theorem 5.5.4 guarantees they are linearly independent (they correspond to distinct eigenvalues);
the fact that the matrix is symmetric implies that they are orthogonal. To prove this we need the
following useful fact about symmetric matrices.

Theorem 8.2.3
If A is an n×n symmetric matrix, then

(Ax) ·y = x · (Ay)

for all columns x and y in Rn.3

Proof. Recall that x ·y = xT y for all columns x and y. Because AT = A, we get

(Ax) ·y = (Ax)T y = xT AT y = xT Ay = x · (Ay)

Theorem 8.2.4
If A is a symmetric matrix, then eigenvectors of A corresponding to distinct eigenvalues are
orthogonal.

3The converse also holds (Exercise 8.2.15).
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Proof. Let Ax = λx and Ay = µy, where λ 6= µ . Using Theorem 8.2.3, we compute

λ (x ·y) = (λx) ·y = (Ax) ·y = x · (Ay) = x · (µy) = µ(x ·y)

Hence (λ −µ)(x ·y) = 0, and so x ·y = 0 because λ 6= µ .

Now the procedure for diagonalizing a symmetric n×n matrix is clear. Find the distinct eigenval-
ues (all real by Theorem 5.5.7) and find orthonormal bases for each eigenspace (the Gram-Schmidt
algorithm may be needed). Then the set of all these basis vectors is orthonormal (by Theorem 8.2.4)
and contains n vectors. Here is an example.

Example 8.2.5

Orthogonally diagonalize the symmetric matrix A =

 8 −2 2
−2 5 4

2 4 5

.

Solution. The characteristic polynomial is

cA(x) = det

 x−8 2 −2
2 x−5 −4
−2 −4 x−5

= x(x−9)2

Hence the distinct eigenvalues are 0 and 9 of multiplicities 1 and 2, respectively, so
dim (E0) = 1 and dim (E9) = 2 by Theorem 5.5.6 (A is diagonalizable, being symmetric).
Gaussian elimination gives

E0(A) = span{x1}, x1 =

 1
2

−2

 , and E9(A) = span


 −2

1
0

 ,

 2
0
1


The eigenvectors in E9 are both orthogonal to x1 as Theorem 8.2.4 guarantees, but not to
each other. However, the Gram-Schmidt process yields an orthogonal basis

{x2, x3} of E9(A) where x2 =

 −2
1
0

 and x3 =

 2
4
5


Normalizing gives orthonormal vectors {1

3x1, 1√
5
x2, 1

3
√

5
x3}, so

P =
[

1
3x1

1√
5
x2

1
3
√

5
x3

]
= 1

3
√

5


√

5 −6 2
2
√

5 3 4
−2

√
5 0 5


is an orthogonal matrix such that P−1AP is diagonal.
It is worth noting that other, more convenient, diagonalizing matrices P exist. For example,

y2 =

 2
1
2

 and y3 =

 −2
2
1

 lie in E9(A) and they are orthogonal. Moreover, they both
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have norm 3 (as does x1), so

Q =
[ 1

3x1
1
3y2

1
3y3

]
= 1

3

 1 2 −2
2 1 2

−2 2 1


is a nicer orthogonal matrix with the property that Q−1AQ is diagonal.

O
x1x2 = 1

x1

x2

O y2
1 − y2

2 = 1

y1y2

If A is symmetric and a set of orthogonal eigenvectors of A is given,
the eigenvectors are called principal axes of A. The name comes from
geometry. An expression q = ax2

1 +bx1x2 + cx2
2 is called a quadratic

form in the variables x1 and x2, and the graph of the equation q = 1 is
called a conic in these variables. For example, if q = x1x2, the graph
of q = 1 is given in the first diagram.

But if we introduce new variables y1 and y2 by setting x1 = y1+y2
and x2 = y1−y2, then q becomes q = y2

1−y2
2, a diagonal form with no

cross term y1y2 (see the second diagram). Because of this, the y1 and
y2 axes are called the principal axes for the conic (hence the name).
Orthogonal diagonalization provides a systematic method for finding
principal axes. Here is an illustration.

Example 8.2.6

Find principal axes for the quadratic form q = x2
1 −4x1x2 + x2

2.

Solution. In order to utilize diagonalization, we first express q in matrix form. Observe that

q =
[

x1 x2
][ 1 −4

0 1

][
x1
x2

]
The matrix here is not symmetric, but we can remedy that by writing

q = x2
1 −2x1x2 −2x2x1 + x2

2

Then we have
q =

[
x1 x2

][ 1 −2
−2 1

][
x1
x2

]
= xT Ax

where x =

[
x1
x2

]
and A =

[
1 −2

−2 1

]
is symmetric. The eigenvalues of A are λ1 = 3 and

λ2 =−1, with corresponding (orthogonal) eigenvectors x1 =

[
1

−1

]
and x2 =

[
1
1

]
. Since

‖x1‖= ‖x2‖=
√

2, so

P = 1√
2

[
1 1

−1 1

]
is orthogonal and PT AP = D =

[
3 0
0 −1

]
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Now define new variables
[

y1
y2

]
= y by y = PT x, equivalently x = Py (since P−1 = PT ).

Hence
y1 =

1√
2
(x1 − x2) and y2 =

1√
2
(x1 + x2)

In terms of y1 and y2, q takes the form

q = xT Ax = (Py)T A(Py) = yT (PT AP)y = yT Dy = 3y2
1 − y2

2

Note that y = PT x is obtained from x by a counterclockwise rotation of π

4 (see
Theorem 2.4.6).

Observe that the quadratic form q in Example 8.2.6 can be diagonalized in other ways. For
example

q = x2
1 −4x1x2 + x2

2 = z2
1 − 1

3z2
2

where z1 = x1 −2x2 and z2 = 3x2. We examine this more carefully in Section ??.
If we are willing to replace “diagonal” by “upper triangular” in the principal axes theorem, we

can weaken the requirement that A is symmetric to insisting only that A has real eigenvalues.

Theorem 8.2.5: Triangulation Theorem

If A is an n×n matrix with n real eigenvalues, an orthogonal matrix P exists such that
PT AP is upper triangular.4

Proof. We modify the proof of Theorem 8.2.2. If Ax1 = λ1x1 where ‖x1‖= 1, let {x1, x2, . . . , xn}
be an orthonormal basis of Rn, and let P1 =

[
x1 x2 · · · xn

]
. Then P1 is orthogonal and PT

1 AP1 =[
λ1 B
0 A1

]
in block form. By induction, let QT A1Q = T1 be upper triangular where Q is of size

(n−1)× (n−1) and orthogonal. Then P2 =

[
1 0
0 Q

]
is orthogonal, so P = P1P2 is also orthogonal

and PT AP =

[
λ1 BQ
0 T1

]
is upper triangular.

The proof of Theorem 8.2.5 gives no way to construct the matrix P. However, an algorithm will
be given in Section ?? where an improved version of Theorem 8.2.5 is presented. In a different
direction, a version of Theorem 8.2.5 holds for an arbitrary matrix with complex entries (Schur’s
theorem in Section ??).

As for a diagonal matrix, the eigenvalues of an upper triangular matrix are displayed along the
main diagonal. Because A and PT AP have the same determinant and trace whenever P is orthogonal,
Theorem 8.2.5 gives:

4There is also a lower triangular version.
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Corollary 8.2.1

If A is an n×n matrix with real eigenvalues λ1, λ2, . . . , λn (possibly not all distinct), then
det A = λ1λ2 . . .λn and tr A = λ1 +λ2 + · · ·+λn.

This corollary remains true even if the eigenvalues are not real (using Schur’s theorem).

Exercises for 8.2

Exercise 8.2.1 Normalize the rows to make each
of the following matrices orthogonal.

A =

[
1 1

−1 1

]
a) A =

[
3 −4
4 3

]
b)

A =

[
1 2

−4 2

]
c)

A =

[
a b

−b a

]
, (a, b) 6= (0, 0)d)

A =

 cosθ −sinθ 0
sinθ cosθ 0

0 0 2

e)

A =

 2 1 −1
1 −1 1
0 1 1

f)

A =

 −1 2 2
2 −1 2
2 2 −1

g)

A =

 2 6 −3
3 2 6

−6 3 2

h)

b. 1
5

[
3 −4
4 3

]

d. 1√
a2+b2

[
a b

−b a

]

f.


2√
6

1√
6

− 1√
6

1√
3

− 1√
3

1√
3

0 1√
2

1√
2



h. 1
7

 2 6 −3
3 2 6

−6 3 2



Exercise 8.2.2 is diagonal and that all diagonal
entries are 1 or −1.
We have PT = P−1; this matrix is lower triangu-
lar (left side) and also upper triangular (right side–
see Lemma 2.7.1), and so is diagonal. But then
P = PT = P−1, so P2 = I. This implies that the diag-
onal entries of P are all ±1.

Exercise 8.2.3 If P is orthogonal, show that kP is
orthogonal if and only if k = 1 or k =−1.

Exercise 8.2.4 If the first two rows of an orthog-
onal matrix are (1

3 , 2
3 , 2

3) and (2
3 , 1

3 , −2
3 ), find all

possible third rows.

Exercise 8.2.5 For each matrix A, find an orthog-
onal matrix P such that P−1AP is diagonal.

A =

[
0 1
1 0

]
a) A =

[
1 −1

−1 1

]
b)

A =

 3 0 0
0 2 2
0 2 5

c) A =

 3 0 7
0 5 0
7 0 3

d)

A =

 1 1 0
1 1 0
0 0 2

e) A=

 5 −2 −4
−2 8 −2
−4 −2 5

f)

A =


5 3 0 0
3 5 0 0
0 0 7 1
0 0 1 7

g)
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A =


3 5 −1 1
5 3 1 −1

−1 1 3 5
1 −1 5 3

h)

b. 1√
2

[
1 −1
1 1

]

d. 1√
2

 0 1 1√
2 0 0
0 1 −1



f. 1
3
√

2

 2
√

2 3 1√
2 0 −4

2
√

2 −3 1

 or 1
3

 2 −2 1
1 2 2
2 1 −2



h. 1
2


1 −1

√
2 0

−1 1
√

2 0
−1 −1 0

√
2

1 1 0
√

2



Exercise 8.2.6 Consider A =

 0 a 0
a 0 c
0 c 0

 where

one of a, c 6= 0. Show that cA(x) = x(x −
k)(x + k), where k =

√
a2 + c2 and find an or-

thogonal matrix P such that P−1AP is diagonal.

P = 1√
2k

 c
√

2 a a
0 k −k

−a
√

2 c c


Exercise 8.2.7 Consider A =

 0 0 a
0 b 0
a 0 0

. Show

that cA(x) = (x−b)(x−a)(x+a) and find an orthog-
onal matrix P such that P−1AP is diagonal.

Exercise 8.2.8 Given A =

[
b a
a b

]
, show that

cA(x) = (x−a−b)(x+a−b) and find an orthogonal
matrix P such that P−1AP is diagonal.

Exercise 8.2.9 Consider A =

 b 0 a
0 b 0
a 0 b

. Show

that cA(x) = (x− b)(x− b− a)(x− b+ a) and find an
orthogonal matrix P such that P−1AP is diagonal.

Exercise 8.2.10 In each case find new variables y1
and y2 that diagonalize the quadratic form q.

q = x2
1 +6x1x2 + x2

2a) q = x2
1 +4x1x2 −2x2

2b)

b. y1 =
1√
5
(−x1 +2x2) and y2 =

1√
5
(2x1 + x2); q =

−3y2
1 +2y2

2.

Exercise 8.2.11 Show that the following are equiv-
alent for a symmetric matrix A.

A is orthogonal.a) A2 = I.b)
All eigenvalues of A are ±1.c)

[Hint: For (b) if and only if (c), use Theorem 8.2.2.]

c. ⇒ a. By Theorem 8.2.1 let P−1AP = D =
diag (λ1, . . . , λn) where the λi are the eigen-
values of A. By c. we have λi =±1 for each i,
whence D2 = I. But then A2 = (PDP−1)2 =
PD2P−1 = I. Since A is symmetric this is
AAT = I, proving a.

Exercise 8.2.12 We call matrices A and B orthog-
onally similar (and write A ◦∼ B) if B = PT AP for an
orthogonal matrix P.

a. Show that A ◦∼ A for all A; A ◦∼ B ⇒ B ◦∼ A; and
A ◦∼ B and B ◦∼C ⇒ A ◦∼C.

b. Show that the following are equivalent for two
symmetric matrices A and B.

i. A and B are similar.
ii. A and B are orthogonally similar.
iii. A and B have the same eigenvalues.

Exercise 8.2.13 Assume that A and B are orthog-
onally similar (Exercise 8.2.12).

a. If A and B are invertible, show that A−1 and
B−1 are orthogonally similar.

b. Show that A2 and B2 are orthogonally similar.

c. Show that, if A is symmetric, so is B.
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b. If B = PT AP = P−1, then B2 = PT APPT AP =
PT A2P.

Exercise 8.2.14 If A is symmetric, show that every
eigenvalue of A is nonnegative if and only if A = B2

for some symmetric matrix B.

Exercise 8.2.15 Prove the converse of Theo-
rem 8.2.3: If (Ax) ·y = x · (Ay) for all n-columns x
and y, then A is symmetric.
If x and y are respectively columns i and j of In, then
xT AT y=xT Ay shows that the (i, j)-entries of AT and
A are equal.

Exercise 8.2.16 Show that every eigenvalue of A
is zero if and only if A is nilpotent (Ak = 0 for some
k ≥ 1).

Exercise 8.2.17 If A has real eigenvalues, show
that A = B+C where B is symmetric and C is nilpo-
tent.
[Hint: Theorem 8.2.5.]

Exercise 8.2.18 Let P be an orthogonal matrix.

a. Show that det P = 1 or det P =−1.

b. Give 2× 2 examples of P such that det P = 1
and det P =−1.

c. If det P =−1, show that I +P has no inverse.
[Hint: PT (I +P) = (I +P)T .]

d. If P is n×n and det P 6= (−1)n, show that I−P
has no inverse. [Hint: PT (I −P) =−(I −P)T .]

b. det
[

cosθ −sinθ

sinθ cosθ

]
= 1

and det
[

cosθ sinθ

sinθ −cosθ

]
= −1 [Remark:

These are the only 2×2 examples.]

d. Use the fact that P−1 = PT to show that
PT (I−P) =−(I−P)T . Now take determinants
and use the hypothesis that det P 6= (−1)n.

Exercise 8.2.19 We call a square matrix E a
projection matrix if E2 = E = ET . (See Exercise
8.1.17.)

a. If E is a projection matrix, show that P =
I −2E is orthogonal and symmetric.

b. If P is orthogonal and symmetric, show that
E = 1

2(I −P) is a projection matrix.

c. If U is m×n and UTU = I (for example, a unit
column in Rn), show that E = UUT is a pro-
jection matrix.

Exercise 8.2.20 A matrix that we obtain from
the identity matrix by writing its rows in a different
order is called a permutation matrix. Show that
every permutation matrix is orthogonal.
Exercise 8.2.21 If the rows r1, . . . , rn of the n×n
matrix A = [ai j] are orthogonal, show that the (i, j)-
entry of A−1 is a ji

‖r j‖2 .
We have AAT = D, where D is diagonal with main
diagonal entries ‖R1‖2, . . . , ‖Rn‖2. Hence A−1 =
AT D−1, and the result follows because D−1 has di-
agonal entries 1/‖R1‖2, . . . , 1/‖Rn‖2.
Exercise 8.2.22

a. Let A be an m×n matrix. Show that the fol-
lowing are equivalent.

i. A has orthogonal rows.
ii. A can be factored as A = DP, where D

is invertible and diagonal and P has or-
thonormal rows.

iii. AAT is an invertible, diagonal matrix.

b. Show that an n× n matrix A has orthogonal
rows if and only if A can be factored as A=DP,
where P is orthogonal and D is diagonal and
invertible.

Exercise 8.2.23 Let A be a skew-symmetric ma-
trix; that is, AT = −A. Assume that A is an n× n
matrix.

a. Show that I+A is invertible. [Hint: By Theo-
rem 2.4.5, it suffices to show that (I+A)x= 0,
x in Rn, implies x = 0. Compute x ·x = xT x,
and use the fact that Ax =−x and A2x = x.]

b. Show that P = (I −A)(I +A)−1 is orthogonal.

c. Show that every orthogonal matrix P such
that I + P is invertible arises as in part (b)
from some skew-symmetric matrix A.
[Hint: Solve P = (I −A)(I +A)−1 for A.]
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b. Because I −A and I +A commute, PPT = (I −
A)(I + A)−1[(I + A)−1]T (I − A)T = (I − A)(I +
A)−1(I −A)−1(I +A) = I.

Exercise 8.2.24 Show that the following are equiv-
alent for an n×n matrix P.

a. P is orthogonal.

b. ‖Px‖= ‖x‖ for all columns x in Rn.

c. ‖Px−Py‖ = ‖x−y‖ for all columns x and y
in Rn.

d. (Px) ·(Py)=x ·y for all columns x and y in Rn.
[Hints: For (c) ⇒ (d), see Exercise 5.3.14(a).
For (d) ⇒ (a), show that column i of P equals
Pei, where ei is column i of the identity ma-
trix.]

Exercise 8.2.25 Show that every 2 × 2 orthog-

onal matrix has the form
[

cosθ −sinθ

sinθ cosθ

]
or[

cosθ sinθ

sinθ −cosθ

]
for some angle θ .

[Hint: If a2 +b2 = 1, then a = cosθ and b = sinθ for
some angle θ .]

Exercise 8.2.26 Use Theorem 8.2.5 to show that
every symmetric matrix is orthogonally diagonaliz-
able.
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8.3 Positive Definite Matrices

All the eigenvalues of any symmetric matrix are real; this section is about the case in which the
eigenvalues are positive. These matrices, which arise whenever optimization (maximum and min-
imum) problems are encountered, have countless applications throughout science and engineering.
They also arise in statistics (for example, in factor analysis used in the social sciences) and in ge-
ometry (see Section ??). We will encounter them again in Chapter ?? when describing all inner
products in Rn.

Definition 8.5 Positive Definite Matrices
A square matrix is called positive definite if it is symmetric and all its eigenvalues λ are
positive, that is λ > 0.

Because these matrices are symmetric, the principal axes theorem plays a central role in the
theory.

Theorem 8.3.1
If A is positive definite, then it is invertible and det A > 0.

Proof. If A is n× n and the eigenvalues are λ1, λ2, . . . , λn, then det A = λ1λ2 · · ·λn > 0 by the
principal axes theorem (or the corollary to Theorem 8.2.5).

If x is a column in Rn and A is any real n×n matrix, we view the 1×1 matrix xT Ax as a real
number. With this convention, we have the following characterization of positive definite matrices.

Theorem 8.3.2
A symmetric matrix A is positive definite if and only if xT Ax > 0 for every column x 6= 0 in
Rn.

Proof. A is symmetric so, by the principal axes theorem, let PT AP = D = diag (λ1, λ2, . . . , λn)
where P−1 = PT and the λi are the eigenvalues of A. Given a column x in Rn, write y = PT x =[

y1 y2 . . . yn
]T . Then

xT Ax = xT (PDPT )x = yT Dy = λ1y2
1 +λ2y2

2 + · · ·+λny2
n (8.3)

If A is positive definite and x 6= 0, then xT Ax > 0 by (8.3) because some y j 6= 0 and every λi > 0.
Conversely, if xT Ax > 0 whenever x 6= 0, let x = Pe j 6= 0 where e j is column j of In. Then y = e j,
so (8.3) reads λ j = xT Ax > 0.

Note that Theorem 8.3.2 shows that the positive definite matrices are exactly the symmetric matrices
A for which the quadratic form q = xT Ax takes only positive values.
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Example 8.3.1

If U is any invertible n×n matrix, show that A =UTU is positive definite.

Solution. If x is in Rn and x 6= 0, then

xT Ax = xT (UTU)x = (Ux)T (Ux) = ‖Ux‖2 > 0

because Ux 6= 0 (U is invertible). Hence Theorem 8.3.2 applies.

It is remarkable that the converse to Example 8.3.1 is also true. In fact every positive definite
matrix A can be factored as A =UTU where U is an upper triangular matrix with positive elements
on the main diagonal. However, before verifying this, we introduce another concept that is central
to any discussion of positive definite matrices.

If A is any n×n matrix, let (r)A denote the r× r submatrix in the upper left corner of A; that
is, (r)A is the matrix obtained from A by deleting the last n− r rows and columns. The matrices
(1)A, (2)A, (3)A, . . . , (n)A = A are called the principal submatrices of A.

Example 8.3.2

If A =

 10 5 2
5 3 2
2 2 3

 then (1)A = [10], (2)A =

[
10 5
5 3

]
and (3)A = A.

Lemma 8.3.1

If A is positive definite, so is each principal submatrix (r)A for r = 1, 2, . . . , n.

Proof. Write A =

[
(r)A P

Q R

]
in block form. If y 6= 0 in Rr, write x =

[
y
0

]
in Rn.

Then x 6= 0, so the fact that A is positive definite gives

0 < xT Ax =
[

yT 0
][ (r)A P

Q R

][
y
0

]
= yT ((r)A)y

This shows that (r)A is positive definite by Theorem 8.3.2.5

If A is positive definite, Lemma 8.3.1 and Theorem 8.3.1 show that det ((r)A) > 0 for every
r. This proves part of the following theorem which contains the converse to Example 8.3.1, and
characterizes the positive definite matrices among the symmetric ones.

5A similar argument shows that, if B is any matrix obtained from a positive definite matrix A by deleting certain
rows and deleting the same columns, then B is also positive definite.



8.3. Positive Definite Matrices 423

Theorem 8.3.3
The following conditions are equivalent for a symmetric n×n matrix A:

1. A is positive definite.

2. det ((r)A)> 0 for each r = 1, 2, . . . , n.

3. A =UTU where U is an upper triangular matrix with positive entries on the main
diagonal.

Furthermore, the factorization in (3) is unique (called the Cholesky factorization6of A).

Proof. First, (3) ⇒ (1) by Example 8.3.1, and (1) ⇒ (2) by Lemma 8.3.1 and Theorem 8.3.1.
(2) ⇒ (3). Assume (2) and proceed by induction on n. If n = 1, then A = [a] where a > 0 by (2),

so take U = [
√

a]. If n > 1, write B =(n−1) A. Then B is symmetric and satisfies (2) so, by induction,
we have B = UTU as in (3) where U is of size (n− 1)× (n− 1). Then, as A is symmetric, it has

block form A =

[
B p

pT b

]
where p is a column in Rn−1 and b is in R. If we write x = (UT )−1p and

c = b−xT x, block multiplication gives

A =

[
UTU p
pT b

]
=

[
UT 0
xT 1

][
U x
0 c

]
as the reader can verify. Taking determinants and applying Theorem 3.1.5 gives det A= det (UT ) det U ·
c = c(det U)2. Hence c > 0 because det A > 0 by (2), so the above factorization can be written

A =

[
UT 0
xT √

c

][
U x
0

√
c

]
Since U has positive diagonal entries, this proves (3).

As to the uniqueness, suppose that A=UTU =UT
1 U1 are two Cholesky factorizations. Now write

D = UU−1
1 = (UT )−1UT

1 . Then D is upper triangular, because D = UU−1
1 , and lower triangular,

because D = (UT )−1UT
1 , and so it is a diagonal matrix. Thus U = DU1 and U1 = DU , so it suffices

to show that D = I. But eliminating U1 gives U = D2U , so D2 = I because U is invertible. Since the
diagonal entries of D are positive (this is true of U and U1), it follows that D = I.

The remarkable thing is that the matrix U in the Cholesky factorization is easy to obtain from
A using row operations. The key is that Step 1 of the following algorithm is possible for any positive
definite matrix A. A proof of the algorithm is given following Example 8.3.3.

Algorithm for the Cholesky Factorization

If A is a positive definite matrix, the Cholesky factorization A =UTU can be obtained as
follows:

Step 1. Carry A to an upper triangular matrix U1 with positive diagonal entries using row

6Andre-Louis Cholesky (1875–1918), was a French mathematician who died in World War I. His factorization was
published in 1924 by a fellow officer.
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operations each of which adds a multiple of a row to a lower row.

Step 2. Obtain U from U1 by dividing each row of U1 by the square root of the diagonal
entry in that row.

Example 8.3.3

Find the Cholesky factorization of A =

 10 5 2
5 3 2
2 2 3

.

Solution. The matrix A is positive definite by Theorem 8.3.3 because det (1)A = 10 > 0,
det (2)A = 5 > 0, and det (3)A = det A = 3 > 0. Hence Step 1 of the algorithm is carried out
as follows:

A =

 10 5 2
5 3 2
2 2 3

→

 10 5 2
0 1

2 1
0 1 13

5

→

 10 5 2
0 1

2 1
0 0 3

5

=U1

Now carry out Step 2 on U1 to obtain U =


√

10 5√
10

2√
10

0 1√
2

√
2

0 0
√

3√
5

.

The reader can verify that UTU = A.

Proof of the Cholesky Algorithm. If A is positive definite, let A =UTU be the Cholesky factor-
ization, and let D = diag (d1, . . . , dn) be the common diagonal of U and UT . Then UT D−1 is lower
triangular with ones on the diagonal (call such matrices LT-1). Hence L = (UT D−1)−1 is also LT-1,
and so In → L by a sequence of row operations each of which adds a multiple of a row to a lower row
(verify; modify columns right to left). But then A → LA by the same sequence of row operations
(see the discussion preceding Theorem 2.5.1). Since LA = [D(UT )−1][UTU ] = DU is upper triangular
with positive entries on the diagonal, this shows that Step 1 of the algorithm is possible.

Turning to Step 2, let A → U1 as in Step 1 so that U1 = L1A where L1 is LT-1. Since A is
symmetric, we get

L1UT
1 = L1(L1A)T = L1AT LT

1 = L1ALT
1 =U1LT

1 (8.4)
Let D1 = diag (e1, . . . , en) denote the diagonal of U1. Then (8.4) gives L1(UT

1 D−1
1 ) = U1LT

1 D−1
1 .

This is both upper triangular (right side) and LT-1 (left side), and so must equal In. In particular,
UT

1 D−1
1 = L−1

1 . Now let D2 = diag (
√

e1, . . . ,
√

en), so that D2
2 = D1. If we write U = D−1

2 U1 we have

UTU = (UT
1 D−1

2 )(D−1
2 U1) =UT

1 (D2
2)

−1U1 = (UT
1 D−1

1 )U1 = (L−1
1 )U1 = A

This proves Step 2 because U = D−1
2 U1 is formed by dividing each row of U1 by the square root of

its diagonal entry (verify).
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Exercises for 8.3

Exercise 8.3.1 Find the Cholesky decomposition
of each of the following matrices.[

4 3
3 5

]
a)

[
2 −1

−1 1

]
b) 12 4 3

4 2 −1
3 −1 7

c)

 20 4 5
4 2 3
5 3 5

d)

b. U =
√

2
2

[
2 −1
0 1

]

d. U = 1
30

 60
√

5 12
√

5 15
√

5
0 6

√
30 10

√
30

0 0 5
√

15


Exercise 8.3.2

a. If A is positive definite, show that Ak is posi-
tive definite for all k ≥ 1.

b. Prove the converse to (a) when k is odd.

c. Find a symmetric matrix A such that A2 is
positive definite but A is not.

b. If λ k > 0, k odd, then λ > 0.

Exercise 8.3.3 Let A =

[
1 a
a b

]
. If a2 < b, show

that A is positive definite and find the Cholesky fac-
torization.

Exercise 8.3.4 If A and B are positive definite and
r > 0, show that A+B and rA are both positive def-
inite.
If x 6= 0, then xT Ax> 0 and xT Bx> 0. Hence xT (A+
B)x = xT Ax+xT Bx > 0 and xT (rA)x = r(xT Ax)> 0,
as r > 0.

Exercise 8.3.5 If A and B are positive definite,

show that
[

A 0
0 B

]
is positive definite.

Exercise 8.3.6 If A is an n×n positive definite ma-
trix and U is an n×m matrix of rank m, show that
UT AU is positive definite.
Let x 6= 0 in Rn. Then xT (UT AU)x = (Ux)T A(Ux)>
0 provided Ux 6= 0. But if U =

[
c1 c2 . . . cn

]
and x= (x1, x2, . . . , xn), then Ux= x1c1+x2c2+ · · ·+
xncn 6= 0 because x 6= 0 and the ci are independent.

Exercise 8.3.7 If A is positive definite, show that
each diagonal entry is positive.

Exercise 8.3.8 Let A0 be formed from A by delet-
ing rows 2 and 4 and deleting columns 2 and 4. If A
is positive definite, show that A0 is positive definite.

Exercise 8.3.9 If A is positive definite, show that
A =CCT where C has orthogonal columns.

Exercise 8.3.10 If A is positive definite,
show that A = C2 where C is positive definite.

Let PT AP = D = diag (λ1, . . . , λn) where PT = P.
Since A is positive definite, each eigenvalue λi > 0.
If B = diag (

√
λ1, . . . ,

√
λn) then B2 = D, so A =

PB2PT = (PBPT )2. Take C = PBPT . Since C has
eigenvalues

√
λi > 0, it is positive definite.

Exercise 8.3.11 Let A be a positive definite ma-
trix. If a is a real number, show that aA is positive
definite if and only if a > 0.

Exercise 8.3.12

a. Suppose an invertible matrix A can be factored
in Mnn as A= LDU where L is lower triangular
with 1s on the diagonal, U is upper triangular
with 1s on the diagonal, and D is diagonal with
positive diagonal entries. Show that the fac-
torization is unique: If A = L1D1U1 is another
such factorization, show that L1 = L, D1 = D,
and U1 =U .

b. Show that a matrix A is positive definite if and
only if A is symmetric and admits a factoriza-
tion A = LDU as in (a).
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b. If A is positive definite, use Theorem 8.3.1
to write A = UTU where U is upper trian-
gular with positive diagonal D. Then A =
(D−1U)T D2(D−1U) so A = L1D1U1 is such a
factorization if U1 = D−1U , D1 = D2, and L1 =
UT

1 . Conversely, let AT = A = LDU be such a
factorization. Then UT DT LT =AT =A= LDU ,
so L = UT by (a). Hence A = LDLT = V TV
where V = LD0 and D0 is diagonal with D2

0 =D
(the matrix D0 exists because D has positive
diagonal entries). Hence A is symmetric, and

it is positive definite by Example 8.3.1.

Exercise 8.3.13 Let A be positive definite and
write dr = det (r)A for each r = 1, 2, . . . , n. If U
is the upper triangular matrix obtained in step 1
of the algorithm, show that the diagonal elements
u11, u22, . . . , unn of U are given by u11 = d1, u j j =
d j/d j−1 if j > 1. [Hint: If LA = U where L is lower
triangular with 1s on the diagonal, use block mul-
tiplication to show that det (r)A = det (r)U for each
r.]
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8.4 QR-Factorization7

One of the main virtues of orthogonal matrices is that they can be easily inverted—the transpose
is the inverse. This fact, combined with the factorization theorem in this section, provides a useful
way to simplify many matrix calculations (for example, in least squares approximation).

Definition 8.6 QR-factorization

Let A be an m×n matrix with independent columns. A QR-factorization of A expresses
it as A = QR where Q is m×n with orthonormal columns and R is an invertible and upper
triangular matrix with positive diagonal entries.

The importance of the factorization lies in the fact that there are computer algorithms that accom-
plish it with good control over round-off error, making it particularly useful in matrix calculations.
The factorization is a matrix version of the Gram-Schmidt process.

Suppose A=
[

c1 c2 · · · cn
]

is an m×n matrix with linearly independent columns c1, c2, . . . , cn.
The Gram-Schmidt algorithm can be applied to these columns to provide orthogonal columns
f1, f2, . . . , fn where f1 = c1 and

fk = ck − ck·f1
‖f1‖2 f1 − ck·f2

‖f2‖2 f2 −·· ·− ck·fk−1
‖fk−1‖2 fk−1

for each k = 2, 3, . . . , n. Now write qk =
1

‖fk‖fk for each k. Then q1, q2, . . . , qn are orthonormal
columns, and the above equation becomes

‖fk‖qk = ck − (ck ·q1)q1 − (ck ·q2)q2 −·· ·− (ck ·qk−1)qk−1

Using these equations, express each ck as a linear combination of the qi:
c1 = ‖f1‖q1
c2 = (c2 ·q1)q1 +‖f2‖q2
c3 = (c3 ·q1)q1 +(c3 ·q2)q2 +‖f3‖q3
... ...

cn = (cn ·q1)q1 +(cn ·q2)q2 +(cn ·q3)q3 + · · ·+‖fn‖qn

These equations have a matrix form that gives the required factorization:
A =

[
c1 c2 c3 · · · cn

]

=
[

q1 q2 q3 · · · qn
]


‖f1‖ c2 ·q1 c3 ·q1 · · · cn ·q1
0 ‖f2‖ c3 ·q2 · · · cn ·q2
0 0 ‖f3‖ · · · cn ·q3
... ... ... . . . ...
0 0 0 · · · ‖fn‖

 (8.5)

Here the first factor Q =
[

q1 q2 q3 · · · qn
]

has orthonormal columns, and the second factor is
an n×n upper triangular matrix R with positive diagonal entries (and so is invertible). We record
this in the following theorem.

7This section is not used elsewhere in the book
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Theorem 8.4.1: QR-Factorization

Every m×n matrix A with linearly independent columns has a QR-factorization A = QR
where Q has orthonormal columns and R is upper triangular with positive diagonal entries.

The matrices Q and R in Theorem 8.4.1 are uniquely determined by A; we return to this below.

Example 8.4.1

Find the QR-factorization of A =


1 1 0

−1 0 1
0 1 1
0 0 1

.

Solution. Denote the columns of A as c1, c2, and c3, and observe that {c1, c2, c3} is
independent. If we apply the Gram-Schmidt algorithm to these columns, the result is:

f1 = c1 =


1

−1
0
0

 , f2 = c2 − 1
2f1 =


1
2
1
2
1
0

 , and f3 = c3 +
1
2f1 − f2 =


0
0
0
1

 .

Write q j =
1

‖f j‖f j for each j, so {q1, q2, q3} is orthonormal. Then equation (8.5) preceding
Theorem 8.4.1 gives A = QR where

Q =
[

q1 q2 q3
]
=


1√
2

1√
6

0
−1√

2
1√
6

0

0 2√
6

0

0 0 1

= 1√
6


√

3 1 0
−
√

3 1 0
0 2 0
0 0

√
6



R =

 ‖f1‖ c2 ·q1 c3 ·q1
0 ‖f2‖ c3 ·q2
0 0 ‖f3‖

=


√

2 1√
2

−1√
2

0
√

3√
2

√
3√
2

0 0 1

= 1√
2

 2 1 −1
0

√
3

√
3

0 0
√

2


The reader can verify that indeed A = QR.

If a matrix A has independent rows and we apply QR-factorization to AT , the result is:

Corollary 8.4.1

If A has independent rows, then A factors uniquely as A = LP where P has orthonormal rows
and L is an invertible lower triangular matrix with positive main diagonal entries.

Since a square matrix with orthonormal columns is orthogonal, we have
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Theorem 8.4.2
Every square, invertible matrix A has factorizations A = QR and A = LP where Q and P are
orthogonal, R is upper triangular with positive diagonal entries, and L is lower triangular
with positive diagonal entries.

Remark
In Section ?? we found how to find a best approximation z to a solution of a (possibly inconsistent)
system Ax = b of linear equations: take z to be any solution of the “normal” equations (AT A)z =
AT b. If A has independent columns this z is unique (AT A is invertible by Theorem 5.4.3), so it
is often desirable to compute (AT A)−1. This is particularly useful in least squares approximation
(Section ??). This is simplified if we have a QR-factorization of A (and is one of the main reasons
for the importance of Theorem 8.4.1). For if A = QR is such a factorization, then QT Q = In because
Q has orthonormal columns (verify), so we obtain

AT A = RT QT QR = RT R

Hence computing (AT A)−1 amounts to finding R−1, and this is a routine matter because R is upper
triangular. Thus the difficulty in computing (AT A)−1 lies in obtaining the QR-factorization of A.

We conclude by proving the uniqueness of the QR-factorization.

Theorem 8.4.3
Let A be an m×n matrix with independent columns. If A = QR and A = Q1R1 are
QR-factorizations of A, then Q1 = Q and R1 = R.

Proof. Write Q =
[

c1 c2 · · · cn
]

and Q1 =
[

d1 d2 · · · dn
]

in terms of their columns, and
observe first that QT Q = In = QT

1 Q1 because Q and Q1 have orthonormal columns. Hence it suffices
to show that Q1 = Q (then R1 = QT

1 A = QT A = R). Since QT
1 Q1 = In, the equation QR = Q1R1 gives

QT
1 Q = R1R−1; for convenience we write this matrix as

QT
1 Q = R1R−1 =

[
ti j
]

This matrix is upper triangular with positive diagonal elements (since this is true for R and R1), so
tii > 0 for each i and ti j = 0 if i > j. On the other hand, the (i, j)-entry of QT

1 Q is dT
i c j = di ·c j, so

we have di ·c j = ti j for all i and j. But each c j is in span{d1, d2, . . . , dn} because Q = Q1(R1R−1).
Hence the expansion theorem gives

c j = (d1 ·c j)d1 +(d2 ·c j)d2 + · · ·+(dn ·c j)dn = t1 jd1 + t2 jd2 + · · ·+ t j jdi

because di ·c j = ti j = 0 if i > j. The first few equations here are

c1 = t11d1
c2 = t12d1 + t22d2
c3 = t13d1 + t23d2 + t33d3
c4 = t14d1 + t24d2 + t34d3 + t44d4
... ...
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The first of these equations gives 1 = ‖c1‖= ‖t11d1‖= |t11|‖d1‖= t11, whence c1 = d1. But then we
have t12 = d1 ·c2 = c1 ·c2 = 0, so the second equation becomes c2 = t22d2. Now a similar argument
gives c2 = d2, and then t13 = 0 and t23 = 0 follows in the same way. Hence c3 = t33d3 and c3 = d3.
Continue in this way to get ci = di for all i. This means that Q1 = Q, which is what we wanted.

Exercises for 8.4

Exercise 8.4.1 In each case find the QR-
factorization of A.

A =

[
1 −1

−1 0

]
a) A =

[
2 1
1 1

]
b)

A =


1 1 1
1 1 0
1 0 0
0 0 0

c) A =


1 1 0

−1 0 1
0 1 1
1 −1 0

d)

b. Q = 1√
5

[
2 −1
1 2

]
, R = 1√

5

[
5 3
0 1

]

d. Q = 1√
3


1 1 0

−1 0 1
0 1 1
1 −1 1

,

R = 1√
3

 3 0 −1
0 3 1
0 0 2


Exercise 8.4.2 Let A and B denote matrices.

a. If A and B have independent columns, show
that AB has independent columns. [Hint:
Theorem 5.4.3.]

b. Show that A has a QR-factorization if and only
if A has independent columns.

c. If AB has a QR-factorization, show that the
same is true of B but not necessarily A. [Hint:

Consider AAT where A =

[
1 0 0
1 1 1

]
.]

If A has a QR-factorization, use (a). For the converse
use Theorem 8.4.1.

Exercise 8.4.3 If R is upper triangular and invert-
ible, show that there exists a diagonal matrix D with
diagonal entries ±1 such that R1 = DR is invertible,
upper triangular, and has positive diagonal entries.

Exercise 8.4.4 If A has independent columns, let
A = QR where Q has orthonormal columns and R is
invertible and upper triangular. [Some authors call
this a QR-factorization of A.] Show that there is a di-
agonal matrix D with diagonal entries ±1 such that
A = (QD)(DR) is the QR-factorization of A. [Hint:
Preceding exercise.]



8.5. Computing Eigenvalues 431

8.5 Computing Eigenvalues

In practice, the problem of finding eigenvalues of a matrix is virtually never solved by finding the
roots of the characteristic polynomial. This is difficult for large matrices and iterative methods are
much better. Two such methods are described briefly in this section.

The Power Method

In Chapter 3 our initial rationale for diagonalizing matrices was to be able to compute the powers
of a square matrix, and the eigenvalues were needed to do this. In this section, we are interested in
efficiently computing eigenvalues, and it may come as no surprise that the first method we discuss
uses the powers of a matrix.

Recall that an eigenvalue λ of an n× n matrix A is called a dominant eigenvalue if λ has
multiplicity 1, and

|λ |> |µ| for all eigenvalues µ 6= λ

Any corresponding eigenvector is called a dominant eigenvector of A. When such an eigenvalue
exists, one technique for finding it is as follows: Let x0 in Rn be a first approximation to a dominant
eigenvector λ , and compute successive approximations x1, x2, . . . as follows:

x1 = Ax0 x2 = Ax1 x3 = Ax2 · · ·

In general, we define
xk+1 = Axk for each k ≥ 0

If the first estimate x0 is good enough, these vectors xn will approximate the dominant eigenvector
λ (see below). This technique is called the power method (because xk = Akx0 for each k ≥ 1).
Observe that if z is any eigenvector corresponding to λ , then

z·(Az)
‖z‖2 = z·(λz)

‖z‖2 = λ

Because the vectors x1, x2, . . . , xn, . . . approximate dominant eigenvectors, this suggests that we
define the Rayleigh quotients as follows:

rk =
xk·xk+1
‖xk‖2 for k ≥ 1

Then the numbers rk approximate the dominant eigenvalue λ .

Example 8.5.1

Use the power method to approximate a dominant eigenvector and eigenvalue of
A =

[
1 1
2 0

]
.

Solution. The eigenvalues of A are 2 and −1, with eigenvectors
[

1
1

]
and

[
1

−2

]
. Take
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x0 =

[
1
0

]
as the first approximation and compute x1, x2, . . . , successively, from

x1 = Ax0, x2 = Ax1, . . . . The result is

x1 =

[
1
2

]
, x2 =

[
3
2

]
, x3 =

[
5
6

]
, x4 =

[
11
10

]
, x3 =

[
21
22

]
, . . .

These vectors are approaching scalar multiples of the dominant eigenvector
[

1
1

]
.

Moreover, the Rayleigh quotients are

r1 =
7
5 , r2 =

27
13 , r3 =

115
61 , r4 =

451
221 , . . .

and these are approaching the dominant eigenvalue 2.

To see why the power method works, let λ1, λ2, . . . , λm be eigenvalues of A with λ1 dominant and
let y1, y2, . . . , ym be corresponding eigenvectors. What is required is that the first approximation
x0 be a linear combination of these eigenvectors:

x0 = a1y1 +a2y2 + · · ·+amym with a1 6= 0

If k ≥ 1, the fact that xk = Akx0 and Akyi = λ k
i yi for each i gives

xk = a1λ
k
1 y1 +a2λ

k
2 y2 + · · ·+amλ

k
mym for k ≥ 1

Hence
1

λ k
1
xk = a1y1 +a2

(
λ2
λ1

)k
y2 + · · ·+am

(
λm
λ1

)k
ym

The right side approaches a1y1 as k increases because λ1 is dominant
(∣∣∣ λi

λ1

∣∣∣< 1 for each i > 1
)

.
Because a1 6= 0, this means that xk approximates the dominant eigenvector a1λ k

1 y1.
The power method requires that the first approximation x0 be a linear combination of eigenvec-

tors. (In Example 8.5.1 the eigenvectors form a basis of R2.) But even in this case the method fails

if a1 = 0, where a1 is the coefficient of the dominant eigenvector (try x0 =

[
−1

2

]
in Example 8.5.1).

In general, the rate of convergence is quite slow if any of the ratios
∣∣∣ λi

λ1

∣∣∣ is near 1. Also, because the
method requires repeated multiplications by A, it is not recommended unless these multiplications
are easy to carry out (for example, if most of the entries of A are zero).
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QR-Algorithm

A much better method for approximating the eigenvalues of an invertible matrix A depends on the
factorization (using the Gram-Schmidt algorithm) of A in the form

A = QR

where Q is orthogonal and R is invertible and upper triangular (see Theorem 8.4.2). The QR-
algorithm uses this repeatedly to create a sequence of matrices A1 = A, A2, A3, . . . , as follows:

1. Define A1 = A and factor it as A1 = Q1R1.

2. Define A2 = R1Q1 and factor it as A2 = Q2R2.

3. Define A3 = R2Q2 and factor it as A3 = Q3R3.
...

In general, Ak is factored as Ak = QkRk and we define Ak+1 = RkQk. Then Ak+1 is similar to Ak [in
fact, Ak+1 = RkQk = (Q−1

k Ak)Qk], and hence each Ak has the same eigenvalues as A. If the eigenvalues
of A are real and have distinct absolute values, the remarkable thing is that the sequence of matrices
A1, A2, A3, . . . converges to an upper triangular matrix with these eigenvalues on the main diagonal.
[See below for the case of complex eigenvalues.]

Example 8.5.2

If A =

[
1 1
2 0

]
as in Example 8.5.1, use the QR-algorithm to approximate the eigenvalues.

Solution. The matrices A1, A2, and A3 are as follows:

A1 =

[
1 1
2 0

]
= Q1R1 where Q1 =

1√
5

[
1 2
2 −1

]
and R1 =

1√
5

[
5 1
0 2

]
A2 =

1
5

[
7 9
4 −2

]
=

[
1.4 −1.8

−0.8 −0.4

]
= Q2R2

where Q2 =
1√
65

[
7 4
4 −7

]
and R2 =

1√
65

[
13 11
0 10

]
A3 =

1
13

[
27 −5
8 −14

]
=

[
2.08 −0.38
0.62 −1.08

]

This is converging to
[

2 ∗
0 −1

]
and so is approximating the eigenvalues 2 and −1 on the

main diagonal.

It is beyond the scope of this book to pursue a detailed discussion of these methods. The reader is
referred to J. M. Wilkinson, The Algebraic Eigenvalue Problem (Oxford, England: Oxford University
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Press, 1965) or G. W. Stewart, Introduction to Matrix Computations (New York: Academic Press,
1973). We conclude with some remarks on the QR-algorithm.
Shifting. Convergence is accelerated if, at stage k of the algorithm, a number sk is chosen and
Ak − skI is factored in the form QkRk rather than Ak itself. Then

Q−1
k AkQk = Q−1

k (QkRk + skI)Qk = RkQk + skI

so we take Ak+1 = RkQk + skI. If the shifts sk are carefully chosen, convergence can be greatly
improved.
Preliminary Preparation. A matrix such as

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


is said to be in upper Hessenberg form, and the QR-factorizations of such matrices are greatly
simplified. Given an n×n matrix A, a series of orthogonal matrices H1, H2, . . . , Hm (called House-
holder matrices) can be easily constructed such that

B = HT
m · · ·HT

1 AH1 · · ·Hm

is in upper Hessenberg form. Then the QR-algorithm can be efficiently applied to B and, because
B is similar to A, it produces the eigenvalues of A.
Complex Eigenvalues. If some of the eigenvalues of a real matrix A are not real, the QR-algorithm
converges to a block upper triangular matrix where the diagonal blocks are either 1× 1 (the real
eigenvalues) or 2×2 (each providing a pair of conjugate complex eigenvalues of A).

Exercises for 8.5

Exercise 8.5.1 In each case, find the exact eigen-
values and determine corresponding eigenvectors.

Then start with x0 =

[
1
1

]
and compute x4 and r3

using the power method.

A =

[
2 −4

−3 3

]
a) A =

[
5 2

−3 −2

]
b)

A =

[
1 2
2 1

]
c) A =

[
3 1
1 0

]
d)

b. Eigenvalues 4, −1; eigenvectors
[

2
−1

]
,[

1
−3

]
; x4 =

[
409

−203

]
; r3 = 3.94

d. Eigenvalues λ1 =
1
2(3+

√
13), λ2 =

1
2(3−

√
13);

eigenvectors
[

λ1
1

]
,
[

λ2
1

]
; x4 =

[
142

43

]
;

r3 = 3.3027750 (The true value is λ1 =
3.3027756, to seven decimal places.)

Exercise 8.5.2 In each case, find the exact eigen-
values and then approximate them using the QR-
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algorithm.

A =

[
1 1
1 0

]
a) A =

[
3 1
1 0

]
b)

b. Eigenvalues λ1 =
1
2(3+

√
13) = 3.302776, λ2 =

1
2(3−

√
13) = −0.302776 A1 =

[
3 1
1 0

]
, Q1 =

1√
10

[
3 −1
1 3

]
, R1 =

1√
10

[
10 3
0 −1

]
A2 =

1
10

[
33 −1
−1 −3

]
,

Q2 =
1√

1090

[
33 1
−1 33

]
,

R2 =
1√

1090

[
109 −3

0 −10

]
A3 =

1
109

[
360 1

1 −33

]
=

[
3.302775 0.009174
0.009174 −0.302775

]
Exercise 8.5.3 Apply the power method to

A =

[
0 1

−1 0

]
, starting at x0 =

[
1
1

]
. Does it con-

verge? Explain.

Exercise 8.5.4 If A is symmetric, show that each
matrix Ak in the QR-algorithm is also symmetric.
Deduce that they converge to a diagonal matrix.

Use induction on k. If k = 1, A1 = A. In general
Ak+1 = Q−1

k AkQk = QT
k AkQk, so the fact that AT

k = Ak
implies AT

k+1 = Ak+1. The eigenvalues of A are all
real (Theorem 5.5.5), so the Ak converge to an upper
triangular matrix T . But T must also be symmet-
ric (it is the limit of symmetric matrices), so it is
diagonal.

Exercise 8.5.5 Apply the QR-algorithm to

A =

[
2 −3
1 −2

]
. Explain.

Exercise 8.5.6 Given a matrix A, let Ak, Qk, and
Rk, k ≥ 1, be the matrices constructed in the QR-
algorithm. Show that Ak = (Q1Q2 · · ·Qk)(Rk · · ·R2R1)
for each k ≥ 1 and hence that this is a QR-
factorization of Ak.
[Hint: Show that QkRk = Rk−1Qk−1 for each
k ≥ 2, and use this equality to compute
(Q1Q2 · · ·Qk)(Rk · · ·R2R1) “from the centre out.” Use
the fact that (AB)n+1 = A(BA)nB for any square ma-
trices A and B.]
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8.6 The Singular Value Decomposition

When working with a square matrix A it is clearly useful to be able to “diagonalize” A, that is
to find a factorization A = Q−1DQ where Q is invertible and D is diagonal. Unfortunately such a
factorization may not exist for A. However, even if A is not square gaussian elimination provides
a factorization of the form A = PDQ where P and Q are invertible and D is diagonal—the Smith
Normal form (Theorem 2.5.3). However, if A is real we can choose P and Q to be orthogonal real
matrices and D to be real. Such a factorization is called a singular value decomposition (SVD)
for A, one of the most useful tools in applied linear algebra. In this Section we show how to explicitly
compute an SVD for any real matrix A, and illustrate some of its many applications.

We need a fact about two subspaces associated with an m×n matrix A:

im A = {Ax | x in Rn} and col A = span{a | a is a column of A}

Then im A is called the image of A (so named because of the linear transformation Rn → Rm with
x 7→ Ax); and col A is called the column space of A (Definition 5.10). Surprisingly, these spaces
are equal:

Lemma 8.6.1
For any m×n matrix A, im A = col A.

Proof. Let A =
[

a1 a2 · · · an
]

in terms of its columns. Let x ∈ im A, say x = Ay, y in Rn. If
y =

[
y1 y2 · · · yn

]T , then Ay = y1a1 + y2a2 + · · ·+ ynan ∈ col A by Definition 2.5. This shows
that im A ⊆ col A. For the other inclusion, each ak = Aek where ek is column k of In.

8.6.1. Singular Value Decompositions

We know a lot about any real symmetric matrix: Its eigenvalues are real (Theorem 5.5.7), and it is
orthogonally diagonalizable by the Principal Axes Theorem (Theorem 8.2.2). So for any real matrix
A (square or not), the fact that both AT A and AAT are real and symmetric suggests that we can
learn a lot about A by studying them. This section shows just how true this is.

The following Lemma reveals some similarities between AT A and AAT which simplify the state-
ment and the proof of the SVD we are constructing.

Lemma 8.6.2
Let A be a real m×n matrix. Then:

1. The eigenvalues of AT A and AAT are real and non-negative.

2. AT A and AAT have the same set of positive eigenvalues.

Proof.
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1. Let λ be an eigenvalue of AT A, with eigenvector 0 6= q ∈ Rn. Then:

‖Aq‖2 = (Aq)T (Aq) = qT (AT Aq) = qT (λq) = λ (qT q) = λ‖q‖2

Then (1.) follows for AT A, and the case AAT follows by replacing A by AT .

2. Write N(B) for the set of positive eigenvalues of a matrix B. We must show that N(AT A) =
N(AAT ). If λ ∈ N(AT A) with eigenvector 0 6= q ∈ Rn, then Aq ∈ Rm and

AAT (Aq) = A[(AT A)q] = A(λq) = λ (Aq)

Moreover, Aq 6= 0 since AT Aq = λq 6= 0 and both λ 6= 0 and q 6= 0. Hence λ is an eigenvalue
of AAT , proving N(AT A)⊆ N(AAT ). For the other inclusion replace A by AT .

To analyze an m×n matrix A we have two symmetric matrices to work with: AT A and AAT . In
view of Lemma 8.6.2, we choose AT A (sometimes called the Gram matrix of A), and derive a series
of facts which we will need. This narrative is a bit long, but trust that it will be worth the effort.
We parse it out in several steps:

1. The n×n matrix AT A is real and symmetric so, by the Principal Axes Theorem 8.2.2, let
{q1, q2, . . . , qn} ⊆ Rn be an orthonormal basis of eigenvectors of AT A, with corresponding
eigenvalues λ1, λ2, . . . , λn. By Lemma 8.6.2(1), λi is real for each i and λi ≥ 0. By re-ordering
the qi we may (and do) assume that

λ1 ≥ λ2 ≥ ·· · ≥ λr > 0 and 8 λi = 0 if i > r (i)

By Theorems 8.2.1 and 3.3.4, the matrix

Q =
[

q1 q2 · · · qn
]

is orthogonal and orthogonally diagonalizes AT A (ii)

2. Even though the λi are the eigenvalues of AT A, the number r in (i) turns out to be rank A. To
understand why, consider the vectors Aqi ∈ im A. For all i, j:

Aqi ·Aq j = (Aqi)
T Aq j = qT

i (A
T A)q j = qT

i (λ jq j) = λ j(qT
i q j) = λ j(qi ·q j)

Because {q1, q2, . . . , qn} is an orthonormal set, this gives

Aqi ·Aq j = 0 if i 6= j and ‖Aqi‖2 = λi‖qi‖2 = λi for each i (iii)

We can extract two conclusions from (iii) and (i):

{Aq1, Aq2, . . . , Aqr} ⊆ im A is an orthogonal set and Aqi = 0 if i > r (iv)

With this write U = span{Aq1, Aq2, . . . , Aqr}⊆ im A; we claim that U = im A, that is im A⊆U .
For this we must show that Ax ∈ U for each x ∈ Rn. Since {q1, . . . , qr, . . . , qn} is a basis of

8Of course they could all be positive (r = n) or all zero (so AT A = 0, and hence A = 0 by Exercise 5.3.9).
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Rn (it is orthonormal), we can write xk = t1q1 + · · ·+ trqr + · · ·+ tnqn where each t j ∈ R. Then,
using (iv) we obtain

Ax = t1Aq1 + · · ·+ trAqr + · · ·+ tnAqn = t1Aq1 + · · ·+ trAqr ∈U

This shows that U = im A, and so

{Aq1, Aq2, . . . , Aqr} is an orthogonal basis of im (A) (v)

But col A = im A by Lemma 8.6.1, and rank A = dim (col A) by Theorem 5.4.1, so

rank A = dim (col A) = dim ( im A)
(v)
= r (vi)

3. Before proceeding, some definitions are in order:

Definition 8.7

The real numbers σi =
√

λi
(iii)
= ‖Aq̄i‖ for i = 1, 2, . . . , n, are called the singular values

of the matrix A.

Clearly σ1, σ2, . . . , σr are the positive singular values of A. By (i) we have

σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 and σi = 0 if i > r (vii)

With (vi) this makes the following definitions depend only upon A.

Definition 8.8
Let A be a real, m×n matrix of rank r, with positive singular values
σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 and σi = 0 if i > r. Define:

DA = diag (σ1, . . . , σr) and ΣA =

[
DA 0
0 0

]
m×n

Here ΣA is in block form and is called the singular matrix of A.

The singular values σi and the matrices DA and ΣA will be referred to frequently below.

4. Returning to our narrative, normalize the vectors Aq1, Aq2, . . . , Aqr, by defining

pi =
1

‖Aqi‖
Aqi ∈ Rm for each i = 1, 2, . . . , r (viii)

By (v) and Lemma 8.6.1, we conclude that

{p1, p2, . . . , pr} is an orthonormal basis of col A ⊆ Rm (ix)

Employing the Gram-Schmidt algorithm (or otherwise), construct pr+1, . . . , pm so that

{p1, . . . , pr, . . . , pm} is an orthonormal basis of Rm (x)
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5. By (x) and (ii) we have two orthogonal matrices

P =
[

p1 · · · pr · · · pm
]

of size m×m and Q =
[

q1 · · · qr · · · qn
]

of size n×n

These matrices are related. In fact we have:

σipi =
√

λipi
(iii)
= ‖Aqi‖pi

(viii)
= Aqi for each i = 1, 2, . . . , r (xi)

This yields the following expression for AQ in terms of its columns:

AQ =
[

Aq1 · · · Aqr Aqr+1 · · · Aqn
] (iv)
=
[

σ1p1 · · · σrpr 0 · · · 0
]

(xii)

Then we compute:

PΣA =
[

p1 · · · pr pr+1 · · · pm
]


σ1 · · · 0
... . . . ...
0 · · · σr

0 · · · 0
... ...
0 · · · 0

0 · · · 0
... ...
0 · · · 0

0 · · · 0
... ...
0 · · · 0


=
[

σ1p1 · · · σrpr 0 · · · 0
]

(xii)
= AQ

Finally, as Q−1 = QT it follows that A = PΣAQT .

With this we can state the main theorem of this Section.

Theorem 8.6.1
Let A be a real m×n matrix, and let σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 be the positive singular values
of A. Then r is the rank of A and we have the factorization

A = PΣAQT where P and Q are orthogonal matrices

The factorization A = PΣAQT in Theorem 8.6.1, where P and Q are orthogonal matrices, is
called a Singular Value Decomposition (SVD) of A. This decomposition is not unique. For example
if r < m then the vectors pr+1, . . . , pm can be any extension of {p1, . . . , pr} to an orthonormal
basis of Rm, and each will lead to a different matrix P in the decomposition. For a more dramatic
example, if A = In then ΣA = In, and A = PΣAPT is a SVD of A for any orthogonal n×n matrix P.

Example 8.6.1

Find a singular value decomposition for A =

[
1 0 1

−1 1 0

]
.
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Solution. We have AT A =

 2 −1 1
−1 1 0

1 0 1

, so the characteristic polynomial is

cAT A(x) = det

 x−2 1 −1
1 x−1 0
−1 0 x−1

= (x−3)(x−1)x

Hence the eigenvalues of AT A (in descending order) are λ1 = 3, λ2 = 1 and λ3 = 0 with,
respectively, unit eigenvectors

q1 =
1√
6

 2
−1

1

 , q2 =
1√
2

 0
1
1

 , and q3 =
1√
3

 −1
−1

1


It follows that the orthogonal matrix Q in Theorem 8.6.1 is

Q =
[

q1 q2 q3
]
= 1√

6

 2 0 −
√

2
−1

√
3 −

√
2

1
√

3
√

2


The singular values here are σ1 =

√
3, σ2 = 1 and σ3 = 0, so rank (A) = 2—clear in this

case—and the singular matrix is

ΣA =

[
σ1 0 0
0 σ2 0

]
=

[ √
3 0 0

0 1 0

]
So it remains to find the 2×2 orthogonal matrix P in Theorem 8.6.1. This involves the
vectors

Aq1 =
√

6
2

[
1

−1

]
, Aq2 =

√
2

2

[
1
1

]
, and Aq3 =

[
0
0

]
Normalize Aq1 and Aq2 to get

p1 =
1√
2

[
1

−1

]
and p2 =

1√
2

[
1
1

]
In this case, {p1, p2} is already a basis of R2 (so the Gram-Schmidt algorithm is not
needed), and we have the 2×2 orthogonal matrix

P =
[

p1 p2
]
= 1√

2

[
1 1

−1 1

]
Finally (by Theorem 8.6.1) the singular value decomposition for A is

A = PΣAQT = 1√
2

[
1 1

−1 1

][ √
3 0 0

0 1 0

]
1√
6

 2 −1 1
0

√
3

√
3

−
√

2 −
√

2
√

2


Of course this can be confirmed by direct matrix multiplication.
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Thus, computing an SVD for a real matrix A is a routine matter, and we now describe a
systematic procedure for doing so.

SVD Algorithm

Given a real m×n matrix A, find an SVD A = PΣAQT as follows:

1. Use the Diagonalization Algorithm (see page 188) to find the (real and non-negative)
eigenvalues λ1, λ2, . . . , λn of AT A with corresponding (orthonormal) eigenvectors
q1, q2, . . . , qn. Reorder the qi (if necessary) to ensure that the nonzero eigenvalues
are λ1 ≥ λ2 ≥ ·· · ≥ λr > 0 and λi = 0 if i > r.

2. The integer r is the rank of the matrix A.

3. The n×n orthogonal matrix Q in the SVD is Q =
[

q1 q2 · · · qn
]
.

4. Define pi =
1

‖Aqi‖
Aqi for i = 1, 2, . . . , r (where r is as in step 1). Then

{p1, p2, . . . , pr} is orthonormal in Rm so (using Gram-Schmidt or otherwise) extend
it to an orthonormal basis {p1, . . . , pr, . . . , pm} in Rm.

5. The m×m orthogonal matrix P in the SVD is P =
[

p1 · · · pr · · · pm
]
.

6. The singular values for A are σ1, σ2, . . . , σn where σi =
√

λi for each i. Hence the
nonzero singular values are σ1 ≥ σ2 ≥ ·· · ≥ σr > 0, and so the singular matrix of A in

the SVD is ΣA =

[
diag (σ1, . . . , σr) 0

0 0

]
m×n

.

7. Thus A = PΣQT is a SVD for A.

In practise the singular values σi, the matrices P and Q, and even the rank of an m×n matrix
are not calculated this way. There are sophisticated numerical algorithms for calculating them to a
high degree of accuracy. The reader is referred to books on numerical linear algebra.

So the main virtue of Theorem 8.6.1 is that it provides a way of constructing an SVD for every
real matrix A. In particular it shows that every real matrix A has a singular value decomposition9

in the following, more general, sense:

Definition 8.9
A Singular Value Decomposition (SVD) of an m×n matrix A of rank r is a

factorization A =UΣV T where U and V are orthogonal and Σ =

[
D 0
0 0

]
m×n

in block form

where D = diag (d1, d2, . . . , dr) where each di > 0, and r ≤ m and r ≤ n.

Note that for any SVD A =UΣV T we immediately obtain some information about A:

9In fact every complex matrix has an SVD [J.T. Scheick, Linear Algebra with Applications, McGraw-Hill, 1997]
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Lemma 8.6.3
If A =UΣV T is any SVD for A as in Definition 8.9, then:

1. r = rank A.

2. The numbers d1, d2, . . . , dr are the singular values of AT A in some order.

Proof. Use the notation of Definition 8.9. We have

AT A = (V Σ
TUT )(UΣV T ) =V (ΣT

Σ)V T

so ΣT Σ and AT A are similar n×n matrices (Definition 5.11). Hence r = rank A by Corollary 5.4.3,
proving (1.). Furthermore, ΣT Σ and AT A have the same eigenvalues by Theorem 5.5.1; that is (using
(1.)):

{d2
1 , d2

2 , . . . , d2
r }= {λ1, λ2, . . . , λr} are equal as sets

where λ1, λ2, . . . , λr are the positive eigenvalues of AT A. Hence there is a permutation τ of
{1, 2, · · · , r} such that d2

i = λiτ for each i = 1, 2, . . . , r. Hence di =
√

λiτ = σiτ for each i by
Definition 8.7. This proves (2.).

We note in passing that more is true. Let A be m×n of rank r, and let A =UΣV T be any SVD
for A. Using the proof of Lemma 8.6.3 we have di = σiτ for some permutation τ of {1, 2, . . . , r}.
In fact, it can be shown that there exist orthogonal matrices U1 and V1 obtained from U and V by
τ-permuting columns and rows respectively, such that A =U1ΣAV T

1 is an SVD of A.

8.6.2. Fundamental Subspaces

It turns out that any singular value decomposition contains a great deal of information about an
m×n matrix A and the subspaces associated with A. For example, in addition to Lemma 8.6.3, the
set {p1, p2, . . . , pr} of vectors constructed in the proof of Theorem 8.6.1 is an orthonormal basis
of col A (by (v) and (viii) in the proof). There are more such examples, which is the thrust of this
subsection. In particular, there are four subspaces associated to a real m× n matrix A that have
come to be called fundamental:

Definition 8.10
The fundamental subspaces of an m×n matrix A are:

row A = span{x | x is a row of A}

col A = span{x | x is a column of A}

null A = {x ∈ Rn | Ax = 0}

null AT = {x ∈ Rn | AT x = 0}

If A = UΣV T is any SVD for the real m× n matrix A, any orthonormal bases of U and V provide
orthonormal bases for each of these fundamental subspaces. We are going to prove this, but first
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we need three properties related to the orthogonal complement U⊥ of a subspace U of Rn, where
(Definition 8.1):

U⊥ = {x ∈ Rn | u ·x = 0 for all u ∈U}

The orthogonal complement plays an important role in the Projection Theorem (Theorem 8.1.3),
and we return to it in Section ??. For now we need:

Lemma 8.6.4
If A is any matrix then:

1. ( row A)⊥ = null A and (col A)⊥ = null AT .

2. If U is any subspace of Rn then U⊥⊥ =U .

3. Let {f1, . . . , fm} be an orthonormal basis of Rm. If U = span{f1, . . . , fk}, then

U⊥ = span{fk+1, . . . , fm}

Proof.

1. Assume A is m×n, and let b1, . . . , bm be the rows of A. If x is a column in Rn, then entry i
of Ax is bi ·x, so Ax = 0 if and only if bi ·x = 0 for each i. Thus:

x ∈ null A ⇔ bi ·x = 0 for each i ⇔ x ∈ (span{b1, . . . , bm})⊥ = ( row A)⊥

Hence null A = ( row A)⊥. Now replace A by AT to get null AT = ( row AT )⊥ = (col A)⊥, which
is the other identity in (1).

2. If x ∈ U then y ·x = 0 for all y ∈ U⊥, that is x ∈ U⊥⊥. This proves that U ⊆ U⊥⊥, so it is
enough to show that dim U = dim U⊥⊥. By Theorem 8.1.4 we see that dim V⊥ = n− dim V
for any subspace V ⊆ Rn. Hence

dim U⊥⊥ = n− dim U⊥ = n− (n− dim U) = dim U , as required

3. We have span{fk+1, . . . , fm}⊆U⊥ because {f1, . . . , fm} is orthogonal. For the other inclusion,
let x ∈U⊥ so fi ·x = 0 for i = 1, 2, . . . , k. By the Expansion Theorem 5.3.6:

x = (f1 ·x)f1 + · · · + (fk ·x)fk + (fk+1 ·x)fk+1 + · · · + (fm ·x)fm
= 0 + · · · + 0 + (fk+1 ·x)fk+1 + · · · + (fm ·x)fm

Hence U⊥ ⊆ span{fk+1, . . . , fm}.

With this we can see how any SVD for a matrix A provides orthonormal bases for each of the
four fundamental subspaces of A.
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Theorem 8.6.2
Let A be an m×n real matrix, let A =UΣV T be any SVD for A where U and V are
orthogonal of size m×m and n×n respectively, and let

Σ =

[
D 0
0 0

]
m×n

where D = diag (λ1, λ2, . . . , λr), with each λi > 0

Write U =
[

u1 · · · ur · · · um
]

and V =
[

v1 · · · vr · · · vn
]

, so
{u1, . . . , ur, . . . , um} and {v1, . . . , vr, . . . , vn} are orthonormal bases of Rm and Rn

respectively. Then

1. r = rank A, and the singular values of A are
√

λ1,
√

λ2, . . . ,
√

λr.

2. The fundamental spaces are described as follows:

a. {u1, . . . , ur} is an orthonormal basis of col A.
b. {ur+1, . . . , um} is an orthonormal basis of null AT .
c. {vr+1, . . . , vn} is an orthonormal basis of null A.
d. {v1, . . . , vr} is an orthonormal basis of row A.

Proof.

1. This is Lemma 8.6.3.

2. a. As col A = col (AV ) by Lemma 5.4.3 and AV =UΣ, (a.) follows from

UΣ=
[

u1 · · · ur · · · um
][ diag (λ1, λ2, . . . , λr) 0

0 0

]
=
[

λ1u1 · · · λrur 0 · · · 0
]

b. We have (col A)⊥
(a.)
= (span{u1, . . . , ur})⊥ = span{ur+1, . . . , um} by Lemma 8.6.4(3).

This proves (b.) because (col A)⊥ = null AT by Lemma 8.6.4(1).
c. We have dim (null A)+ dim ( im A) = n by the Dimension Theorem 7.2.4, applied to

T : Rn → Rm where T (x) = Ax. Since also im A = col A by Lemma 8.6.1, we obtain
dim (null A) = n− dim (col A) = n− r = dim (span{vr+1, . . . , vn})

So to prove (c.) it is enough to show that v j ∈ null A whenever j > r. To this end write

λr+1 = · · ·= λn = 0, so ET E = diag (λ 2
1 , . . . , λ

2
r , λ

2
r+1, . . . , λ

2
n )

Observe that each λ j is an eigenvalue of ΣT Σ with eigenvector e j = column j of In. Thus
v j =Ve j for each j. As AT A =V ΣT ΣV T (proof of Lemma 8.6.3), we obtain

(AT A)v j = (V Σ
T

ΣV T )(Ve j) =V (ΣT
Σe j) =V

(
λ

2
j e j
)
= λ

2
j Ve j = λ

2
j v j

for 1 ≤ j ≤ n. Thus each v j is an eigenvector of AT A corresponding to λ 2
j . But then

‖Av j‖2 = (Av j)
T Av j = vT

j (A
T Av j) = vT

j (λ
2
j v j) = λ

2
j ‖v j‖2 = λ

2
j for i = 1, . . . , n

In particular, Av j = 0 whenever j > r, so v j ∈ null A if j > r, as desired. This proves (c).
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d. Observe that span{vr+1, . . . , vn}
(c.)
= null A = ( row A)⊥ by Lemma 8.6.4(1). But then

parts (2) and (3) of Lemma 8.6.4 show

row A =
(
( row A)⊥

)⊥
= (span{vr+1, . . . , vn})⊥ = span{v1, . . . , vr}

This proves (d.), and hence Theorem 8.6.2.

Example 8.6.2

Consider the homogeneous linear system

Ax = 0 of m equations in n variables

Then the set of all solutions is null A. Hence if A =UΣV T is any SVD for A then (in the
notation of Theorem 8.6.2) {vr+1, . . . , vn} is an orthonormal basis of the set of solutions for
the system. As such they are a set of basic solutions for the system, the most basic notion
in Chapter 1.

8.6.3. The Polar Decomposition of a Real Square Matrix

If A is real and n×n the factorization in the title is related to the polar decomposition A. Unlike
the SVD, in this case the decomposition is uniquely determined by A.

Recall (Section 8.3) that a symmetric matrix A is called positive definite if and only if xT Ax > 0
for every column x 6= 0 ∈ Rn. Before proceeding, we must explore the following weaker notion:

Definition 8.11
A real n×n matrix G is called positive10if it is symmetric and

xT Gx ≥ 0 for all x ∈ Rn

Clearly every positive definite matrix is positive, but the converse fails. Indeed, A =

[
1 1
1 1

]
is

positive because, if x=
[

a b
]T in R2, then xT Ax= (a+b)2 ≥ 0. But yT Ay= 0 if y=

[
1 −1

]T ,
so A is not positive definite.

Lemma 8.6.5
Let G denote an n×n positive matrix.

1. If A is any m×n matrix and G is positive, then AT GA is positive (and m×m).

10Also called positive semi-definite.
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2. If G = diag (d1, d2, · · · , dn) and each di ≥ 0 then G is positive.

Proof.

1. xT (AT GA)x = (Ax)T G(Ax)≥ 0 because G is positive.

2. If x =
[

x1 x2 · · · xn
]T , then

xT Gx = d1x2
1 +d2x2

2 + · · ·+dnx2
n ≥ 0

because di ≥ 0 for each i.

Definition 8.12
If A is a real n×n matrix, a factorization

A = GQ where G is positive and Q is orthogonal

is called a polar decomposition for A.

Any SVD for a real square matrix A yields a polar form for A.

Theorem 8.6.3
Every square real matrix has a polar form.

Proof. Let A =UΣV T be a SVD for A with Σ as in Definition 8.9 and m = n. Since UTU = In here
we have

A =UΣV T = (UΣ)(UTU)V T = (UΣUT )(UV T )

So if we write G = UΣUT and Q = UV T , then Q is orthogonal, and it remains to show that G is
positive. But this follows from Lemma 8.6.5.

The SVD for a square matrix A is not unique (In = PInPT for any orthogonal matrix P). But
given the proof of Theorem 8.6.3 it is surprising that the polar decomposition is unique.11 We omit
the proof.

The name “polar form” is reminiscent of the same form for complex numbers (see Appendix
??). This is no coincidence. To see why, we represent the complex numbers as real 2×2 matrices.
Write M2(R) for the set of all real 2×2 matrices, and define

σ : C→ M2(R) by σ(a+bi) =
[

a −b
b a

]
for all a+bi in C

11See J.T. Scheick, Linear Algebra with Applications, McGraw-Hill, 1997, page 379.
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One verifies that σ preserves addition and multiplication in the sense that

σ(zw) = σ(z)σ(w) and σ(z+w) = σ(z)+σ(w)

for all complex numbers z and w. Since θ is one-to-one we may identify each complex number a+bi
with the matrix θ(a+bi), that is we write

a+bi =
[

a −b
b a

]
for all a+bi in C

Thus 0 =

[
0 0
0 0

]
, 1 =

[
1 0
0 1

]
= I2, i =

[
0 −1
1 0

]
, and r =

[
r 0
0 r

]
if r is real.

If z = a+ bi is nonzero then the absolute value r = |z| =
√

a2 +b2 6= 0. If θ is the angle of z in
standard position, then cosθ = a/r and sinθ = b/r. Observe:[

a −b
b a

]
=

[
r 0
0 r

][
a/r −b/r
b/r a/r

]
=

[
r 0
0 r

][
cosθ −sinθ

sinθ cosθ

]
= GQ (xiii)

where G =

[
r 0
0 r

]
is positive and Q =

[
cosθ −sinθ

sinθ cosθ

]
is orthogonal. But in C we have G = r

and Q = cosθ + isinθ so (xiii) reads z = r(cosθ + isinθ) = reiθ which is the classical polar form for

the complex number a+ bi. This is why (xiii) is called the polar form of the matrix
[

a −b
b a

]
;

Definition 8.12 simply adopts the terminology for n×n matrices.

8.6.4. The Pseudoinverse of a Matrix

It is impossible for a non-square matrix A to have an inverse (see the footnote to Definition 2.11).
Nonetheless, one candidate for an “inverse” of A is an m×n matrix B such that

ABA = A and BAB = B

Such a matrix B is called a middle inverse for A. If A is invertible then A−1 is the unique middle
inverse for A, but a middle inverse is not unique in general, even for square matrices. For example,

if A =

 1 0
0 0
0 0

 then B =

[
1 0 0
b 0 0

]
is a middle inverse for A for any b.

If ABA = A and BAB = B it is easy to see that AB and BA are both idempotent matrices. In 1955
Roger Penrose observed that the middle inverse is unique if both AB and BA are symmetric. We
omit the proof.

Theorem 8.6.4: Penrose’ Theorem12

Given any real m×n matrix A, there is exactly one n×m matrix B such that A and B satisfy
the following conditions:
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P1 ABA = A and BAB = B.

P2 Both AB and BA are symmetric.

Definition 8.13
Let A be a real m×n matrix. The pseudoinverse of A is the unique n×m matrix A+ such
that A and A+ satisfy P1 and P2, that is:

AA+A = A, A+AA+ = A+, and both AA+ and A+A are symmetric13

If A is invertible then A+ = A−1 as expected. In general, the symmetry in conditions P1 and P2
shows that A is the pseudoinverse of A+, that is A++ = A.

12R. Penrose, A generalized inverse for matrices, Proceedings of the Cambridge Philosophical Society 5l (1955),
406-413. In fact Penrose proved this for any complex matrix, where AB and BA are both required to be hermitian
(see Definition ?? in the following section).

13Penrose called the matrix A+ the generalized inverse of A, but the term pseudoinverse is now commonly used.
The matrix A+ is also called the Moore-Penrose inverse after E.H. Moore who had the idea in 1935 as part of a
larger work on “General Analysis”. Penrose independently re-discovered it 20 years later.
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Theorem 8.6.5
Let A be an m×n matrix.

1. If rank A = m then AAT is invertible and A+ = AT (AAT )−1.

2. If rank A = n then AT A is invertible and A+ = (AT A)−1AT .

Proof. Here AAT (respectively AT A) is invertible by Theorem 5.4.4 (respectively Theorem 5.4.3).
The rest is a routine verification.

In general, given an m×n matrix A, the pseudoinverse A+ can be computed from any SVD for
A. To see how, we need some notation. Let A =UΣV T be an SVD for A (as in Definition 8.9) where

U and V are orthogonal and Σ =

[
D 0
0 0

]
m×n

in block form where D = diag (d1, d2, . . . , dr) where

each di > 0. Hence D is invertible, so we make:

Definition 8.14

Σ′ =

[
D−1 0

0 0

]
n×m

.

A routine calculation gives:

Lemma 8.6.6

• ΣΣ′Σ = Σ

• Σ′ΣΣ′ = Σ′

• ΣΣ′ =

[
Ir 0
0 0

]
m×m

• Σ′Σ =

[
Ir 0
0 0

]
n×n

That is, Σ′ is the pseudoinverse of Σ.
Now given A =UΣV T , define B =V Σ′UT . Then

ABA = (UΣV T )(V Σ
′UT )(UΣV T ) =U(ΣΣ

′
Σ)V T =UΣV T = A

by Lemma 8.6.6. Similarly BAB = B. Moreover AB = U(ΣΣ′)UT and BA = V (Σ′Σ)V T are both
symmetric again by Lemma 8.6.6. This proves

Theorem 8.6.6
Let A be real and m×n, and let A =UΣV T is any SVD for A as in Definition 8.9. Then
A+ =V Σ′UT .
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Of course we can always use the SVD constructed in Theorem 8.6.1 to find the pseudoinverse.

If A =

 1 0
0 0
0 0

, we observed above that B =

[
1 0 0
b 0 0

]
is a middle inverse for A for any b.

Furthermore AB is symmetric but BA is not, so B 6= A+.

Example 8.6.3

Find A+ if A =

 1 0
0 0
0 0

.

Solution. AT A =

[
1 0
0 0

]
with eigenvalues λ1 = 1 and λ2 = 0 and corresponding

eigenvectors q1 =

[
1
0

]
and q2 =

[
0
1

]
. Hence Q =

[
q1 q2

]
= I2. Also A has rank 1 with

singular values σ1 = 1 and σ2 = 0, so ΣA =

 1 0
0 0
0 0

= A and Σ′
A =

[
1 0 0
0 0 0

]
= AT in this

case.

Since Aq1 =

 1
0
0

 and Aq2 =

 0
0
0

, we have p1 =

 1
0
0

 which extends to an orthonormal

basis {p1, p2, p3} of R3 where (say) p2 =

 0
1
0

 and p3 =

 0
0
1

. Hence

P =
[

p1 p2 p3
]
= I, so the SVD for A is A = PΣAQT . Finally, the pseudoinverse of A is

A+ = QΣ′
APT = Σ′

A =

[
1 0 0
0 0 0

]
. Note that A+ = AT in this case.

The following Lemma collects some properties of the pseudoinverse that mimic those of the
inverse. The verifications are left as exercises.

Lemma 8.6.7
Let A be an m×n matrix of rank r.

1. A++ = A.

2. If A is invertible then A+ = A−1.

3. (AT )+ = (A+)T .

4. (kA)+ = kA+ for any real k.

5. (UAV )+ =UT (A+)V T whenever U and V are orthogonal.
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Exercises for 8.6

Exercise 8.6.1 If ACA = A show that B = CAC is
a middle inverse for A.

Exercise 8.6.2 For any matrix A show that

ΣAT = (ΣA)
T

Exercise 8.6.3 If A is m×n with all singular values
positive, what is rank A?

Exercise 8.6.4 If A has singular values σ1, . . . , σr,
what are the singular values of:

ATa) tA where t > 0 is realb)
A−1 assuming A is invertible.c)

b. tσ1, . . . , tσr.

Exercise 8.6.5 If A is square show that det A is
the product of the singular values of A.

Exercise 8.6.6 If A is square and real, show that
A = 0 if and only if every eigenvalue of A is 0.

Exercise 8.6.7 Given a SVD for an invertible ma-
trix A, find one for A−1. How are ΣA and ΣA−1 related?
If A =UΣV T then Σ is invertible, so A−1 =V Σ−1UT

is a SVD.

Exercise 8.6.8 Let A−1 = A = AT where A is n×n.
Given any orthogonal n×n matrix U , find an orthog-
onal matrix V such that A = UΣAV T is an SVD for
A. If A =

[
0 1
1 0

]
do this for:

U = 1
5

[
3 −4
4 3

]
a) U = 1√

2

[
1 −1
1 1

]
b)

b. First AT A = In so ΣA = In.

A = 1√
2

[
1 1
1 −1

][
1 0
0 1

]
1√
2

[
1 1

−1 1

]
= 1√

2

[
1 −1
1 1

]
1√
2

[
−1 1

1 1

]
=

[
−1 0

0 1

]

Exercise 8.6.9 Find a SVD for the following ma-
trices:

A =

 1 −1
0 1
1 0

a)

 1 1 1
−1 0 −2

1 2 0

b)

b.
A = F

= 1
5

[
3 4
4 −3

][
20 0 0 0
0 10 0 0

]
1
2

 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 1 −1



Exercise 8.6.10 Find an SVD for A=

[
0 1

−1 0

]
.

Exercise 8.6.11 If A =UΣV T is an SVD for A, find
an SVD for AT .

Exercise 8.6.12 Let A be a real, m×n matrix with
positive singular values σ1, σ2, . . . , σr, and write

s(x) = (x−σ1)(x−σ2) · · ·(x−σr)

a. Show that cAT A(x) = s(x)xn−r and
cAT A(c) = s(x)xm−r.

b. If m ≤ n conclude that cAT A(x) = s(x)xn−m.

Exercise 8.6.13 If G is positive show that:

a. rG is positive if r ≥ 0

b. G+H is positive for any positive H.

b. If x ∈ Rn then xT (G+H)x = xT Gx+xT Hx ≥
0+0 = 0.

Exercise 8.6.14 If G is positive and λ is an eigen-
value, show that λ ≥ 0.

Exercise 8.6.15 If G is positive show that G = H2

for some positive matrix H. [Hint: Preceding exer-
cise and Lemma 8.6.5]

Exercise 8.6.16 If A is n× n show that AAT and
AT A are similar. [Hint: Start with an SVD for A.]

Exercise 8.6.17 Find A+ if:
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a. A =

[
1 2

−1 −2

]

b. A =

 1 −1
0 0
1 −1


b.
[ 1

4 0 1
4

−1
4 0 −1

4

]

Exercise 8.6.18 Show that (A+)T = (AT )+.
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