Math 7800 – Probability I

Le Chen lzc0090@auburn.edu

Parker Hall 318

12:30 pm - 13:45 pm

Fall 2022 Auburn University

Lecture 1. – Introduction to Probability

08/16/2022

What is chance

How to measure chance

Birthday problem

Rolling three dices

Poker

What is CHANCE?

Tyche – The Greek goddess of chance

Fortuna – The goddess of chance in Roman religion

I Ching in China (~ 6th century B.C.)

¹Image is from Bennett (1998), *Randomness*, Harvard University Press.

1

Democritus (460 – 370 BC) — Father of modern science

Atomic theory of the universe:

A physical chance affecting all the atoms that made up the universe.

Games of chance — using knucklebones or dice

Known to Egyptians, Babylonians, Romans, ...

There was no qualitative theory of chance in these times.

How to measure chance?

How about measure length?

The determination of a "right and lawful rood" or rod in the early sixteenth century in Germany by measuring an essentially random selection of 16 men as they leave church 2 .

²Stephen Stigler (1996). Statistics and the Question of Standards, *Journal of Research of the National Institute of Standards and Technology*, vol. 101.

To measure probability,

- 1. we first find or make equally probable cases,
- 2. then we count.

The probability of an event A, denoted by $\mathbb{P}(A)$, is then

To measure probability,

1. we first find or make equally probable cases,

2. then we count.

The probability of an event A, denoted by $\mathbb{P}(A)$, is then

To measure probability,

- 1. we first find or make equally probable cases,
- **2.**then we count.

The probability of an event A, denoted by $\mathbb{P}(A)$, is then

To measure probability,

- 1. we first find or make equally probable cases,
- **2.**then we count.

The probability of an event A, denoted by $\mathbb{P}(A)$, is then

To measure probability,

- 1. we first find or make equally probable cases,
- **2.**then we count.

The probability of an event A, denoted by $\mathbb{P}(A)$, is then

- 1. Probability should be never negative.
- 2. If A occurs in all cases, then $\mathbb{P}(A) = 1$.
- **3**. If A and B never occur in the same case, then

 $(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B).$

In particular, the probability of an event not occurring is equal to

 $\mathbb{P}(\mathrm{not}\ A) = 1 - \mathbb{P}(A).$

- 1. Probability should be never negative.
- 2. If A occurs in all cases, then $\mathbb{P}(A) = 1$.
- 3. If A and B never occur in the same case, then

 $\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B).$

In particular, the probability of an event not occurring is equal to

 $\mathbb{P}(\mathrm{not}\ A) = 1 - \mathbb{P}(A).$

- 1. Probability should be never negative.
- 2. If A occurs in all cases, then $\mathbb{P}(A) = 1$.

3. If A and B never occur in the same case, then

 $\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B).$

In particular, the probability of an event not occurring is equal to

 $\mathbb{P}(\text{not } A) = 1 - \mathbb{P}(A).$

- 1. Probability should be never negative.
- 2. If A occurs in all cases, then $\mathbb{P}(A) = 1$.
- 3. If A and \overline{B} never occur in the same case, then

 $\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B).$

In particular, the probability of an event not occurring is equal to

 $\mathbb{P}(\mathrm{not}\ A) = 1 - \mathbb{P}(A).$

- 1. Probability should be never negative.
- 2. If A occurs in all cases, then $\mathbb{P}(A) = 1$.
- 3. If A and \overline{B} never occur in the same case, then

 $\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B).$

In particular, the probability of an event not occurring is equal to

 $\mathbb{P}(\mathrm{not}\ A) = 1 - \mathbb{P}(A).$

- 1. Probability should be never negative.
- 2. If A occurs in all cases, then $\mathbb{P}(A) = 1$.
- 3. If A and \overline{B} never occur in the same case, then

 $\mathbb{P}(A \text{ or } B) = \overline{\mathbb{P}(A) + \mathbb{P}(B)}.$

In particular, the probability of an event not occurring is equal to

 $\mathbb{P}(\text{not } A) = 1 - \mathbb{P}(A).$

How to generate the equi-probable cases?

Prim sticks (variations of dice)³ and deck of poker...

³Image is from Bennett (1998), *Randomness*, Harvard University Press.

How to generate the equi-probable cases?

Prim sticks (variations of dice) 3 and deck of poker...

³Image is from Bennett (1998), *Randomness*, Harvard University Press.

Girolamo Cardano (1501 – 1576), an Italian polymath, whose interests and proficiencies ranged through those of mathematician, physician, biologist, physicist, chemist, astrologer, astronomer, philosopher, writer, and gambler. He was one of the most influential mathematicians of the Renaissance, and was one of the key figures in the foundation of probability and the earliest introducer of the binomial coefficients and the binomial theorem in the Western world.

Question: How likely do two students have the same birth day if there are

students in the class?

- 1. each year has 365 days (i.e., neglecting leap years),
- 2. birthdays are equi-probable,
- **3**. birthdays are independent (no twins in the class)

Question: How likely do two students have the same birth day if there are

► 366

students in the class?

- 1. each year has 365 days (i.e., neglecting leap years),
- 2. birthdays are equi-probable,
- 3. birthdays are independent (no twins in the class)

Question: How likely do two students have the same birth day if there are

► 366

students in the class?

- 1. each year has 365 days (i.e., neglecting leap years),
- 2. birthdays are equi-probable,
- **3**. birthdays are independent (no twins in the class)

Question: How likely do two students have the same birth day if there are

► 366

students in the class?

- 1. each year has 365 days (i.e., neglecting leap years),
- 2. birthdays are equi-probable,
- **3**. birthdays are independent (no twins in the class)

Question: How likely do two students have the same birth day if there are

- ▶ 2
 ▶ 5
 ▶ 15
 ▶ 23
- ► 46
- ▶ 64
- ▶ 366

students in the class?

- 1. each year has 365 days (i.e., neglecting leap years),
- 2. birthdays are equi-probable,
- **3**. birthdays are independent (no twins in the class)

Question: How likely do two students have the same birth day if there are

- ▶ 2
- ▶ 5
- ▶ 15
- ► 23
- ► 46
- ► 64
- ▶ 366

students in the class?

- 1. each year has 365 days (i.e., neglecting leap years),
- 2. birthdays are equi-probable,
- **3**. birthdays are independent (no twins in the class)

Question: How likely do two students have the same birth day if there are

- ▶ 2
- ▶ 5
- ▶ 15
- ▶ 23
- ► 46
- ► 64
- ► 366

students in the class?

- 1. each year has 365 days (i.e., neglecting leap years),
- 2. birthdays are equi-probable,
- **3**. birthdays are independent (no twins in the class)

Question: How likely do two students have the same birth day if there are

- ▶ 2
- ▶ 5
- ▶ 15
- ▶ 23
- ► 46
- ► 64
- ► 366

students in the class?

- 1. each year has 365 days (i.e., neglecting leap years),
- 2. birthdays are equi-probable,
- **3**. birthdays are independent (no twins in the class)

Question: How likely do two students have the same birth day if there are

- ▶ 2
- ▶ 5
- ▶ 15
- ▶ 23
- ► 46
- ► 64
- ► 366

students in the class?

- 1. each year has 365 days (i.e., neglecting leap years),
- 2. birthdays are equi-probable,
- 3. birthdays are independent (no twins in the class)

Question: How likely do two students have the same birth day if there are

- ► 2
- ▶ 5
- ▶ 15
- ► 23
- ► 46
- ► 64
- ► 366

students in the class?

- 1. each year has 365 days (i.e., neglecting leap years),
- 2. birthdays are equi-probable,
- 3. birthdays are independent (no twins in the class).
Birthday Problem

 $\ensuremath{\textbf{Question:}}$ How likely do two students have the same birth day if there are

- ▶ 2
- ▶ 5
- ▶ 15
- ▶ 23
- ► 46
- ► 64
- ► 366

students in the class?

Assuming that

- 1. each year has 365 days (i.e., neglecting leap years),
- ${\bf 2.} \ {\rm birthdays \ are \ equi-probable},$
- 3. birthdays are independent (no twins in the class).

Birthday Problem

 $\ensuremath{\textbf{Question:}}$ How likely do two students have the same birth day if there are

- ▶ 2
- ▶ 5
- ▶ 15
- ► 23
- ► 46
- ► 64
- ► 366

students in the class?

Assuming that

- 1. each year has 365 days (i.e., neglecting leap years),
- 2. birthdays are equi-probable,
- 3. birthdays are independent (no twins in the class).

- ▶ Let A be the event that there is a shared birthday among these n students.
- It is not easy to compute $\mathbb{P}(A)$ directly.
- However, one can compute $\mathbb{P}(\text{not } A)$ by counting:

the probability that no two students have the same birthday, or

all students have different birthday,

is equal to

$$\mathbb{P}(\text{not } A) = \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365}$$

▶ Hence,

$$\mathbb{P}(A) = 1 - \mathbb{P}\left(\text{not } A \right) = 1 - \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365} \approx 0.027.$$

- Suppose n = 5.
- \blacktriangleright Let A be the event that there is a shared birthday among these n students.
- It is not easy to compute $\mathbb{P}(A)$ directly.
- However, one can compute $\mathbb{P}(\text{not } A)$ by counting:

the probability that no two students have the same birthday, or

all students have different birthday,

is equal to

$$\mathbb{P}(\text{not } A) = \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365}$$

▶ Hence,

$$\mathbb{P}(A) = 1 - \mathbb{P}\left(\text{not } A \right) = 1 - \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365} \approx 0.027.$$

- Let A be the event that there is a shared birthday among these n students.
- ▶ It is not easy to compute $\mathbb{P}(A)$ directly.
- However, one can compute $\mathbb{P}(\text{not } A)$ by counting:

the probability that no two students have the same birthday, or

all students have different birthday,

is equal to

$$\mathbb{P}(\text{not } A) = \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365}$$

▶ Hence,

$$\mathbb{P}(A) = 1 - \mathbb{P}\left(\text{not } A \right) = 1 - \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365} \approx 0.027.$$

- Let A be the event that there is a shared birthday among these n students.
- ▶ It is not easy to compute $\mathbb{P}(A)$ directly.
- However, one can compute $\mathbb{P}(\text{not } A)$ by counting:

the probability that no two students have the same birthday, or

all students have different birthday,

is equal to

$$\mathbb{P}(\text{not } A) = \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365}$$

Hence,

$$\mathbb{P}(A) = 1 - \mathbb{P}\left(\text{not } A \right) = 1 - \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365} \approx 0.027.$$

- Let A be the event that there is a shared birthday among these n students.
- It is not easy to compute $\mathbb{P}(A)$ directly.
- ▶ However, one can compute $\mathbb{P}(\text{not } A)$ by counting:

the probability that no two students have the same birthday, or

all students have different birthday,

is equal to

$$\mathbb{P}(\text{not } A) = \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365}$$

Hence,

$$\mathbb{P}(A) = 1 - \mathbb{P}\left(\text{not } A \right) = 1 - \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365} \approx 0.027.$$

- Let A be the event that there is a shared birthday among these n students.
- ▶ It is not easy to compute $\mathbb{P}(A)$ directly.
- However, one can compute $\mathbb{P}(\text{not } A)$ by counting:

the probability that no two students have the same birthday, or

all students have different birthday,

is equal to

$$\mathbb{P}(\text{not } A) = \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365}$$

► Hence,

$$\mathbb{P}(A) = 1 - \mathbb{P}\left(\text{not } A \right) = 1 - \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365} \approx 0.027.$$

$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \cdots \times (365 - n + 1)}{365^n}$

n	2	5	15	23	46	64	366
$\mathbb{P}(A)$							1.0

$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \cdots \times (365 - n + 1)}{365^n}$

n	2	5	15	23	46	64	366
$\mathbb{P}(A)$	0.0027						1.0

$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \cdots \times (365 - n + 1)}{365^n}$

n	2	5	15	23	46	64	366
$\mathbb{P}(A)$	0.0027	0.0271					1.0

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

n	2	5	15	23	46	64	366
$\mathbb{P}(A)$	0.0027	0.0271	0.2529				1.0

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

n	2	5	15	23	46	64	366
$\mathbb{P}(A)$	0.0027	0.0271	0.2529	0.5073			1.0

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

n	2	5	15	23	46	64	366
$\mathbb{P}(A)$	0.0027	0.0271	0.2529	0.5073	0.9483		1.0

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

n	2	5	15	23	46	64	366
$\mathbb{P}(A)$	0.0027	0.0271	0.2529	0.5073	0.9483	0.9972	1.0

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

n	2	5	15	23	46	64	366
$\mathbb{P}(A)$	0.0027	0.0271	0.2529	0.5073	0.9483	0.9972	1.0

When time permits, we will try some simulations !

Source codes are here:

https://github.com/chenle02/2022_SSI-AU_Probability_by_Le

1. Let C be the number of categories (i.e., C=365) and n be the number of students. Here is one useful approximation:

when $n = 1.2\sqrt{C}$, the chance of shared something is close to 1/2.

- How large should n be to have approximately even probability of a triple birthday match? Answer: 81.
- 3. Would that be a surprise if you find out with someone, not only you share the same birthday, but also the same father's birthday and the same grandfather's birthday?

1. Let C be the number of categories (i.e., C = 365) and n be the number of students. Here is one useful approximation:

when $n = 1.2 \sqrt{C}$, the chance of shared something is close to 1/2.

- How large should n be to have approximately even probability of a triple birthday match? Answer: 81.
- 3. Would that be a surprise if you find out with someone, not only you share the same birthday, but also the same father's birthday and the same grandfather's birthday?

1. Let C be the number of categories (i.e., C = 365) and n be the number of students. Here is one useful approximation:

when $n = 1.2 \sqrt{C}$, the chance of shared something is close to 1/2.

E.g., $1.2\,\sqrt{365}=22.9$ (Birthday problem), $1.2\,\sqrt{60}=9.3$ (Watch problem).

2. How large should n be to have approximately even probability of a triple birthday match?

Answer: 81.

3. Would that be a surprise if you find out with someone, not only you share the same birthday, but also the same father's birthday and the same grandfather's birthday?

1. Let C be the number of categories (i.e., C = 365) and n be the number of students. Here is one useful approximation:

when $n = 1.2 \sqrt{C}$, the chance of shared something is close to 1/2.

- How large should n be to have approximately even probability of a triple birthday match? Answer: 81.
- **3.** Would that be a surprise if you find out with someone, not only you share the same birthday, but also the same father's birthday and the same grandfather's birthday?

1. Let C be the number of categories (i.e., C = 365) and n be the number of students. Here is one useful approximation:

when $n = 1.2 \sqrt{C}$, the chance of shared something is close to 1/2.

- How large should n be to have approximately even probability of a triple birthday match? Answer: 81.
- **3.** Would that be a surprise if you find out with someone, not only you share the same birthday, but also the same father's birthday and the same grandfather's birthday?

1. Let C be the number of categories (i.e., C = 365) and n be the number of students. Here is one useful approximation:

when $n = 1.2 \sqrt{C}$, the chance of shared something is close to 1/2.

- How large should n be to have approximately even probability of a triple birthday match? Answer: 81.
- **3.** Would that be a surprise if you find out with someone, not only you share the same birthday, but also the same father's birthday and the same grandfather's birthday?

Number of generations	1	2	3	4	5
n to have about even odds	23				

Number of generations	1	2	3	4	5
\boldsymbol{n} to have about even odds	23	438			

Number of generations	1	2	3	4	5
n to have about even odds	23	438	8,368		

Number of generations	1	2	3	4	5
\boldsymbol{n} to have about even odds	23	438	8,368	159,870	

Number of generations	1	2	3	4	5
n to have about even odds	23	438	8,368	159,870	3,054,312

A question asked by *Grand Duke of Tuscany* to *Galileo* in early seventh century

Three dice are thrown, such as

Counting combinations of numbers, 10 and 11 can be made in 6 ways, as can 9 and 12. Yet it is known that long observation has made dice-players consider 10 and 11 to be more advantageous than 9 and 12. How can this be?

 $3 = \mathbf{O} + \mathbf{O} + \mathbf{O}$

- $4 = \mathbf{O} + \mathbf{O} + \mathbf{O}$
- $5 = \odot + \odot + \odot = \odot + \odot + \odot$
- $6 = \mathbf{O} + \mathbf{O} + \mathbf{O} = \mathbf{O} + \mathbf{O} + \mathbf{O} = \mathbf{O} + \mathbf{O} + \mathbf{O}$
- $7 = \bigcirc + \bigcirc + \boxtimes = \bigcirc + \bigcirc + \boxtimes = \bigcirc + \bigcirc + \bigcirc = \bigcirc + \oslash + \oslash + \bigcirc$

- $14 = \Box + \blacksquare + \blacksquare = \Box + \boxdot + \blacksquare = \Box + \Box + \blacksquare = \Box + \boxtimes + \boxtimes$
- $15 = \mathbf{I} + \mathbf{I} + \mathbf{I} = \mathbf{I} + \mathbf{I} + \mathbf{I} = \overline{\mathbf{I} + \mathbf{I} + \mathbf{I}}$
- $16 = \Box + \Box + \Box = \Xi + \Xi + \Box$
- $17 = \Box + \Box + \Box$
- $18 = \blacksquare + \blacksquare + \blacksquare$

3 = 1 + 1 + 1
4 = 1 + 1 + 2
5 = 1 + 1 + 3 = 1 + 2 + 2
6 = 1 + 1 + 4 = 1 + 2 + 3 = 2 + 2 + 2
7 = 1 + 1 + 5 = 1 + 2 + 4 = 2 + 2 + 3 = 3 + 3 + 1
8=1+1+6=1+2+5=1+3+4=2+2+4=2+3+3
9 = 1 + 2 + 6 = 1 + 3 + 5 = 1 + 4 + 4 = 2 + 2 + 5 = 2 + 3 + 4 = 3 + 3 + 3
10 = 1 + 3 + 6 = 1 + 4 + 5 = 2 + 2 + 6 = 2 + 3 + 5 = 2 + 4 + 4 = 3 + 3 + 4
11 = 1 + 4 + 6 = 1 + 5 + 5 = 2 + 3 + 6 = 2 + 4 + 5 = 3 + 3 + 5 = 3 + 4 + 4
12 = 1 + 5 + 6 = 2 + 4 + 6 = 2 + 5 + 5 = 3 + 3 + 6 = 3 + 4 + 5 = 4 + 4 + 4
13 = 1 + 6 + 6 = 2 + 5 + 6 = 3 + 4 + 6 = 3 + 5 + 5 = 4 + 4 + 5
14 = 2 + 6 + 6 = 3 + 5 + 6 = 4 + 4 + 6 = 4 + 5 + 5
15 = 3 + 6 + 6 = 4 + 5 + 6 = 5 + 5 + 5
16 = 4 + 6 + 6 = 5 + 5 + 6
17 = 5 + 6 + 6
18 = 6 + 6 + 6

k	Probability of a sum of \boldsymbol{k}	~
3	1/216	0.5%
4	3/216	1.4%
5	6/216	2.8%
6	10/216	4.6%
7	15/216	7.0%
8	21/216	9.7%
9	25/216	11.6%
10	27/216	12.5%
11	27/216	12.5%
12	25/216	11.6%
13	21/216	9.7%
14	15/216	7.0%
15	10/216	4.6%
16	6/216	2.8%
17	3/216	1.4%
18	1/216	0.5%

Game of rolling three dices dated back to Roman Empire.

_					
3	18	Punclatura	I	Cadentia	t
4	17	Punclatura	x	Cadentiz	3
5	16	PunAatura	Z	Cadentiæ	6
6	t 5	Puncheturz	3	Cadentia	to
7	£4	Punchaturæ	\$	Cadentia	X 5
8	13	Punctatura	5	Cadentiz	Ż.I
9	IŻ	Punctaturz	6	Cadentiz	25
to	U	Punclaturæ	6	Cadenlix	z 7

Richard de Fournival discovered in 13th century the summary of 216 possible sequences ⁴ in his poem, *De Vetula*, written between 1220 to 1250.

⁴Image is from Bennett (1998), *Randomness*, Harvard University Press.

Table	10-1.	Ways	to	Deal	Five-Card	Poker	Hands
-------	-------	------	----	------	-----------	-------	-------

Hand	Number of ways		ter hand ^a nds is:				
	_	1	2	3	4	5	6
Straight flush	40	0	0	0	0	0	0
Four of a kind	624	.00002	.00003	.00005	.00006	.00008	.00009
Full house	3,744	.00026	.00051	.00078	.00102	.00128	.00153
Flush	5,108	.00170	.00339	.00509	.00677	.00847 ,	.01015
Straight	10,200	.00366	.00731	.01094	.01457	.01817	.02177
Three of a kind	54,912	.00759	.01511	.02259	.03000	.03736	.04466
Two pairs:	•						
Aces high	19,008	.02871	.05660	.08369	.11001	.13556	.16038
Kings	17,424	.03603	.07076	.10424	.13651	.16762	.19761
Queens	15,840	.04273	.08364	.12280	.16028	.19617	.23052
Jacks	14,256	.04883	.09527	.13945	.18146	.22143	.25945
Tens	12,672	.05431	.10568	.15425	.20019	.24362	.28470
Nines	11,088	.05919	.11487	.16726	.21655	.26292	.30655
Eights	9,504	.06345	.12288	.17854	.23067	.27948	.32520
Sevens	7,920	.06711	.12972	.18812	.24261	.29344	.34086
Sixes	6,336	.07016	.13540	.19606	.25246	.30491	.35367
Fives	4,752	.07260	.13992	.20236	.26027	.31397	.36378
Fours	3,168	.07443	.14331	.20707	.26608	.32071	.37126
Threes	1,584	.07564	.14556	.21019	.26993	.32515	.37620

⁵Image from John D. McGervey (1986), *Probabilities in everyday life*, Nelson Hall Publishers.
Table 10-1. continued

Hand	Number of ways	Probability that opponent has a better hand ^a when the number of opposing hands is:					
		- march 1	2	3	4	5	6
One pair:		jber -	- A				
Aces	84,480	.07625	.14669	.21176	.27187	.32739	.37868
Kings	**	.10876	.20569	.29208	.36907	.43769	.49885
Queens	**	.14126	.26257	.36674	.45620	.53302	.59899
Jacks	**	.17377	.31734	.43597	.53398	.61496	.68187
Tens	57	.20627	.37000	.49995	.60310	.68497	.74995
Nines	**	.23878	.42054	.55891	.66423	.74441	.80544
Eights	55	.27129	.46898	.61303	.71801	.79451	.85026
Sevens	33	.30379	.51529	.66254	.76506	.83643	.88612
Sixes	"	.33630	.55950	.70764	.80596	.87121	.91452
Fives	"	.36880	.60159	.74852	.84127	.89981	.93676
Fours	"	.40131	.64157	.78541	.87153	.92309	.95395
Threes	"	.43381	.67943	.81850	.89724	.94182	.96706
Deuces	22	.46632	.71518	.84800	.91888	.95671	.97690
No pair	1,302,540	.49882	.74882	.87411	.93691	.96838	.98415
All hands	2,598,960						a

a. Assuming that you have the best hand of its type-for example, ace-high if you have no pair.

6

⁶Image from John D. McGervey (1986), *Probabilities in everyday life*, Nelson Hall Publishers.

References:

- Persi Diaconis and Brian Skyrms (2017). The great ideas about chance. Princeton University Press.
- ▶ Deborah J. Bennett (1998). Randomness. Harvard University Press.
- ► John D. McGervey (1986). *Probabilities in everyday life*. Nelson Hall Publishers.