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What is chance

How to measure chance

Birthday problem

Rolling three dices

Poker
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What is CHANCE?
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Tyche – The Greek goddess of chance
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Fortuna – The goddess of chance in Roman religion
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I Ching in China (∼ 6th century B.C.)
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1Image is from Bennett (1998), Randomness, Harvard University Press.
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Democritus (460 – 370 BC)
— Father of modern science

Atomic theory of the universe:

A physical chance affecting all the atoms
that made up the universe.
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Games of chance
— using knucklebones or dice

Known to Egyptians, Babylonians, Romans, ...
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There was no qualitative theory of chance in these times.
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How to measure chance?
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How about measure length?

The determination of a “right and lawful rood” or rod in the early sixteenth
century in Germany by measuring an essentially random selection of 16

men as they leave church 2.

2Stephen Stigler (1996). Statistics and the Question of Standards, Journal of Research of the
National Institute of Standards and Technology, vol. 101.
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The same for chance

To measure probability,
1. we first find or make equally probable cases,
2. then we count.

The probability of an event A, denoted by P(A), is then

P(A) =
no. of cases in which A occurs

total no. of cases
.
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Now we see that probability has to satisfy the following properties:
1. Probability should be never negative.
2. If A occurs in all cases, then P(A) = 1.
3. If A and B never occur in the same case, then

P (A or B) = P(A) + P(B).

In particular, the probability of an event not occurring is equal to

P(not A) = 1 − P(A).
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How to generate the equi-probable cases?

Prim sticks (variations of dice) 3 and deck of poker...

3Image is from Bennett (1998), Randomness, Harvard University Press.
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Prim sticks (variations of dice) 3 and deck of poker...

3Image is from Bennett (1998), Randomness, Harvard University Press.
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Girolamo Cardano (1501 – 1576), an Italian polymath, whose interests and
proficiencies ranged through those of mathematician, physician, biologist,

physicist, chemist, astrologer, astronomer, philosopher, writer, and gambler.
He was one of the most influential mathematicians of the Renaissance, and
was one of the key figures in the foundation of probability and the earliest

introducer of the binomial coefficients and the binomial theorem in the
Western world.
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Birthday Problem

Question: How likely do two students have the same birth day if there are
I 2
I 5
I 15
I 23
I 46
I 64
I 366

students in the class?

Assuming that
1. each year has 365 days (i.e., neglecting leap years),
2. birthdays are equi-probable,
3. birthdays are independent (no twins in the class).
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I Suppose n = 5.
I Let A be the event that there is a shared birthday among these n

students.
I It is not easy to compute P(A) directly.
I However, one can compute P (not A) by counting:

the probability that no two students have the same birthday, or

all students have different birthday,

is equal to

P (not A) =
365
365

364
365

363
365

362
365

361
365

I Hence,

P(A) = 1 − P (not A) = 1 −
365
365

364
365

363
365

362
365

361
365

≈ 0.027.
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P(A) = 1 −
365 × 364 × · · · × (365 − n + 1)

365n

n 2 5 15 23 46 64 366
P(A) 1.0

18
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P(A) = 1 −
365 × 364 × · · · × (365 − n + 1)

365n

n 2 5 15 23 46 64 366
P(A) 0.0027 0.0271 0.2529 1.0
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P(A) = 1 −
365 × 364 × · · · × (365 − n + 1)

365n

n 2 5 15 23 46 64 366
P(A) 0.0027 0.0271 0.2529 0.5073 1.0
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P(A) = 1 −
365 × 364 × · · · × (365 − n + 1)

365n

n 2 5 15 23 46 64 366
P(A) 0.0027 0.0271 0.2529 0.5073 0.9483 1.0
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P(A) = 1 −
365 × 364 × · · · × (365 − n + 1)

365n

n 2 5 15 23 46 64 366
P(A) 0.0027 0.0271 0.2529 0.5073 0.9483 0.9972 1.0
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P(A) = 1 −
365 × 364 × · · · × (365 − n + 1)

365n

n 2 5 15 23 46 64 366
P(A) 0.0027 0.0271 0.2529 0.5073 0.9483 0.9972 1.0

0 15 23 46 64 100
0

0.25

0.51

0.95
1

n

P
(A

)
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When time permits, we will try some simulations !

Source codes are here:
https://github.com/chenle02/2022_SSI-AU_Probability_by_Le

19
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More surprises of this type

1. Let C be the number of categories (i.e., C = 365) and n be the number
of students. Here is one useful approximation:

when n = 1.2
√

C, the chance of shared something is close to 1/2.

E.g., 1.2
√

365 = 22.9 (Birthday problem), 1.2
√

60 = 9.3 (Watch
problem).

2. How large should n be to have approximately even probability of a
triple birthday match?
Answer: 81.

3. Would that be a surprise if you find out with someone, not only you
share the same birthday, but also the same father’s birthday and the
same grandfather’s birthday?
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Number of generations 1 2 3 4 5
n to have about even odds 23
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Number of generations 1 2 3 4 5
n to have about even odds 23 438 8,368
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Number of generations 1 2 3 4 5
n to have about even odds 23 438 8,368 159,870
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Number of generations 1 2 3 4 5
n to have about even odds 23 438 8,368 159,870 3,054,312
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A question asked by Grand Duke of Tuscany
to Galileo in early seventh century

Three dice are thrown, such as

9 :

10 :

11 :

12 :

Counting combinations of numbers, 10 and 11 can be made in 6
ways, as can 9 and 12. Yet it is known that long observation has
made dice-players consider 10 and 11 to be more advantageous than
9 and 12. How can this be?

22



9

10 11

12
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3 = + +

4 = + +

5 = + + = + +

6 = + + = + + = + +

7 = + + = + + = + + = + +

8 = + + = + + = + + = + + = + +

9 = + + = + + = + + = + + = + + = + +

10 = + + = + + = + + = + + = + + = + +

11 = + + = + + = + + = + + = + + = + +

12 = + + = + + = + + = + + = + + = + +

13 = + + = + + = + + = + + = + +

14 = + + = + + = + + = + +

15 = + + = + + = + +

16 = + + = + +

17 = + +

18 = + +
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3 = 1 + 1 + 1

4 = 1 + 1 + 2

5 = 1 + 1 + 3 = 1 + 2 + 2

6 = 1 + 1 + 4 = 1 + 2 + 3 = 2 + 2 + 2

7 = 1 + 1 + 5 = 1 + 2 + 4 = 2 + 2 + 3 = 3 + 3 + 1

8 = 1 + 1 + 6 = 1 + 2 + 5 = 1 + 3 + 4 = 2 + 2 + 4 = 2 + 3 + 3

9 = 1 + 2 + 6 = 1 + 3 + 5 = 1 + 4 + 4 = 2 + 2 + 5 = 2 + 3 + 4 = 3 + 3 + 3

10 = 1 + 3 + 6 = 1 + 4 + 5 = 2 + 2 + 6 = 2 + 3 + 5 = 2 + 4 + 4 = 3 + 3 + 4

11 = 1 + 4 + 6 = 1 + 5 + 5 = 2 + 3 + 6 = 2 + 4 + 5 = 3 + 3 + 5 = 3 + 4 + 4

12 = 1 + 5 + 6 = 2 + 4 + 6 = 2 + 5 + 5 = 3 + 3 + 6 = 3 + 4 + 5 = 4 + 4 + 4

13 = 1 + 6 + 6 = 2 + 5 + 6 = 3 + 4 + 6 = 3 + 5 + 5 = 4 + 4 + 5

14 = 2 + 6 + 6 = 3 + 5 + 6 = 4 + 4 + 6 = 4 + 5 + 5

15 = 3 + 6 + 6 = 4 + 5 + 6 = 5 + 5 + 5

16 = 4 + 6 + 6 = 5 + 5 + 6

17 = 5 + 6 + 6

18 = 6 + 6 + 6

25



k Probability of a sum of k ≈

3 1/216 0.5%
4 3/216 1.4%
5 6/216 2.8%
6 10/216 4.6%
7 15/216 7.0%
8 21/216 9.7%
9 25/216 11.6%
10 27/216 12.5%
11 27/216 12.5%
12 25/216 11.6%
13 21/216 9.7%
14 15/216 7.0%
15 10/216 4.6%
16 6/216 2.8%
17 3/216 1.4%
18 1/216 0.5%
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Game of rolling three dices dated back to Roman Empire.

Richard de Fournival discovered in 13th century the summary of
216 possible sequences 4

in his poem, De Vetula, written between 1220 to 1250.

4Image is from Bennett (1998), Randomness, Harvard University Press.
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5

5Image from John D. McGervey (1986), Probabilities in everyday life, Nelson Hall Publishers.
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6

6Image from John D. McGervey (1986), Probabilities in everyday life, Nelson Hall Publishers.
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