Real Analysis – II

 $\begin{array}{c} \mathrm{MATH} \ 7210^{1} \\ \mathrm{Spring} \ 2022 \end{array}$

Le Chen

lzc0090@auburn.edu

Last updated on

February 8, 2022

Auburn University Auburn AL

¹Based on G. B. Folland's *Real Analysis, Modern Techniques and Their Applications*, 2nd Ed.

Chapter 3. Signed measures and differentiation

Chapter 3. Signed measures and differentiation

§ 3.1 Signed measures § 3.2 The Lebesgue-Radon-Nikodym theorem § 3.3 Complex measures § 3.4 Differentiation on Euclidean space

§ 3.5 Functions of bounded variation

Chapter 3. Signed measures and differentiation

- § 3.1 Signed measures
 § 3.2 The Lebesgue-Radon-Nikodym theorem
- § 3.3 Complex measures

§ 3.4 Differentiation on Euclidean space

§ 3.5 Functions of bounded variation

In this section, we apply what we have learned in the previous section to the case

$$X = \mathbb{R}$$

Recall that if F is a nondecreasing function on \mathbb{R} , then

$$\mu_F((a,b]) := F(b) - F(a) \quad a \leq b,$$

defines a Borel measure.

Theorem 3.5-1 Let $F : \mathbb{R} \to \mathbb{R}$ be a nondecreasing function and let G(x) := F(x+). Then

- (a) The set of discontinuous points of *F* is countable;
- (b) Both F and G are differentiable a.e., and F' = G' a.e.

Proof. (a) Notice that for all N > 0,

$$\sum_{|x|< N} [F(x+) - F(x)] \le F(N) - F(-N) < \infty.$$

Hence, the set of jump points

$$\{x \in (-N, N) : F(x+) \neq F(x)\}$$

has to be at most countable.

Proof (continued). (b) G is right continuous and G = F except possibly only at countable points, say, $\{x_j\}_1^{\infty}$.

Let μ_F and μ_G be the associate Borel measures defined as

$$\mu_G((a,b]) := G(b) - G(a), \quad a \leq b.$$

In order to the differentiability of G (and similarly for F), we need to check the existence of the limits:

$$\lim_{h\downarrow 0}\frac{G(x+h)-G(x)}{h}\quad \text{and}\quad \lim_{h\downarrow 0}\frac{G(x)-G(x-h)}{h},$$

which equal respectively

$$\lim_{h\downarrow 0} \frac{\mu_G((x,x+h])}{h} \quad \text{and} \quad \lim_{h\downarrow 0} \frac{\mu_G((x-h,x])}{h}. \tag{3}$$

Proof (continued). Notice that

- ▶ both $E_h = (x, x + h]$ and $E'_h = (x h, x]$ shrink nicely to x as $h \downarrow 0$;
- ► G satisfies Properties 1 and 2 of Theorem 3.4-7.

Hence, by Theorem 3.4-7, both limits, denoted as G', in (3) exist a.e. and are equal.

It remains to show that F' = G' a.e., which is equivalent to show that H' = 0 a.e. where H = G - F.

Proof (continued). It is clear that H(x) = 0 if $x \notin \{x_i\}_{1}^{\infty}$ and H(x) > 0 if $x \in \{x_i\}_{1}^{\infty}$. Hence,

$$H'(x) = \sum_{j=1}^{\infty} H(x_j) \delta_{x_j}(x)$$
 or equivalently $\mu_H = \sum_{j=1}^{\infty} H(x_j) \delta_{x_j}$.

Therefore, we see that $\mu_H \perp m$ because $m(\lbrace x_i \rbrace_1^{\infty}) = \mu_H([\lbrace x_i \rbrace_1^{\infty}]^c) = 0$.

It is ready to verify that μ_H satisfies Properties 1 and 2 of Theorem 3.4-7. Finally, an application of this theorem shows that H' = 0 a.e.

Definition 3.5-1 For a real-valued function $F : \mathbb{R} \to \mathbb{R}$, its *total variation* is defined as

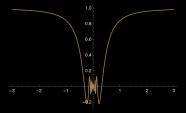
$$T_{F}(x) := \sup \left\{ \sum_{i=1}^{n} |F(x_{j}) - F(x_{j-1})| : n \in \mathbb{N}, -\infty < x_{0} < \cdots < x_{n} = x \right\}.$$

If $T_F(\infty) := \lim_{x \to \infty} T_F(x) < \infty$, F is said to be of *bounded variation* on \mathbb{R} , denoted by $F \in BV$.

Remark 3.5-1

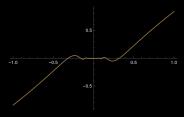
- 1. T_F is a nondecreasing and nonnegative function.
- 2. One can define similarly for BV([a, b]) for $-\infty < a < b < \infty$.

Example 3.5-1 $F(x) = x \sin(1/x)$ for $x \neq 0$ and $F(0) := \lim_{x \to 0} F(x) = 0$.



Then $F \notin BV([a,b])$ whenever $0 \in [a,b]$.

Example 3.5-2 $F(x) = x^2 \sin(1/x)$ for $x \neq 0$ and $F(0) := \lim_{x \to 0} F(x) = 0$.



Then $F \in BV([-1,1])$. (Homework)

Lemma 3.5-2 If $F \in BV$, then $T_F + F$ and $T_F - F$ are nondecreasing.

Proof. We will prove $T_F + F$. The other one can be proved in the same way.

For x < y, we want to show that

$$T_F(x) + F(x) \le T_F(y) + F(y).$$

By definition of T_F , for any $\epsilon > 0$, we can find points $x_0 < \cdots < x_n = x$ such that

$$\sum_{j=1}^{n} |F(x_j) - F(x_{j-1})| \geq T_F(x) - \epsilon.$$

Adding |F(y) - F(x)| on both sides gives:

$$T_{F}(y) \ge \sum_{j=1}^{n} |F(x_{j}) - F(x_{j-1})| + |F(y) - F(x)|$$

$$\ge T_{F}(x) + |F(y) - F(x)| - \epsilon$$

$$\ge T_{F}(x) + (F(x) - F(y)) - \epsilon.$$

Since ϵ is arbitrary, this proves the lemma.

Corollary 3.5-3 $F \in BV$ iff F is the difference of two bounded nondecreasing functions.

Proof. "⇒" Notice that

$$F = \underbrace{\frac{1}{2}(T_F + F)}_{:=F_1} - \underbrace{\frac{1}{2}(T_F - F)}_{:=F_2}.$$

By Lemma 3.5-2, we know that F_i are nondecreasing. It suffices to show F_i are bounded.

Indeed, $F \in BV$ implies that $T_F(\infty) < \infty$. On the other hand, for any $x > x_0$,

$$|F(x)| \le |F(x) - F(x_0)| + |F(x_0)|$$

$$\le T_F(x) - T_F(x_0) + |F(x_0)|$$

$$\le T_F(x) + |F(x_0)|$$

$$\le T_F(\infty) + |F(x_0)|$$

$$< \infty.$$

Hence, both F_i are bounded.

Remark 3.5-2 Thanks to Corollary 3.5-3, Theorem 3.5-1 is true for all $F \in BV$, namely,

If $F \in BV$ (the set of nondecreasing functions), by denoting G(x) := F(x+), then

- (a) The set of discontinuous points of *F* is countable;
- (b) Both F and G are differentiable a.e., and F' = G' a.e.

Definition 3.5-2 For $F \in BV$,

$$F = \underbrace{\frac{1}{2}(T_F + F)}_{:=F_+} - \underbrace{\frac{1}{2}(T_F - F)}_{:=F_-}.$$

is called the *Jordan decomposition* of F. F_+ and F_- are called the *positive variation* and *negative variation* of F, respectively.

Definition 3.5-3 $F \in BV$ is called a *normalized bounded variation function*, denoted as $F \in NBV$, if F is right continuous and F is nonnegative (i.e., $F(-\infty) = 0$).

Lemma 3.5-4 For any $F \in BV$, $T_F(-\infty) = 0$.

Proof. Because $T_F(x) \ge 0$, it suffices to show that for all $\epsilon > 0$, one can find $Y \in \mathbb{R}$ such that

$$T_F(y) < \epsilon$$
 for all $y < Y$.

Now fix an arbitrary $\epsilon > 0$. Since $F \in BV$, we can find a sub-optimal partition $-\infty < x_0 < \dots < x_n = x$ such that

$$\sum_{i=1}^{n} |F(x_i) - F(x_{i-1})| \geq T_F(x) - \epsilon.$$

Set $Y = x_0$. For all y < Y,

$$T_{F}(x) - T_{F}(y) \ge T_{F}(x) - T_{F}(x_{0})$$

$$\ge \sum_{i=1}^{n} |F(x_{i}) - F(x_{i-1})|$$

$$\ge T_{F}(x) - \epsilon,$$

which is $T_F(y) < \epsilon$.

Lemma 3.5-5 If $F \in BV$ and F is right continuous, then T_F is also right continuous.

Proof. Fix an arbitrary $x \in \mathbb{R}$ and $\epsilon > 0$. Let $\alpha := T_F(x+) - T_F(x)$. It suffices to prove that for some constant C > 0, $\alpha \le C\epsilon$.

By the right-continuity of F and $T_F(x+)$, there exist $\delta > 0$ such that for all $h \in (0, \delta)$,

$$|F(x+h) - F(x)| < \epsilon$$
 and $|T_F(x+h+) - T_F(x+)| < \epsilon$.

Since
$$|T_F(x+h+) - T_F(x+)| < \epsilon$$
 is true for all $h \in (0, \delta)$, it also holds that $|T_F(x+h) - T_F(x+)| < \epsilon$, for all $h \in (0, \delta)$.

Proof (continued). Fix any $h \in (0, \delta)$. We can find a sufficient good partition $x = x_0^1 < \cdots < x_{n_1}^1 = x + h$ such that

$$\sum_{i=1}^{n_1} \left| F(x_i^1) - F(x_{i-1}^1) \right| \ge \frac{3}{4} \left[T_F\left(x_{n_1}^1\right) - T_F(x) \right] \ge \frac{3\alpha}{4}.$$

Similarly, we can find another sufficient good partition $x = x_0^2 < \cdots < x_{n_2}^2 = x_1^1$ such that

$$\sum_{i=1}^{n_2} \left| F(x_i^2) - F(x_{i-1}^2) \right| \ge \frac{3}{4} \left[T_F(x_{n_2}^2) - T_F(x) \right] \ge \frac{3\alpha}{4}.$$

We can continue this refinement but these two steps will be sufficient:

Proof (continued). Hence,

$$\begin{split} \alpha + \epsilon &\geq [T_{F}(x+) - T_{F}(x)] + [T_{F}(x+h) - T_{F}(x)] \\ &= T_{F}(x+h) - T_{F}(x) \\ &\geq [T_{F}(x_{1}^{1}) - T_{F}(x)] + [T_{F}(x+h) - T_{F}(x_{1}^{1})] \\ &\geq \sum_{i=1}^{n_{2}} |F(x_{i}^{2}) - F(x_{i-1}^{2})| + \sum_{i=2}^{n_{1}} |F(x_{i}^{1}) - F(x_{i-1}^{1})| \\ &= \sum_{i=1}^{n_{2}} |F(x_{i}^{2}) - F(x_{i-1}^{2})| + \sum_{i=1}^{n_{1}} |F(x_{i}^{1}) - F(x_{i-1}^{1})| - |F(x_{1}^{1}) - F(x_{0})| \\ &\geq \sum_{i=1}^{n_{2}} |F(x_{i}^{2}) - F(x_{i-1}^{2})| + \sum_{i=1}^{n_{1}} |F(x_{i}^{1}) - F(x_{i-1}^{1})| - \epsilon \\ &\geq \frac{3\alpha}{4} + \frac{3\alpha}{4} - \epsilon \\ &\geq \frac{3\alpha}{2} - \epsilon \end{split}$$

which is equivalent to $\alpha \leq 4\epsilon$.

There is a one-to-one correspondence between the finite signed measure² μ on \mathbb{R} and $F \in NBV$.

Theorem 3.5-6 (a) If μ is a finite signed measure on \mathbb{R} , then $F \in NBV$ where $F(x) := \mu((-\infty, x])$.

- (b) Conversely, if $F \in NBV$, there is a unique signed finite Borel measure μ_F on \mathbb{R} determined through $\mu_F((-\infty, x]) = F(x)$.
- (c) Moreover, if $F \in NBV$, then μ_{T_F} is a finite measure and

$$|\mu| = \mu_{T_F}$$
.

$$|\mu(\mathbb{R})| = \mu_+(\mathbb{R}) + \mu_-(\mathbb{R}) < \infty$$

Proof of Theorem 3.5-6. (a) Assume that μ is a finite signed measure on \mathbb{R} . Let $\mu = \mu_+ - \mu_-$ be its Jordan decomposition.

Define

$$F_{+}(x) := \mu_{+}((-\infty, x]),$$

$$F_{-}(x) := \mu_{-}((-\infty, x]),$$

$$F(x) := F_{+}(x) - F_{-}(x).$$

Then we see that

- 1. $F_+(x)$ and F(x) are right continuous;
- 2. $F_{\pm}(x)$ and F(x) are bounded: $|F(x)| \leq F_{+}(\infty) + F_{-}(\infty) = |\mu|(\mathbb{R}) < \infty$;
- 3. $F_{\pm}(-\infty) = F(-\infty) = 0$;
- F(x) is a difference of two bounded nondecreasing functions ⇒ F ∈ BV; see Corollary 3.5-3.
- 5. Hence, $F \in NBV$.

This proves (a).

Proof (continued). (b) Now we assume that $F \in NBV$. Let

$$F = \underbrace{\frac{1}{2} (T_F + F)}_{:=F_+} - \underbrace{\frac{1}{2} (T_F - F)}_{:=F_-}$$

be its Jordan decomposition.

By Lemmas 3.5-4 and 3.5-5, we see that both F_{\pm} are right-continuous and bounded.

Define

$$\mu_{\pm}((-\infty, x]) := F_{\pm}(x) - F(-\infty) = F_{\pm}(x).$$

Then we see that μ_{\pm} are finite Borel measures: $\mu_{\pm}(\mathbb{R}) = \mathcal{F}_{\pm}(\infty) \leq |\mu|(\mathbb{R})$.

As a consequence,

$$\mu((-\infty, \mathbf{x}]) := \mu_{+}((-\infty, \mathbf{x}]) - \mu_{-}((-\infty, \mathbf{x}])$$

is a finite signed measure.

This proves (b).

Proof (continued). (c) Let $F \in NBV$ and the corresponding finite signed measure be μ_F .

In order to show that $|\mu_F| = \mu_{T_F}$, it suffices to show that

$$|\mu_F|((-\infty, \mathbf{x}]) = \mu_{T_F}((-\infty, \mathbf{x}]), \text{ for all } \mathbf{x} \in \mathbb{R}.$$
 (*)

By Lemmas 3.5-4 and 3.5-5, we see that both T_F is right-continuous and bounded. Hence, $T_F \in NBV$. By Part (b), μ_{T_F} is a finite (positive) measure such that

$$\mu_{T_F}((-\infty, \mathbf{x}]) = T_F(\mathbf{x}).$$

Apply part (a) to $|\mu_F|$ to see that $G(x) := |\mu_F|((-\infty, x]) \in NBV$, and moreover G is nondecreasing.

Hence,

$$(\star) \Leftrightarrow G(x) = T_F(x).$$

To prove $G = T_F$, following steps in Exercise 28. This proves (c) and hence the whole theorem.

Corollary 3.5-7 Suppose that $F \in NBV$ and let μ_F be its corresponding finite signed measure. Let the corresponding Jordan decompositions of F and μ_F be

$$F = \underbrace{\frac{1}{2} \left(T_F + F \right)}_{:=F_+} - \underbrace{\frac{1}{2} \left(T_F - F \right)}_{:=F_-} \quad \text{and} \quad \mu_F = \mu_+ - \mu_-, \quad \text{respectively}.$$

Then

$$\mu_{+} = \mu_{F_{+}}$$
 and $\mu_{-} = \mu_{F_{-}}$.

More properties:

- 1. $F \in NBV \Rightarrow F' \in L^1(m)$.
- 2. If $F \in NBV$, then $\mu_F \perp m \iff F' = 0$ a.e.
- 3. If $F \in NBV$, then

$$\mu_F \ll m \iff F ext{ is absolutely continuous}$$
 $\iff F(x) = \int_{-\infty}^x F'(t) dt$

4. If μ is a signed measure on \mathbb{R} , then

$$\mu = \underbrace{\mu_{\rm d} + \mu_{\rm sc}}_{=\mu_{\rm s}} + \mu_{\rm ac}.$$

Theorem 3.5-8 If $F, G \in NBV$ and at least one of them is continuous, then for all $-\infty < a < b < \infty$,

$$\int_{(a,b]} F dG + \int_{(a,b]} G dF = F(b)G(b) - F(a)G(a).$$

Remark 3.5-3 The integrals in the above theorem is called the *Lebesgue-Stieltjes integral*.

Proof. Without loss of generality, we may assume that (1) both F and G are nondecreasing; (2) G is continuous.

Fix arbitrary $a, b \in \mathbb{R}$ such that a < b. Let

$$\Omega = \{(x, y) \in \mathbb{R}^2 : a < x \le y \le b\}$$

By Tonelli's theorem, compute $\mu_F \times \mu_G(\Omega)$ in two ways...