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Preface

These notes are for the course MATH 7820/7830: Applied Stochastic Processes, I/II, taught at Auburn
University.

• Instructor: Dr. Le Chen

• Email: lzc0090@auburn.edu

• Homepage https://webhome.auburn.edu/l̃zc0090

This course sequence covers Markov chains, Markov processes, optimal stopping, martingales, renewal
processes, Brownian motion, and stochastic calculus, along with their applications.

We will use and follow the textbook “Introduction to Stochastic Processes” by Gregory F. Lawler,
Second Edition [1]. In these notes, we provide supplementary explanations and additional commentary to
complement the material presented in the textbook. More materials will be provided on the course website
at

https://webhome.auburn.edu/l̃zc0090/teaching/2025_Fall_Math7820/

i

lzc0090@auburn.edu
https://webhome.auburn.edu/~lzc0090
https://webhome.auburn.edu/~lzc0090/teaching/2025_Fall_Math7820/
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Preliminaries

?〈chap:preliminaries〉?
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Finite Markov Chains

?〈chap:finite_mc〉?
0.1 Example 1 of §1.3
The analysis is performed on the following 5× 5 matrix P:

P =



0 1 0 0 0

1/2 0 1/2 0 0

0 1/2 0 1/2 0

0 0 1/2 0 1/2

0 0 0 1 0


This matrix represents the transition probabilities of a simple random walk on a path with 5 states.

0.1.1 Computing Pn

Finding the Eigenvalues The eigenvalues λ are the roots of the characteristic equation det(P−λI) = 0.
The characteristic polynomial for this matrix is:

−λ5 +
3

2
λ3 − 1

2
λ = 0

Factoring this polynomial gives:

λ(2λ4 − 3λ2 + 1) = 0 =⇒ λ(2λ2 − 1)(λ2 − 1) = 0

Solving for λ, we find the five distinct eigenvalues:

λ1 = 1, λ2 = −1, λ3 =

√
2

2
, λ4 = −

√
2

2
, λ5 = 0

Finding the Eigenvectors For each eigenvalue λ, we find the corresponding right eigenvector v by solving
the system of linear equations (P− λI)v = 0.

Eigenvalue-Eigenvector Pairs

• For λ1 = 1:

v1 =



1

1

1

1

1


vii



viii FINITE MARKOV CHAINS

• For λ2 = −1:

v2 =



1

−1

1

−1

1


• For λ3 = 0: (Note: The order of eigenvalues has been adjusted for the final decomposition matrix).

v3 =



1

0

−1

0

1


• For λ4 =

√
2
2 :

v4 =



√
2

1

0

−1

−
√
2


• For λ5 = −

√
2
2 :

v5 =



√
2

−1

0

1

−
√
2


The eigen decomposition of a matrix is given by the formula P = QΛQ−1. The matrix Q is formed by

using the eigenvectors as its columns.

Q =



1 1 1
√
2

√
2

1 −1 0 1 −1

1 1 −1 0 0

1 −1 0 −1 1

1 1 1 −
√
2 −

√
2


.

The matrix Λ is a diagonal matrix containing the eigenvalues corresponding to the columns of Q.

Λ =



1 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0
√
2
2 0

0 0 0 0 −
√
2
2


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The inverse matrix Q−1 is found by calculating the normalized left eigenvectors of P.

Q−1 =



1
8

1
4

1
4

1
4

1
8

1
8 − 1

4
1
4 − 1

4
1
8

1
4 0 − 1

2 0 1
4√

2
8

1
4 0 − 1

4 −
√
2
8√

2
8 − 1

4 0 1
4 −

√
2
8


Multiplying these three matrices in the order QΛQ−1 will yield the original matrix P.

Therefore, we have

lim
n→∞

Pn = lim
n→∞

QΛnQ−1

= Q



1 0 0 0 0

0 (−1)n 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


Q−1

This can be written as
Pn = v1w

>
1 + (−1)nv2w

>
2 ,

where v1 = [1, 1, 1, 1, 1]>, v2 = [1,−1, 1,−1, 1]>, and

w>
1 =

[
1
8 ,

1
4 ,

1
4 ,

1
4 ,

1
8

]
, w>

2 =
[
1
8 ,−

1
4 ,

1
4 ,−

1
4 ,

1
8

]
.

Therefore, the limit limn→∞ Pn does not exist because of the oscillating (−1)n term. However, the even
and odd subsequences converge:

• For n = 2k (even powers),

P2k → Πeven = v1w
>
1 + v2w

>
2 =



1
4 0 1

2 0 1
4

0 1
2 0 1

2 0
1
4 0 1

2 0 1
4

0 1
2 0 1

2 0
1
4 0 1

2 0 1
4


.

• For n = 2k + 1 (odd powers),

P2k+1 → Πodd = v1w
>
1 − v2w

>
2 =



0 1
2 0 1

2 0
1
4 0 1

2 0 1
4

0 1
2 0 1

2 0
1
4 0 1

2 0 1
4

0 1
2 0 1

2 0


.

Hence, the chain has period 2.
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0.1.2 Stationary Distribution
Question 0.1.1. Find the stationary distribution π of the Markov chain:

Step 1: The stationary distribution π of a Markov chain with transition matrix P is a row vector satisfying

πP = π,

5∑
i=1

πi = 1.

That is, π is a left eigenvector of P with eigenvalue 1, normalized to sum to 1.

Step 2: From the eigenvector decomposition, the right eigenvector for λ = 1 is v1 = [1, 1, 1, 1, 1]>. The
corresponding left eigenvector (row vector) is the first row of Q−1:

w>
1 =

[
1
8 ,

1
4 ,

1
4 ,

1
4 ,

1
8

]
.

This vector is already normalized to sum to 1:
1
8 + 1

4 + 1
4 + 1

4 + 1
8 = 1+2+2+2+1

8 = 8
8 = 1.

Step 3: Therefore, the stationary distribution is

π =
[
1
8 ,

1
4 ,

1
4 ,

1
4 ,

1
8

]
.

Step 4: Interpretation: Since the chain is periodic with period 2, the stationary distribution is not the
limit of Pn as n → ∞, but it is the unique solution to πP = π.

Final Answer:

π =
[
1
8 ,

1
4 ,

1
4 ,

1
4 ,

1
8

]
is the stationary distribution of P.
Remark 0.1.1. • The stationary distribution is found as the normalized left eigenvector for eigenvalue 1.

• The chain is periodic (period 2), so Pn does not converge, but the stationary distribution still exists
and is unique.

• The stationary distribution assigns probability 1/8 to the endpoints and 1/4 to the interior states,
reflecting the higher likelihood of being in the middle states in the long run.

• The answer is consistent with the eigen-decomposition and the structure of the transition matrix.

0.1.3 Cesàro Average
For a Markov chain with transition matrix P and stationary distribution π, the Cesàro average of the
transition matrices is defined as

An =
1

n

n−1∑
k=0

Pk.

The Cesàro average describes the average behavior of the chain over time.
If the chain is irreducible and aperiodic, then Pn converges to a rank-one matrix whose rows are all π.

However, if the chain is periodic (as in this case, with period 2), Pn does not converge, but the Cesàro
average An still converges as n → ∞.

In the periodic case, the Cesàro average converges to the stationary projection:

lim
n→∞

An = 1π,

where 1 is the column vector of all ones, so every row of the limiting matrix equals π.
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Question 0.1.2. Find the limit of the Cesàro average of the Markov chain.

In the example, the Cesàro average is given by

1

2

(
Πeven +Πodd

)
= v1w

>
1 =



1
8

1
4

1
4

1
4

1
8

1
8

1
4

1
4

1
4

1
8

1
8

1
4

1
4

1
4

1
8

1
8

1
4

1
4

1
4

1
8

1
8

1
4

1
4

1
4

1
8


,

so every row equals the stationary distribution

π =
(
1
8 ,

1
4 ,

1
4 ,

1
4 ,

1
8

)
.

Thus, the Cesàro average projects any initial distribution onto the stationary distribution in the long run.

0.2 Example 2 of §1.3

The analysis is performed on the following 5× 5 transition matrix P:

P =



1 0 0 0 0

1/2 0 1/2 0 0

0 1/2 0 1/2 0

0 0 1/2 0 1/2

0 0 0 0 1


.

This matrix represents the transition probabilities of a simple random walk on a path with 5 states, with
states 1 and 5 absorbing.

0.2.1 Eigen Decomposition

Step 1: Eigenvalues. The absorbing states 1 and 5 guarantee that 1 is an eigenvalue of multiplicity at
least 2. The middle 3× 3 block is

A =


0 1/2 0

1/2 0 1/2

0 1/2 0

 ,

with characteristic polynomial

det(A− λI) = −λ3 + 1
2λ.

Thus, λ = 0, ±1/
√
2 are the eigenvalues of A.

Hence, the eigenvalues of P are

λ1 = 1, λ2 = 1, λ3 = − 1√
2
, λ4 = 1√

2
, λ5 = 0.
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Step 2: Eigenvectors. With the chosen ordering, the corresponding right eigenvectors are

λ = 1 : v1 =



−3

−2

−1

0

1


, v2 =



4

3

2

1

0


;

λ = − 1√
2
: v3 =



0

1

−
√
2

1

0


;

λ = 1√
2
: v4 =



0

1
√
2

1

0


;

λ = 0 : v5 =



0

−1

0

1

0


.

Step 3: Decomposition. Collecting these eigenvectors as columns gives

V =



−3 4 0 0 0

−2 3 1 1 −1

−1 2 −
√
2

√
2 0

0 1 1 1 1

1 0 0 0 0


,

with inverse

V−1 =



0 0 0 0 1
1
4 0 0 0 3

4
−2+

√
2

8
1
4 − 1

2
√
2

1
4

−2+
√
2

8

−2−
√
2

8
1
4

1
2
√
2

1
4

−2−
√
2

8

1
4 − 1

2 0 1
2 − 1

4


.

Then
P = VΛV−1, Λ = diag

(
1, 1, − 1√

2
, 1√

2
, 0

)
.

0.2.2 Asymptotic Behavior of Pn

For n ≥ 1,
Pn = VΛn V−1.
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The contributions from eigenvalues 0,±1/
√
2 vanish as n → ∞. Thus

lim
n→∞

Pn = U =



1 0 0 0 0
3
4 0 0 0 1

4
1
2 0 0 0 1

2
1
4 0 0 0 3

4

0 0 0 0 1


.

Thus U encodes absorption probabilities:

P (absorption at 1 | X0 = i) =
5− i

4
, P (absorption at 5 | X0 = i) =

i− 1

4
, i = 1, . . . , 5.

0.2.3 Stationary Distributions
Since P is absorbing, the set of stationary distributions is

π = α e1 + (1− α) e5, 0 ≤ α ≤ 1,

where e1 = (1, 0, 0, 0, 0), e5 = (0, 0, 0, 0, 1).
For any initial distribution µ,

µPn −−−−→
n→∞

µU,

which is a convex combination of e1 and e5 with weights given by the absorption probabilities.

0.2.4 Cesàro Average
Finally, consider the Cesàro average:

1

n

n−1∑
k=0

Pk.

As n → ∞, contributions from non-unit eigenvalues vanish, leaving the projection onto the λ = 1 eigenspace.
Thus

1

n

n−1∑
k=0

Pk −−−−→
n→∞

U.

Hence both Pn and the Cesàro average converge to the same absorbing-probability projector U.
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