Lambert Quadrilaterals.

Definition. The quadrilateral $\square A B C D$ is called a Lambert quadrilateral if it has three right angles. [Notation, for the Lambert quadrilateral $\square A B C D$ the point D is usually assumed to be the angle which has not been designated as a right angle. (Though in Euclidean geometry it will be a right angle.)]

Definition. The quadrilateral $\square A B C D$ is called a Saccheri quadrilateral if has two congruent sides perpendicular to a third side, called the base of the quadrilateral. [Notation, for the Saccheri quadrilateral $\square A B C D$ the sidet $\overline{A B}$ is usually assumed to be the base with sides $\overline{D A}$ and $\overline{C B}$ perpendicular to it.]

Non-Euclidean Exercise: A study of quadrilaterals.

Claim 1. If $\square A B C D$ is a rectangle, then opposite side are congruent. [Note: this is a neutral geometry theorem.]

Claim 2. If $\square A B C D$ is a Saccheri quadrilateral with congruent sides $\overline{D A}$ and $\overline{C B}$, then the angles $\angle C D A$ and $\angle D C B$ are congruent.

Claim 3. Suppose $\square A B C D$ is a quadrilateral with right angles $\angle D A B$ and $\angle A B C$. Then the angle opposite the smaller side is smaller: if $m(\overline{D A})<$ $m(\overline{C D})$ then $m(\angle A D C)>m(\angle B C D)$.

Proof. Let E be chosen on $\overrightarrow{B C}$ so that $\overline{B E} \cong \overline{A D}$; since $m(A D)<m(B C)$ we have $B--E--D$.
$\angle A D E \cong \angle B E D$, by Saccheri quadrilateral.
So $m(\angle A D E)<m(\angle A D C)$ since $\overrightarrow{D E}$ lies in the interior of $\angle A D C$.
$\angle B E D>\angle B C D$, exterior angle theorem.
So $m(\angle A D C)>m(\angle B C D)$.

Claim 4. Suppose $\square A B C D$ is a quadrilateral with right angles $\angle D A B$ and $\angle A B C$. Then the side opposite the larger angle is larger: if $m(\angle A D C)>$ $m(\angle B C D)$ then $m(\overline{D A})<m(\overline{C D})$.

Figure 1:

Proof. If not we have a contradiction to claim 3.

Claim 5. Suppose ℓ and m are two parallel lines so that P and Q are points of ℓ whose distance from m are equal, then ℓ and m have a common perpendicular through the midpoint M of $\overline{P Q}$.

Figure 2:

Proof. Let M be the midpoint of $\overline{P Q}$ and let A, B, D be the bases of perpendicularity respectively from P, Q, M to ℓ.
$\overline{P A} \cong \overline{Q B}$ by hypothesis;
$\angle A P M \cong \angle B Q M$, since $\square P A B Q$ is a Saccheri quadrilateral; $\overline{P M} \cong \overline{Q M}$ since M is the midpoint;
so $\triangle M P A \cong \triangle M Q B$ by SAS.
$\angle P M A \cong Q M B$ congruencies.
$\overline{A M} \cong \overline{B M}$ congruencies;
$\overline{M B} \cong \overline{M B}$ identity;
$\angle M D A \cong M D B$ right angles;
$\triangle M D A \cong \triangle M D B$ SS -right angle.
$\angle A M D \cong \angle B M D$ congruencies;
$\angle P M D \cong \angle Q M D$ angle addition of congruent angles.
Therefore $\overline{M D} \perp \overline{A B}$.
$\overline{A D} \cong \overline{B D}$ congruencies; therefore D is the midpoint of $\overline{A B}$.
Corollary to Claim 5. The perpendicular bisector of the base of a Saccheri quadrilateral divides it into two Lambert quadrilaterals.

Claim 6. On the hypothesis of claim 5, every other point of ℓ is farther from m than M.

Proof. Referring to Figure 2: If $R \in m$ and X is the base of perpendicularity to ℓ then the quadrilateral $\square R X D M$ has right angles $\angle R X D, \angle X D M, \angle D M R$; since $\operatorname{def}(\square R X D M>0)$ it follows that $m(\angle M R X)<90$. So the result follows from Claim 4.

Claim 7. Suppose that ℓ and m are lines such that there is a segment $P D$ with $P \in m$ and $D \in \ell$ so that $P D$ is parallel to both ℓ and m. Then m and ℓ are perpendicular and if Q and R are points of m so that $Q P \cong R P$ then Q and R are the same distance from ℓ.

