Pascal's Mystic Hexigon

Theorem. Suppose that an arbitrary (not regular) hexagon is inscribed in a circle. Then if the sides opposite each other are extended so that they intersect. Then the three points of intersection lie in a straight line.

So, if hexagon $A B C D E F$ is inscribed in a circle with $\overline{A B}$ opposite $\overline{D E}$, etc. And if $P=\overline{A B} \cap \overline{D E}, Q=\overline{B C} \cap \overline{E F}, R=\overline{C D} \cap \overline{F A}$, then the points P, Q and R lie in a straight line.

Figure 1. Hexagon inscribed in a circle.

Pascal's Theorem. Suppose that an arbitrary hexagon is inscribed in a conic section. Then if the sides opposite each other are extended so that they intersect. Then the three points of intersection lie in a straight line.

Figure 2. Projective Geometry "Proof" of Pascal's Theorem.

