The Poincaré Model for the Hyperbolic Plane Geometry.

Let E^{2} denote the Cartesian plane. Note that we will also think of it as the complex plane for some calculations.

Let $\mathcal{D}=\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$; equivalently if we think of (x, y) as the complex number $z=x+y i$, then $\mathcal{D}=\{z| | z \mid<1\}$. The points of \mathcal{D} are the points in our hyperbolic geometry. So the points of this model is a subset of Cartesian or Complex plane.

Define $S^{1}=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$ or equivalently, $S^{1}=\{z| | z \mid=1\}$.
Definition of a line in the model: ℓ is a line if and only if $1 . \ell$ is the common part of \mathcal{D} and a usual line in E^{2} that contains the origin $(0,0)$, or 2 . ℓ is the common part of \mathcal{D} and a circle perpendicular to S^{1} at each intersection.

Definition. The angle between two intersecting circles is the angle between their tangent lines at the intersection point. Similarly, the angle between a line and a circle is the angle between the line and the tangent line to the circle at the point.

Definition. If w and z are two points in \mathcal{D} (thought of as points in the complex plane) then the measure of the line segment $\overline{w z}$ in our model is defined as:

$$
m(\overline{w z})=\ln \left(\frac{|1-z \bar{w}|+|z-w|}{|1-z \bar{w}|-|z-w|}\right)
$$

where on the right side of the equation z and w are interpreted as complex numbers and \bar{w} denotes the complex conjugate of w.

Theorem. The Poincaré model satisfies the axioms of geometry with the hyperbolic axiom [the acute angle axiom for the Saccheri or Lambert quadrilaterals].

Poincaré's Universe.

Main assumptions are equivalent to the following: The Universe consists of the points inside a sphere of radius R such that the length of a measuring rod at distance r from the center is given by $\ell=k\left(R^{2}-r^{2}\right)$. We let $k=1$ as our standard unit of measurement. Since the distance $d(A, B)$ between two objects A and B is measured by seeing how many times the standard unit divides into the distance $d(A . B)$, it follows that the length of a rod from r to $r+\Delta r$ will be approximately $\frac{\Delta r}{R^{2}-r^{2}}$. So then the length $\ell\left(r_{1}, r_{2}\right)$ of a path along a radial ray from r_{1} to r_{2} will be:

$$
\begin{aligned}
\ell\left(r_{1}, r_{2}\right) & =\int_{r_{1}}^{r_{2}} \frac{1}{R^{2}-r^{2}} d r \\
& =\int_{r_{1}}^{r_{2}}\left(\frac{\frac{1}{2 R}}{R+r}+\frac{\frac{1}{2 R}}{R-r}\right) d r \\
& =\left.\frac{1}{2 R}(\ln (R+r)-\ln (R-r))\right|_{r_{1}} ^{r_{2}} \\
& =\frac{1}{2 R}\left(\ln \left(\frac{R+r_{2}}{R-r_{2}}\right)-\ln \left(\frac{R+r_{1}}{R-r_{1}}\right)\right) \\
& =\frac{1}{2 R} \ln \left(\frac{\left(R+r_{2}\right)\left(R-r_{1}\right)}{\left(R-r_{2}\right)\left(R+r_{1}\right)}\right) .
\end{aligned}
$$

So the radius of the Universe would appear to be:

$$
\begin{aligned}
\int_{0}^{R} \frac{1}{R^{2}-r^{2}} d r & =\frac{1}{2 R} \ln \left(\frac{(R+R) R}{(R-R) R}\right) \\
& \rightarrow \infty
\end{aligned}
$$

