Presentations03

Generic presentation: Select a problem from your textbook in the section	
currently discussed and solve it.	
Get my okay and confirmation as a presentation topic.	
State and solve a Diophantine equation.	
Given the cubic equation $x^3 + p = qx$, let $b = \sqrt{q}$, $c = \frac{p}{b}$ and show that	
the equivalent equation $x^3 + b^2 c = b^2 x$ has a solution which is the	
intersection of the hyperbola $y^2 + cx = x^2$ and the parabola $y = \frac{1}{h} x^2$.	
Show that if r is a root of the polynomial $x^2 + bx + c$ then $x - r$ is a factor	
of that polynomial; similarly show that if r is a root of the polynomial x^3 +	
$b x^2 x + cx + d$ then $x - r$ is factor of that polynomial. [Hint, use long	
division.]	
Show that if $P(x) = x^n + A_{n-1}x^{n-1} + A_{n-2}x^{n-2} + \dots + A_1x + A_0 =$	
$(x - r_1)(x - r_2) \dots (x - r_n)$ then $A_0 = r_1 r_2 \dots r_n$ and $A_{n-1} = -r_1 - r_1$	
$r_2 \dots - r_n$.	
Problem (translated) from an old text: A man put one pair of rabbits in a	
certain place entirely surrounded by a wall, How many rabbits can be	
produced from that pair in a year, if the nature of these rabbits is such that	
every month each pair bears a new pair which from the second month on	
becomes productive?	
Show that the ratio of the $(n+1)^{th}$ Fibonacci number to the n^{th} limits to the	
golden ratio.	
Given the general cubic equation: $x^3 + ax^2 + bx + c = 0$, find a value for	
k so that the transformation $x = t + k$ transforms the equation into one	
without a quadratic term.	
Solve the cubic equation.	
Solve the quartic equation.	
Fibonacci problem: A man entered an orchard through 7 gates and picked	
some apples. When he left, he gave the first guard half his apples and 1 apple	
more. To the second guard he gave half his remaining apples and 1 more. He	
did the same to each of the remaining five guards and left the orchard with 1	
apple. How many apples did he gather in all?	