Presentations03

Generic presentation: Select a problem from your textbook in the section currently discussed and solve it. Get my okay and confirmation as a presentation topic.	
State and solve a Diophantine equation.	
Given the cubic equation $\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{p}=\boldsymbol{q} \boldsymbol{x}$, let $\boldsymbol{b}=\sqrt{\boldsymbol{q}}, \boldsymbol{c}=\frac{\boldsymbol{p}}{\boldsymbol{b}}$ and show that the equivalent equation $\boldsymbol{x}^{3}+\boldsymbol{b}^{2} \boldsymbol{c}=\boldsymbol{b}^{2} \boldsymbol{x}$ has a solution which is the intersection of the hyperbola $y^{2}+c x=x^{2}$ and the parabola $y=\frac{1}{b} x^{2}$.	
Show that if \boldsymbol{r} is a root of the polynomial $\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$ then $\boldsymbol{x}-\boldsymbol{r}$ is a factor of that polynomial; similarly show that if r is a root of the polynomial $\boldsymbol{x}^{3}+$ $\boldsymbol{b} \boldsymbol{x}^{2} \boldsymbol{x}+\boldsymbol{c} \boldsymbol{x}+\boldsymbol{d}$ then $\boldsymbol{x}-\boldsymbol{r}$ is factor of that polynomial. [Hint, use long division.]	
Show that if $P(x)=x^{n}+A_{n-1} x^{n-1}+A_{n-2} x^{n-2}+\cdots+A_{1} x+A_{0}=$ $\left(\boldsymbol{x}-\boldsymbol{r}_{1}\right)\left(\boldsymbol{x}-\boldsymbol{r}_{2}\right) \ldots\left(\boldsymbol{x}-\boldsymbol{r}_{n}\right)$ then $\boldsymbol{A}_{0}=\boldsymbol{r}_{1} r_{2} \ldots r_{n}$ and $\boldsymbol{A}_{n-1}=-\boldsymbol{r}_{1}-$ $r_{2} \ldots-r_{n}$.	
Problem (translated) from an old text: A man put one pair of rabbits in a certain place entirely surrounded by a wall, How many rabbits can be produced from that pair in a year, if the nature of these rabbits is such that every month each pair bears a new pair which from the second month on becomes productive?	
Show that the ratio of the $(\mathrm{n}+1)^{\text {th }}$ Fibonacci number to the $\mathrm{n}^{\text {th }}$ limits to the golden ratio.	
Given the general cubic equation: $\boldsymbol{x}^{3}+\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}=\mathbf{0}$, find a value for \boldsymbol{k} so that the transformation $\boldsymbol{x}=\boldsymbol{t}+\boldsymbol{k}$ transforms the equation into one without a quadratic term.	
Solve the cubic equation.	
Solve the quartic equation.	
Fibonacci problem: A man entered an orchard through 7 gates and picked some apples. When he left, he gave the first guard half his apples and 1 apple more. To the second guard he gave half his remaining apples and 1 more. He did the same to each of the remaining five guards and left the orchard with 1 apple. How many apples did he gather in all?	

