Presentations05

Show that light traveling along a line toward a parabolic mirror (assume equation $\boldsymbol{y}=\boldsymbol{a \boldsymbol { x } ^ { 2 }}$) parallel to the axis of symmetry is reflected toward the focus.	
State and explain Newton's generalized binomial theorem.	
Use the binomial theorem to expand $\frac{\mathbf{1}}{1+\boldsymbol{x}}$. Then use long division to do the same expansion. Find the interval of convergence and repeat for the function $\frac{1}{1-x}$.	
Use the identity $\ln a-\ln b=\ln \left(\frac{a}{b}\right)$ and the above expansions to get a power series for $\ln \left(\frac{1+x}{1-x}\right)$, find the interval of convergence and show that this can be used to calculate $\ln N$ for $N>1$.	
Use the binomial theorem to expand $\sqrt{\mathbf{1}+\boldsymbol{x}}$.	
Use long division and (modern) integration to obtain Mercator's identity:	
$\ln (\mathbf{1}+\boldsymbol{x})=\boldsymbol{x}-\frac{\boldsymbol{x}^{2}}{\mathbf{2}}+\frac{\boldsymbol{x}^{\mathbf{3}}}{\mathbf{3}}-\frac{\boldsymbol{x}^{\mathbf{4}}}{\mathbf{4}}+\cdots$	

