The problem of points.

The problem: Two rich French noblemen, H... and T..., agreed to play the following gambling game based on the fair toss of a coin. One player selects "heads" and the other selects "tails". They put a sizable amount of gold in a pot kept by a the local priest (a fair and unbiased person) who also flipped the coin. The first one to reach 5 points wins the pot.

They begin their play, the table surrounded by onlooker, when the game is suddenly interrupted (the revolution had reached the chateau.) Player H had 3 heads and player T had 2 tails when the revolutionaries knocked on the door. The priests has the pot of gold; he comes to you (the parish mathematician) to figure out a fair way to divide the pot based on the likelihood of each player wining. How would you divide the pot?

Solution. The possible outcomes 0 and probabilities P(O) with the indicated winner for each outcome is listed below.

$$\begin{array}{ccc} O & p & wins \\ HH & \frac{1}{4} & H \\ HTH & \frac{1}{8} & H \\ HTH & \frac{1}{8} & H \end{array}$$

outcome	prob	winner
НН	$\frac{1}{4}$	Н
НТН	$\frac{1}{8}$	Н
HTTH	$\frac{1}{16}$	Н
HTTT	$\frac{1}{16}$	ight T
THH	$\frac{1}{8}$	Н
THTH	$\frac{1}{16}$	Н
THTT	$\frac{1}{16}$	T
TTHH	$\frac{1}{16}$	Н
TTHT	$\frac{1}{16}$	\mid T
TTT	$\frac{1}{8}$	\mid T

To double check the calculations, I check to make sure that all the prob-

abilities some to 1. Then I calculate the probability of each winning:

$$P(T \text{ wins}) = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{8}$$

= $\frac{5}{16}$
 $P(H \text{ wins}) = 1 - P(T \text{ wins})$
= $\frac{11}{16}$.