Saccheri Quadrilaterals.

Definition. A Saccheri quadrilateral is a quadrilateral with two congruent sides perpendicular to a third side, called the base of the quadrilateral.

Exercises: In working with these you may assume the the SAS axiom and the ASA and SSS theorems.

Given: For $\square A B C D$ we have $\overline{A D} \cong \overline{B C}$, angles $\angle A B C$ and $\angle B A D$ are congruent right angles.

Exercise 1. The summit angle of a Saccheri Quadrilateral are equal.

Figure 1: Sccheri Quadrilateral.

Proof.

$$
\begin{aligned}
\triangle A B C & \cong \triangle B A D(\mathrm{SAS}) \\
\overline{A C} & \cong \overline{B D} \\
\triangle A D C & \cong \triangle B C D(\mathrm{SSS}) \\
\therefore \angle A D C & \cong \angle B C D
\end{aligned}
$$

Figure 2: Saccheri Quadrilateral - Midpoint Theorem.

Exercise 2. The line joining the midpoint of the base and summit of a Saccheri Quadrilateral is perpendicular to both of them.

Proof.

$$
\begin{aligned}
\triangle M A D & \cong \triangle M B C(\mathrm{SAS}) \\
\overline{M D} & \cong \overline{M C} \\
\triangle M D K & \cong \triangle M C K(\mathrm{SSS}) \\
\angle M K D & \cong \angle M K C \text { (and therefore is a right angle) } \\
\angle A D K & \cong \angle B C K(\text { exercise } 1) \\
\triangle A D K & \cong \triangle B C K(\mathrm{SAS}) \\
\overline{A K} & \cong \overline{B K} \\
\triangle A M K & \cong \triangle B M K(\mathrm{SSS}) \\
\angle A M K & \cong \angle B M K \text { (and therefore is a right angle) }
\end{aligned}
$$

Exercise 3. If perpendiculars are drawn from the extremities of the base of a triangle upon the line passing through the midpoints of the two sides, then a Saccheri quadrilateral is formed.

Figure 3: Triangle theorem.

Proof. Given:

$$
\begin{aligned}
& \overline{A M} \cong \overline{C M} \\
& \overline{B K} \cong \overline{C K} \\
& \overline{A P} \perp \overleftarrow{M K} \\
& \overline{B Q} \perp \overleftarrow{M K}
\end{aligned}
$$

Construct E so that $\overline{P M} \cong \overline{E M}$ and F so that $\overline{Q K} \cong \overline{F K}$ (in the case that
E and F are in the reverse order, the proof is the same). Then:

$$
\begin{aligned}
\angle A M P & \cong \angle C M E \text { (vertical angles) } \\
\overline{A M} & \cong \overline{C M} \\
\overline{P M} & \cong \overline{E M} \text { (construction) } \\
\triangle A P M & \cong \triangle C E M \text { (SAS) } \\
\angle A P M & \cong \angle C E M \text { and so is a right angle } \\
\angle B K Q & \cong \angle C K F \text { (vertical angles) } \\
\overline{B K} & \cong \overline{C K} \\
\overline{Q K} & \cong \overline{F K} \text { (construction) } \\
\triangle B Q K & \cong \triangle C F K \text { (SAS) } \\
\angle B Q K & \cong \angle C F K \text { and so is a right angle } \\
\triangle C E F & \cong \triangle C F E \text { (ASA) } \\
\overline{C E} & \cong \overline{C F} \\
\overline{A P} \cong \overline{C E} & \cong \overline{C F} \cong \overline{B Q}
\end{aligned}
$$

So $\square P Q B A$ is a Saccheri quadrilateral.
Exercise 4. The line joining the midpoints of the equal sides of a Saccheri quadrilateral is perpendicular to the line joining the midpoints of the base and summit.

Proof. Since $\overline{A D} \cong \overline{B C}$ and E and F bisect $\overline{A D}$ and $\overline{B C}$ respectively we have:

$$
\overline{A E} \cong \overline{B F}
$$

and since M is the midpoint of $A B$

$$
\overline{A M} \cong \overline{B M}
$$

So:

$$
\begin{aligned}
\triangle E A M & \cong \triangle F B M(\mathrm{SAS}) \\
\angle A M E & \cong \angle B M F \\
\overline{E M} & \cong \overline{F M}
\end{aligned}
$$

Figure 4: Midline theorem.

Since, by exercise $2, \overline{K M} \perp \overline{A B}$ then "subtracting" congruent pieces we have:

$$
\begin{aligned}
\angle E M G & \cong \angle F M G \\
\triangle E M G & \cong \triangle F M A(\mathrm{SAS}) \\
\angle M G E & =\angle M G F \text { (and so is a right angle). }
\end{aligned}
$$

