Spherical Trigonometry.

Figure 1: Trigonometry on a sphere of radius r.

The sine rules:

$$
\frac{\sin A}{\sin \alpha}=\frac{\sin B}{\sin \beta}=\frac{\sin C}{\sin \gamma} .
$$

Or equivalently:

$$
\begin{equation*}
\frac{\sin A}{\sin \frac{a}{r}}=\frac{\sin B}{\sin \frac{b}{r}}=\frac{\sin C}{\sin \frac{c}{r}} . \tag{1}
\end{equation*}
$$

so that for a sphere of radius $r=1$ we have:

$$
\frac{\sin A}{\sin a}=\frac{\sin B}{\sin b}=\frac{\sin C}{\sin c} .
$$

Cosine laws:

$$
\begin{aligned}
\cos \alpha & =\cos \beta \cos \gamma+\sin \beta \sin \gamma \cos A \\
\cos \beta & =\cos \gamma \cos \alpha+\sin \gamma \sin \alpha \cos B \\
\cos \gamma & =\cos \alpha \cos \beta+\sin \alpha \sin \beta \cos C
\end{aligned}
$$

Now consider equation (1) as $r \rightarrow \infty$:

$$
\begin{gathered}
\frac{\sin A}{\sin \frac{a}{r}}=\frac{\sin B}{\sin \frac{b}{r}}=\frac{\sin C}{\sin \frac{c}{r}} \\
\frac{\sin A}{r \sin \frac{a}{r}}=\frac{\sin B}{r \sin \frac{b}{r}}=\frac{\sin C}{r \sin \frac{c}{r}} \\
\lim _{r \rightarrow \infty} \frac{\sin A}{r \sin \frac{a}{r}}=\lim _{r \rightarrow \infty} \frac{\sin B}{r \sin \frac{b}{r}}=\lim _{r \rightarrow \infty} \frac{\sin C}{r \sin \frac{c}{r}} \\
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
\end{gathered}
$$

which is the usual law of sines for (Euclidean) plane trigonometry.

The critical angle.

Figure 2: The critical angle for a line segment of length x.

Consider a point P and a line L not containing P. Let $\overline{P Q}$ be the Perpendicular from P to L intersecting L at the point Q. Let x be the length of $\overline{P Q}$. Then for all the lines containing P and not intersecting L there will be two lines, H and K both making angles $\pi(x)$ with $\overline{P Q}$ but on opposite sides of $\overline{P Q}$ so that any line ℓ containing P making an angle less than $\pi(x)$ with $\overline{P Q}$ will intersect L. It is not difficult to argue that the lines H and K themselves will not intersect L.

Lobatchevsky and Gauss (the latter in an unpublished letter) show that

$$
\tan \left(\frac{\pi(x)}{2}\right)=e^{-\frac{x}{k}}
$$

where k is a constant dependent upon the unit of length used. Observe that as $x \rightarrow 0, \pi(x) \rightarrow \frac{\pi}{2}$. Assuming $k=1$ (which would correspond to sphereical trigonometry on a sphere of radius $r=1$), Lobatchevsky obtained the
following trigonometric like formulas for the trigonometry of his geometry:

$$
\begin{aligned}
\sin \alpha & =\cos \beta \sin (\pi(b)) \\
\sin \pi(c) & =\sin \pi(a) \sin \pi(b) \\
\cot \pi(a) & =\cot \pi(c) \sin \alpha .
\end{aligned}
$$

He further observed that these formulas correspond to spherical trigonometric formulas but on a sphere with radius $r=i=\sqrt{-1}$.

Claim: The last of these formulas can be converted to

$$
\sinh a=\sinh b \sin \alpha
$$

a

Figure 3: Non-Euclidean triangle.

