Descartes' Method for finding the Tangent to a Curve.

Figure 1:

René Descartes used the following method to find the slope of a line tangent to a curve. For a given curve $y=f(x)$ he considered the line of some slope m containing the point $(p, f(p))$ to which he wants to find the tangent. The equation of the line containing ($p, f(p)$ of slope m is:

$$
\begin{aligned}
\left.y-y_{0}\right) & =m\left(x-x_{0}\right) \\
y-f(p) & =m(x-p) \\
y & =f(p)+m x-m p
\end{aligned}
$$

This line intersects the curve at $(p, f(p))$ and possibly at other points. This means that p satisfies the equation $f(x)=f(p)+m x-m p$. And so it is a
root of the polynomial (or more generally the function) $P(x)=f(x)-f(p)-$ $m x+m p$. His insight is that if m could be selected so that p is a root of multiplicity at least 2 , then that value of m would be the slope of the tangent line. I will show how this works with the special case of the cubic: $y=x^{3}$. This is the curve $f(x)=x^{3}$. We will find the slope of the line tangent to the curve $f(x)=x^{3}$ at the point $\left(p, p^{3}\right)$.

We consider the polynomial $P(x)=x^{3}-p^{3}-m x+m p$. We know that p is a root of the polynomial so $(x-p)$ is a factor of the polynomial. Use long division to factor the polynomial and you should obtain:

$$
\begin{aligned}
x^{3}-p^{3}-m x+m p & \left.=x^{3}-m x-p^{3}+m p\right) \\
& =(x-p)\left(x^{2}+x p+p^{2}-m\right)
\end{aligned}
$$

In order for p to be a double root of the polynomial $P(x)$ it must be a root of the second term of the product on the right above. So that says that, substituting p for x,

$$
x^{2}+x p+p^{2}-m=p^{2}+p p+p^{2}-m=0
$$

Solving for m gives us:

$$
\begin{aligned}
p^{2}+p p+p^{2}-m & =0 \\
3 p^{2} & =m .
\end{aligned}
$$

So the desired slope is $m=3 p^{2}$. Notice that this matches what we learned in calculus. Once you have the slope, the equation of the line tangent to the curve at the point $\left(p, p^{3}\right)$ can be easily calculated.

