Hyperbolic Geometry Exercises on Quadrilaterals.

For these exercises you may use the Neutral Geometry theorems. These include the congruence theorems between triangles: SAS, ASA, SSS, AAS; the alternate interior angle theorem.

Definition. The quadrilateral $\Box ABCD$ is called a *Lambert quadrilateral* if it has three right angles. [Notation, for the Lambert quadrilateral $\Box ABCD$ the point D is usually assumed to be the angle which has not been designated as a right angle. (Though in Euclidean geometry it will be a right angle.)]

Definition. The quadrilateral $\Box ABCD$ is called a *Saccheri quadrilateral* if has two congruent sides perpendicular to a third side, called the base of the quadrilateral. [Notation, for the Saccheri quadrilateral $\Box ABCD$ the sidet \overline{AB} is usually assumed to be the base with sides \overline{DA} and \overline{CB} perpendicular to it.]

Saccheri Quadrilaterals.

Definition. A Saccheri quadrilateral is a quadrilateral with two congruent sides perpendicular to a third side, called the base of the quadrilateral.

Exercises: In working with these you may assume the SAS axiom and the ASA and SSS theorems.

Given: For $\Box ABCD$ we have $\overline{AD} \cong \overline{BC}$, angles $\angle ABC$ and $\angle BAD$ are congruent right angles.

Exercise 1. The summit angle of a Saccheri Quadrilateral are equal.

Exercise 2. The line joining the midpoint of the base and summit of a Saccheri Quadrilateral is perpendicular to both of them.

Exercise 3. If perpendiculars are drawn from the extremities of the base of a triangle upon the line passing through the midpoints of the two sides, then a Saccheri quadrilateral is formed.

Figure 1: Sccheri Quadrilateral.

Proof. Given:

$$\begin{array}{rcl} \overline{AM} &\cong & \overline{CM} \\ \overline{BK} &\cong & \overline{CK} \\ \overline{AP} & \bot & \overleftarrow{MK} \\ \overline{BQ} & \bot & \overleftarrow{MK} \end{array}$$

Construct E so that $\overline{PM} \cong \overline{EM}$ and F so that $\overline{QK} \cong \overline{FK}$ (in the case that

Figure 2: Saccheri Quadrilateral - Midpoint Theorem.

E and F are in the reverse order, the proof is the same). Then:

$$\begin{array}{rcl} \angle AMP &\cong& \angle CME \mbox{ (vertical angles)} \\ \hline AM &\cong& \overline{CM} \\ \hline \overline{PM} &\cong& \overline{EM} \mbox{ (construction)} \\ \triangle APM &\cong& \triangle CEM \mbox{ (SAS)} \\ \angle APM &\cong& \angle CEM \mbox{ and so is a right angle} \\ \angle BKQ &\cong& \angle CKF \mbox{ (vertical angles)} \\ \hline \overline{BK} &\cong& \overline{CK} \\ \hline \overline{QK} &\cong& \overline{FK} \mbox{ (construction)} \\ \triangle BQK &\cong& \triangle CFK \mbox{ (SAS)} \\ \angle BQK &\cong& \angle CFK \mbox{ and so is a right angle} \\ \hline \Delta CEF &\cong& \triangle CFE \mbox{ (ASA)} \\ \hline \overline{CE} &\cong& \overline{CF} \\ \hline \overline{AP} \cong \overline{CE} &\cong& \overline{CF} \cong \overline{BQ} \end{array}$$

So $\Box PQBA$ is a Saccheri quadrilateral.

Figure 3: Triangle theorem.

Exercise 4. The line joining the midpoints of the equal sides of a Saccheri quadrilateral is perpendicular to the line joining the midpoints of the base and summit.

Exercise 5. If $\Box ABCD$ is a rectangle, then opposite side are congruent.

Exercise 6. If $\Box ABCD$ is a Saccheri quadrilateral with congruent sides \overline{DA} and \overline{CB} , then the angles $\angle CDA$ and $\angle DCB$ are congruent.

Exercise 7. Suppose $\Box ABCD$ is a quadrilateral with right angles $\angle DAB$ and $\angle ABC$. Then the angle opposite the smaller side is smaller: if $m(\overline{DA}) < m(\overline{CD})$ then $m(\angle ADC) > m(\angle BCD)$.

Figure 4: Midline theorem.

Proof. Let E be chosen on \overrightarrow{BC} so that $\overline{BE} \cong \overline{AD}$; since m(AD) < m(BC)we have B - -E - -D. $\angle ADE \cong \angle BED$, by Saccheri quadrilateral. So $m(\angle ADE) < m(\angle ADC)$ since \overrightarrow{DE} lies in the interior of $\angle ADC$.

So $m(\angle ADE) < m(\angle ADC)$ since DE lies in the interior of $\angle ADC$. $\angle BED > \angle BCD$, exterior angle theorem. So $m(\angle ADC) > m(\angle BCD)$.

Observe that we have the following from our exercises: Suppose $\Box ABCD$ is a quadrilateral with right angles $\angle DAB$ and $\angle ABC$. Then the side opposite the larger angle is larger: if $m(\angle ADC) > m(\angle BCD)$ then $m(\overline{DA}) < m(\overline{CD})$.

Exercise 8. Suppose ℓ and m are two parallel lines so that P and Q are points of ℓ whose distance from m are equal, then ℓ and m have a common perpendicular through the midpoint M of \overline{PQ} .

Proof. Let M be the midpoint of \overline{PQ} and let A, B, D be the bases of perpendicularity respectively from P, Q, M to ℓ .

 $\overline{PA} \cong \overline{QB}$ by hypothesis;

Figure 5:

Figure 6:

 $\angle APM \cong \angle BQM, \text{ since } \Box PABQ \text{ is a Saccheri quadrilateral;}$ $\overline{PM} \cong \overline{QM} \text{ since } M \text{ is the midpoint;}$ so $\triangle MPA \cong \triangle MQB$ by SAS. $\angle PMA \cong QMB \text{ congruencies.}$ $\overline{AM} \cong \overline{BM} \text{ congruencies;}$ $\overline{MB} \cong \overline{MB} \text{ identity;}$ $\angle MDA \cong MDB \text{ right angles;}$ $\triangle MDA \cong \triangle MDB \text{ SS -right angle.}$ $\angle AMD \cong \angle BMD \text{ congruencies;}$ $\angle PMD \cong \angle QMD \text{ angle addition of congruent angles.}$ Therefore $\overline{MD} \perp \overline{AB}$.

 $\overline{AD} \cong \overline{BD}$ congruencies; therefore D is the midpoint of \overline{AB} .

Exercise 9. On the hypothesis of the previous exercise, every other point of ℓ is farther from m than M.

Exercise 10. Suppose that ℓ and m are lines such that there is a segment PD with $P \in m$ and $D \in \ell$ so that PD is parallel to both ℓ and m. Then m and ℓ are perpendicular and if Q and R are points of m so that $QP \cong RP$ then Q and R are the same distance from ℓ .