Hyperbolic Geometry Exercises on Quadrilaterals.

For these exercises you may use the Neutral Geometry theorems. These include the congruence theorems between triangles: SAS, ASA, SSS, AAS; the alternate interior angle theorem.

Definition. The quadrilateral $\square A B C D$ is called a Lambert quadrilateral if it has three right angles. [Notation, for the Lambert quadrilateral $\square A B C D$ the point D is usually assumed to be the angle which has not been designated as a right angle. (Though in Euclidean geometry it will be a right angle.)]

Definition. The quadrilateral $\square A B C D$ is called a Saccheri quadrilateral if has two congruent sides perpendicular to a third side, called the base of the quadrilateral. [Notation, for the Saccheri quadrilateral $\square A B C D$ the sidet $\overline{A B}$ is usually assumed to be the base with sides $\overline{D A}$ and $\overline{C B}$ perpendicular to it.]

Saccheri Quadrilaterals.

Definition. A Saccheri quadrilateral is a quadrilateral with two congruent sides perpendicular to a third side, called the base of the quadrilateral.

Exercises: In working with these you may assume the SAS axiom and the ASA and SSS theorems.

Given: For $\square A B C D$ we have $\overline{A D} \cong \overline{B C}$, angles $\angle A B C$ and $\angle B A D$ are congruent right angles.

Exercise 1. The summit angle of a Saccheri Quadrilateral are equal.

Exercise 2. The line joining the midpoint of the base and summit of a Saccheri Quadrilateral is perpendicular to both of them.

Exercise 3. If perpendiculars are drawn from the extremities of the base of a triangle upon the line passing through the midpoints of the two sides, then a Saccheri quadrilateral is formed.

Figure 1: Sccheri Quadrilateral.

Proof. Given:

$$
\begin{aligned}
& \overline{A M} \cong \overline{C M} \\
& \overline{B K} \cong \overline{C K} \\
& \overline{A P} \perp \overleftarrow{M K} \\
& \overline{B Q} \perp \overleftarrow{M K}
\end{aligned}
$$

Construct E so that $\overline{P M} \cong \overline{E M}$ and F so that $\overline{Q K} \cong \overline{F K}$ (in the case that

Figure 2: Saccheri Quadrilateral - Midpoint Theorem.
E and F are in the reverse order, the proof is the same). Then:

$$
\begin{aligned}
\angle A M P & \cong \angle C M E \text { (vertical angles) } \\
\overline{A M} & \cong \overline{C M} \\
\overline{P M} & \cong \overline{E M} \text { (construction) } \\
\triangle A P M & \cong \triangle C E M \text { (SAS) } \\
\angle A P M & \cong \angle C E M \text { and so is a right angle } \\
\angle B K Q & \cong \angle C K F \text { (vertical angles) } \\
\overline{B K} & \cong \overline{C K} \\
\overline{Q K} & \cong \overline{F K} \text { (construction) } \\
\triangle B Q K & \cong \triangle C F K \text { (SAS) } \\
\angle B Q K & \cong \angle C F K \text { and so is a right angle } \\
\triangle C E F & \cong \triangle C F E \text { (ASA) } \\
\overline{C E} & \cong \overline{C F} \\
\overline{A P} \cong \overline{C E} & \cong \overline{C F} \cong \overline{B Q}
\end{aligned}
$$

So $\square P Q B A$ is a Saccheri quadrilateral.

Figure 3: Triangle theorem.

Exercise 4. The line joining the midpoints of the equal sides of a Saccheri quadrilateral is perpendicular to the line joining the midpoints of the base and summit.

Exercise 5. If $\square A B C D$ is a rectangle, then opposite side are congruent.

Exercise 6. If $\square A B C D$ is a Saccheri quadrilateral with congruent sides $\overline{D A}$ and $\overline{C B}$, then the angles $\angle C D A$ and $\angle D C B$ are congruent.

Exercise 7. Suppose $\square A B C D$ is a quadrilateral with right angles $\angle D A B$ and $\angle A B C$. Then the angle opposite the smaller side is smaller: if $m(\overline{D A})<$ $m(\overline{C D})$ then $m(\angle A D C)>m(\angle B C D)$.

Figure 4: Midline theorem.

Proof. Let E be chosen on $\overrightarrow{B C}$ so that $\overline{B E} \cong \overline{A D}$; since $m(A D)<m(B C)$ we have $B--E--D$.
$\angle A D E \cong \angle B E D$, by Saccheri quadrilateral.
So $m(\angle A D E)<m(\angle A D C)$ since $\overrightarrow{D E}$ lies in the interior of $\angle A D C$.
$\angle B E D>\angle B C D$, exterior angle theorem.
So $m(\angle A D C)>m(\angle B C D)$.

Observe that we have the following from our exercises: Suppose $\square A B C D$ is a quadrilateral with right angles $\angle D A B$ and $\angle A B C$. Then the side opposite the larger angle is larger: if $m(\angle A D C)>m(\angle B C D)$ then $m(\overline{D A})<$ $m(\overline{C D})$.

Exercise 8. Suppose ℓ and m are two parallel lines so that P and Q are points of ℓ whose distance from m are equal, then ℓ and m have a common perpendicular through the midpoint M of $\overline{P Q}$.

Proof. Let M be the midpoint of $\overline{P Q}$ and let A, B, D be the bases of perpendicularity respectively from P, Q, M to ℓ.
$\overline{P A} \cong \overline{Q B}$ by hypothesis;

Figure 5:

Figure 6:
$\angle A P M \cong \angle B Q M$, since $\square P A B Q$ is a Saccheri quadrilateral; $\overline{P M} \cong \overline{Q M}$ since M is the midpoint; so $\triangle M P A \cong \triangle M Q B$ by SAS.
$\angle P M A \cong Q M B$ congruencies.
$\overline{A M} \cong \overline{B M}$ congruencies;
$\overline{M B} \cong \overline{M B}$ identity;
$\angle M D A \cong M D B$ right angles;
$\triangle M D A \cong \triangle M D B$ SS -right angle.
$\angle A M D \cong \angle B M D$ congruencies;
$\angle P M D \cong \angle Q M D$ angle addition of congruent angles.
Therefore $\overline{M D} \perp \overline{A B}$.
$\overline{A D} \cong \overline{B D}$ congruencies; therefore D is the midpoint of $\overline{A B}$.
Exercise 9. On the hypothesis of the previous exercise, every other point of ℓ is farther from m than M.

Exercise 10. Suppose that ℓ and m are lines such that there is a segment $P D$ with $P \in m$ and $D \in \ell$ so that $P D$ is parallel to both ℓ and m. Then m and ℓ are perpendicular and if Q and R are points of m so that $Q P \cong R P$ then Q and R are the same distance from ℓ.

