Ancient Method for Calculating Square Roots

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function and one is interested in finding a point of the function so that $f(p)=p$. Such a point is called a fixed point of the function. Under certain continuity conditions, if one selects a starting value x_{0} and iterates the function to obtain successive iterates:

$$
x_{n+1}=f\left(x_{n}\right)
$$

then the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to the fixed point p. Conditions that imply this convergence include the following: that f be continuously differentiable around p and that $\left|f^{\prime}(p)\right|<1$. [I'll discuss this in class.]

It is conjectured (under questionable assumptions) that (circa 1,500 BCE) the Babylonians used an iterative process on the following function to calculate the square root of a number a :

$$
f(x)=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)
$$

Show that $p=\sqrt{a}$ is a fixed point of the function and show that $\left|f^{\prime}(\sqrt{a})\right|<1$. Around 100 CE the Greek mathematician Heron showed that this method works - it is often called Heron's method for calculating the square root of a number.

Show that this iterative process is equivalent to applying Newton's method for finding the roots of an equation to the equation $x^{2}-a=0$.

Additional exercise: come up with a function for which a similar recursive process gives you the cube root of a number.

