
Example of a Method of Exhaustion proof using modern nota-
tion and graphics.

The axiom of Archimedes is given as: Given two quantities there is an
integer n so that n times the first quantity can be made greater than the
second quantity.
Determine where this axiom was used in the following example.

Example: Find the area of the sector of the parabola y = x2 (in modern
notation) bounded by the line segment from (1, 1) to (−1, 1).

Given:
n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

Let A denote the area under the parabola y = x2 from 0 to 1. Suppose that
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Figure 1: y = x2

the area under the parabola is not 1
3
; A 6= 1

3
. There are two cases:

(1.) A > 1
3
;

(2.) A < 1
3
.

And we know from our diagram concerning the upper sum of the rectangles
that no matter what positive integer n is chosen that:

n∑
i=1

i2

n3
> A. (1)
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We consider case (1.) first. Let ε = A − 1
3

then ε > 0. So there is an
integer n so that

n >
1

3ε
. (2)

Therefore, for any such n:

n >
1

3ε

n >
1

ε
1

n
< ε

1

2n
<

ε

2

and:

n >
1

3ε

n2 >
1

3ε

3n2 >
1

ε
1

3n2
< ε

1

6n2
<

ε

2
.
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Now combining these two we get:

1

2n
+

1

6n2
<

ε

2
+
ε

2
= ε

3n+ 1

6n2
< ε

3n2 + n

6n3
< ε

2n3 + 3n2 + n− 2n3

6n3
< ε

2n3 + 3n2 + n

6n3
− 2n3

6n3
< ε

n(n+ 1)(2n+ 1)

6n3
− 1

3
< ε

1

n3

n∑
i=1

i2 − 1

3
< ε.

But from equation (1) and the fact that A − 1
3

= ε, the previous equation
implies:

A− 1

3
<

1

n3

n∑
i=1

i2 − 1

3
< A− 1

3

which is impossible. So our assumption that A > 1
3

is false. The argument
for the case that A < 1

3
is very similar.

Solution. By the symmetry of the parabola, the area of the desired sector
will be the area of the rectangle [−1, 1]× [0, 1] which will be 2 · 1− 2 · 1

3
= 2

3

which is two thirds the base times the height which is the formula obtained
by Archimedes.
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Scratch Work:

How did I know what to do? Here’s my scratch work. To get a contra-
diction, for the selected ε I want an integer n so that:

n∑
i=1

i2

n3
− 1

3
< ε.

So using the formula, I want an integer n so that:

n∑
i=1

i2

n3
=

1

n3

n(n+ 1)(2n+ 1)

6
;

so I want the following

n(n+ 1)(2n+ 1)

6n3
− 1

3
< ε.

Which yields:

2n3 + 3n2 + n

6n3
− 1

3
< ε

2n3 + 3n2 + n− 2n3

6n3
< ε

3n2 + n

6n3
< ε

3n2

6n3
+

n

6n3
< ε

1

2n
+

1

6n2
< ε.

Now trying to solve this last line for n is messy and involves the quadratic
equation and the consideration of two roots, but in order for this to hold it
would be sufficient if each of the terms on the left are less than ε

2
. So toward

that end we’ll solve these two equations separately:

1

2n
<

ε

2
(3)

1

6n2
<

ε

2
. (4)
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First we’ll solve equation (3) for n:

1

2n
<

ε

2
1

n
< ε

n >
1

ε
. (5)

Next we’ll solve equation (4) for n:

1

6n2
<

ε

2
1

n2
< 3ε

n2 >
1

3ε
(6)

n >
1

3ε
. (7)

Now the step from (6) to (7) is not correct in the sense that (7) does not
follow from (6); but this is “scratch work” and ultimately I will want to do
these steps backwards. So I have to think “backwards” and step (6) follows
from step (7) which is what I’ll need for my proof. Finally notice that step
(5) follows from step (7). Therefore it is sufficient for me to use equation (7)
for the condition that I need. So that’s how I got the condition (2) above that
I needed for the proof and the proof itself consists in doing these “backward
thinking” steps forward.
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