Picture and proof related to Newton's lemmas.

Figure 1: Upper and Lower Rectangles for $y=x^{2}$.

For the function $y=x^{2}$ we're interested in the area under the curve, above the x-axis and between $x=0$ and $x=1$. The interval $[0,1]$ is partitioned into n subintervals each of length $\frac{1}{n}$. We will need the following formula.

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Let A denote the area under the parabola $y=x^{2}$ from $x=0$ to $x=1$. We know that the area is between the upper rectangles (in black) and the lower rectangles (in red). The area of the $k^{\text {th }}$ upper rectangle is height \times base and is $\left(\frac{k}{n}\right)^{2} \times \frac{1}{n}$ and the $k^{\text {th }}$ lower rectangle is $\left(\frac{k-1}{n}\right)^{2} \times \frac{1}{n}$. Since the area is between these two collections of rectangles we have [I'm skipping some steps],

$$
\begin{gathered}
\sum_{k=1}^{n} \frac{(k-1)^{2}}{n^{3}}<A<\sum_{k=1}^{n} \frac{k^{2}}{n^{3}} \\
\frac{(n-1)(n)(2 n-1)}{6 n^{3}}<A<\frac{n(n+1)(2 n+1)}{6 n^{3}} .
\end{gathered}
$$

For all positive integers n so, by one of Newton's lemmas

$$
\frac{1}{3} \leq A \leq \frac{1}{3}
$$

