The Poincaré Universe.

Main assumptions are equivalent to the following: The Universe consists of the points inside a sphere of radius R such that the length of a measuring rod at distance r from the center is given by $\ell=k\left(R^{2}-r^{2}\right)$. We let $k=1$ as our standard unit of measurement. Since the distance $d(A, B)$ between two objects A and B is measured by seeing how many times the standard unit divides into the distance $d(A . B)$, it follows that the length of a rod from r to $r+\Delta r$ will be approximately $\frac{\Delta r}{R^{2}-r^{2}}$. So then the length $\ell\left(r_{1}, r_{2}\right)$ of a path along a radial ray from r_{1} to r_{2} will be:

$$
\begin{aligned}
\ell\left(r_{1}, r_{2}\right) & =\int_{r_{1}}^{r_{2}} \frac{1}{R^{2}-r^{2}} d r \\
& =\int_{r_{1}}^{r_{2}}\left(\frac{\frac{1}{2 R}}{R+r}+\frac{\frac{1}{2 R}}{R-r}\right) d r \\
& =\left.\frac{1}{2 R}(\ln (R+r)-\ln (R-r))\right|_{r_{1}} ^{r_{2}} \\
& =\frac{1}{2 R}\left(\ln \left(\frac{R+r_{2}}{R-r_{2}}\right)-\ln \left(\frac{R+r_{1}}{R-r_{1}}\right)\right) \\
& =\frac{1}{2 R} \ln \left(\frac{\left(R+r_{2}\right)\left(R-r_{1}\right)}{\left(R-r_{2}\right)\left(R+r_{1}\right)}\right)
\end{aligned}
$$

So the radius of the Universe would appear to be:

$$
\begin{aligned}
\int_{0}^{R} \frac{1}{R^{2}-r^{2}} d r & =\frac{1}{2 R} \ln \left(\frac{(R+R) R}{(R-R) R}\right) \\
& \rightarrow \infty
\end{aligned}
$$

