Presentations01B

Consider the frustrum of a square based pyramid (a truncated	1
pyramid) described as follows: A square based pyramid with base	
$b \times b$ is cut by a plane parallel to the base at a height <i>h</i> above the base	
and the planar cut is an $a \times a$ square. The region between this plane	
and the base is the truncated pyramid. The Egyptians knew that the	
volume of this solid is given by	
$h_{(a^2 + ab + b^2)}$	
$\frac{1}{3}(a^2+ab+b^2)$.	
Show that this is correct; use the fact that the volume of a pyramid is	
one-third the area of the base times the height.	
The Babylonian formula for the truncated pyramid of the above	2
problem was:	
$h\left[\left(\frac{a+b}{2}\right)^2 + \frac{1}{3}\left(\frac{a-b}{2}\right)^2\right].$	
Show that this is correct.	
Suppose that <i>m</i> and <i>n</i> are positive integers with $n < m$ and :	3
x = 2mn	
$y = m^2 - n^2$	
Find a value for z so that:	
$x^2 + y^2 = z^2.$	
This gives us a way to find Pythagorean integral triples. This method	
for finding triples was apparently known to the Babylonians.	
Look up Babylonian mathematics (e.g. Wiki) and explain the	4
techniques used in some of the quadratic equations they were able to	
solve. What about cubic equations?	
Show how to calculate the height of the pyramids using shadows.	5
Thales supposedly did this.	
Show how to calculate the distance of a ship from the shore using	6
similar triangles. Thales supposedly did this.	
Prove that vertical angles are congruent. (A theorem due to Thales.)	7
	8
Prove that an angle inscribed in a semi-circle is a right angle. (A	9
theorem due to Thales.)	
Give a simple proof of the Pythagorean theorem.	10
	1.1
Find the formula for the n th triangular number.	11
	10
Find the formula for the n ^w pentagonal number.	12

Show that the n th square number is the sum of two triangular numbers.	13
Show that the sum of the angles of a triangle is 180°.	14