Presentations01B

Show that this is correct; use the fact that the volume of a pyramid is one-third the area of the base times the height.
The Babylonian formula for the truncated pyramid of the above problem was:

$$
h\left[\left(\frac{a+b}{2}\right)^{2}+\frac{1}{3}\left(\frac{a-b}{2}\right)^{2}\right] .
$$

Show that this is correct.
Suppose that m and n are positive integers with $n<m$ and :

$$
\begin{gathered}
x=2 m n \\
y=m^{2}-n^{2}
\end{gathered}
$$

Find a value for z so that:

$$
x^{2}+y^{2}=z^{2}
$$

This gives us a way to find Pythagorean integral triples. This method for finding triples was apparently known to the Babylonians. Look up Babylonian mathematics (e.g. Wiki) and explain the techniques used in some of the quadratic equations they were able to solve. What about cubic equations?
Show how to calculate the height of the pyramids using shadows. Thales supposedly did this.

Show how to calculate the distance of a ship from the shore using similar triangles. Thales supposedly did this.	6
Prove that vertical angles are congruent. (A theorem due to Thales.)	7
	8
Prove that an angle inscribed in a semi-circle is a right angle. (A theorem due to Thales.)	9
Give a simple proof of the Pythagorean theorem.	10
Find the formula for the $\mathrm{n}^{\text {th }}$ triangular number.	11
Find the formula for the $\mathrm{n}^{\text {th }}$ pentagonal number.	12

Show that the $\mathrm{n}^{\text {th }}$ square number is the sum of two triangular numbers.	13
Show that the sum of the angles of a triangle is 180°.	14

