Presentations 03B

Your textbook should have some exercises on the Fibonacci numbers. Select some to do.	1
If $\left\{F_{n}\right\}_{n=1}^{\infty}$ denotes the Fibonacci sequence, show how to calculate $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}$. Hint (if you want to do it without looking up a proof): replace F_{n+1} with $F_{n}+F_{n-1}$ and look at that equality; then multiply top and bottom with $\frac{1}{F_{n}}$.	2
Consider the general cubic equation: $x^{3}+a x^{2}+b x+c=0$ substitute $x=t+k$ and determine the value of k that makes the t^{2} term vanish.	3
Explain the Ptolemaic system of the solar system. Explain retrograde motion and how Ptolemy addressed it.	4
Use Newton's laws to prove Galileo's claim that objects fall at the same rate from the same height regardless of being of different weights. Hint: use his law of Gravity plus his laws of motion.	5
$[$ If you've had differential equations and want a challenge.] Use the laws of Newton to prove one of more of Kepler's laws.	6
What is the "problem of points"? Give an example and solve it.	7
Explain how logarithms were invented and why.	8

