Presentations05

Read the notes on the class website about the limit point game and be prepared to play a game with another student.	1-3
Find the Maclaurin expansion for $e^{x}, \sin x$ and $\cos x$. Then substitute $x \leftarrow i x$ to obtain the identity $e^{i x}=\cos x+i \sin x$; then repeat with $x \leftarrow-i x$ to get another identity; finally solve two equations in two unknowns to get $\sin x$ and $\cos x$ in terms of $e^{i x}$ and $e^{-i x}$.	2
Consider the equation $(x+i y)^{2}=0+1 i$. Set up two equations in x and y and find real numbers that satisfy the equations.	3
Prove de Moivre's theorem: $(\cos x+i \sin x)^{n}=\cos n x+i \sin n x$ Where $i=\sqrt{-1}$. Hint: use induction.	4
Look up the hyperbolic trig functions, sinh and cosh; prove the identity: $\cosh ^{\wedge} 2(x)-\sinh ^{2}(x)=1$	5
Prove that the sum of all the elements in a row of Pascal's triangle is an integral power of 2. Hint: try induction.	6
Suppose that two chess players made a wager for $\$ 100$ on some coin tosses: so that player A wins if the coin lands "heads" and player B wins if the coin lands "tails." They agree that the first to get six wins gets the whole pot of $\$ 200$. The game is interrupted when play A has had 2 wins and player B has 4 wins. How should the pot be fairly divided between the two of them?	7
Use the fact that $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ to obtain the identity $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$	8
In your textbook select some problems in the section on the history of the development of probability theory, select some problems to do.	9

