Presentations05

Read the notes on the class website about the limit point game and be	1-3
prepared to play a game with another student.	
Find the Maclaurin expansion for e^x , sin x and cos x. Then substitute	2
$x \leftarrow ix$ to obtain the identity $e^{ix} = \cos x + i \sin x$; then repeat with	
$x \leftarrow -ix$ to get another identity: finally solve two equations in two unknowns	
to get sin x and cos x in terms of e^{ix} and e^{-ix} .	
Consider the equation $(x + iy)^2 = 0 + 1i$. Set up two equations in x and y	3
and find real numbers that satisfy the equations.	
Prove de Moivre's theorem:	4
$(\cos x + i \sin x)^n = \cos nx + i \sin nx$	
Where $i = \sqrt{-1}$. Hint: use induction.	
Look up the hyperbolic trig functions, sinh and cosh; prove the identity:	5
$\cosh^2(x) - \sinh^2(x) = 1$	
Prove that the sum of all the elements in a row of Pascal's triangle is an	6
integral power of 2. Hint: try induction.	
Suppose that two chess players made a wager for \$100 on some coin tosses:	7
so that player A wins if the coin lands "heads" and player B wins if the coin	
lands "tails." They agree that the first to get six wins gets the whole pot of	
\$200. The game is interrupted when play A has had 2 wins and player B	
has 4 wins. How should the pot be fairly divided between the two of them?	
Use the fact that	8
$\binom{n}{2} - \frac{n!}{2}$	
$(k) = \overline{k! (n-k)!}$	
to obtain the identity	
$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$	
In your textbook select some problems in the section on the history of the	9
development of probability theory, select some problems to do.	