
Tautochrone, Brachistochrone, Cycloid

Tautochrone problem. What is the shape of the curve so that the time
taken by an object sliding without friction in uniform gravity to its lowest
point is same no matter what starting height. (The importance is that it
could be an improvement on the pendulum for a clock.)

Brachistochrone problem. What is the shape of the curve so that an
object starting at rest and moving along the curve, without friction under
uniform gravity, will fall to it’s lowest point in the shortest time.

The (inverted) cycloid is the solution to both these problems. First a
derivation of a set of parametric equations for the curve.
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Figure 1: The cycloid.

The circle x2 + (y − 1)2 = 1 is rolled with out slipping along the x-axis so
that the position of the center at time θ is (θ, 1). Then the point P will have
coordinates

P = (θ − sin θ, 1− cos θ).

In order to prove that the solution of the tautochrone problem is the cy-
cloid, we need to derive the equation for the time of descent along a (concave
up) curve. From our physics courses we know that the kinetic energy 1

2
mv2

at the bottom of the curve has to equal the potential energy from the top
of the curve that was used up; this potential energy is mgh. [Where m is
the mass of the object, v is its terminal velocity and h is the height from the
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terminal level from which it was dropped.] So from the physics, where in our
case h will be the y coordinate, we have

1

2
mv2 = mgh

v =
√

2gh.

We use the notation of the 17th century mathematicians. They used s
for the length of the curve and the infinitesimal triangle gave them: ds =√
dx2 + dy2; as usual the speed (velocity) is ds

dt
. So

ds

dt
= v

ds = vdt

ds =
√

2ghdt√
dx2 + dy2 =

√
2ghdt

solving for dt gives.

dt =

√
dx2 + dy2√

2gh
.

This expression can be integrated. I’ll assume that the particle starts at
position x = a at time t1 and that the bottom of the curve is at x = π at
time t2. Since we are considering the inverted cycloid (inverted about y = 2
the parametric form of this curve would be

x = θ − sin θ

y = 2− (1− cos θ) = 1 + cos θ.

At time 0 let θ0 denote the value which gives the starting position of the
point. The terminal position of the point is at (π, 0) and the parameter
takes on the value π at that point. As the bead slides down the curve, the
value of h at some arbitrary θ will be the difference between the y value at
θ0 and the y value at θ; h = (1 + cos θ0)− (1 + cos θ) = cos θ0− cos θ. So the
time for the bead to slide down the curve will be∫ t2

t1

dt =

∫ end

start

√
dx2 + dy2√

2gh
. (1)
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Using Leibnitz notation:

dx = dθ − cos θdθ

dy = − sin θdθ.

Then substituting into the integral on the right∫ end

start

√
dx2 + dy2√

2gh
=

∫ π

θ0

√
(dθ − cos θdθ)2 + (− sin θdθ)2√

2g(cos θ0 − cos θ)

=

∫ π

θ0

√
(1− cos θ)2 + (− sin θ)2√

2g(cos θ0 − cos θ)
dθ

=

∫ π

θ0

√
1− 2 cos θ + cos2 θ + sin2 θ√

2g(cos θ0 − cos θ)
dθ

=

∫ π

θ0

√
2− 2 cos θ√

2g(cos θ0 − cos θ)
dθ

=
1
√
g

∫ π

θ0

√
1− cos θ√

cos θ0 − cos θ
dθ (2)

To work toward evaluating this integral (and keeping in mind that we expect
the θ0 to disappear) we recall some helpful trig identities:

cos 2α = cos2 α− sin2 α so cos θ = cos2
(θ

2

)
− sin2

(θ
2

)
cos 2α = 2 cos2 α− 1 so cos θ = 2 cos2

(θ
2

)
− 1

cos 2α = 1− 2 sin2 α so cos θ = 1− 2 sin2
(θ

2

)
.

Substituting in the above integral we obtain

1
√
g

∫ π

θ0

√
1− cos θ√

cos θ0 − cos θ
dθ =

1
√
g

∫ π

θ0

√
1− (1− 2 sin2( θ

2
))√

(2 cos2( θ0
2

)− 1)− (2 cos2( θ
2
)− 1)

dθ

=
1
√
g

∫ π

θ0

√
sin2( θ

2
)√

cos2( θ0
2

)− cos2( θ
2
)
dθ

=
1
√
g

∫ π

θ0

± sin( θ
2
)√

cos2( θ0
2

)− cos2( θ
2
)
dθ.

3



Where the sign ± takes on the value that gives a positive integral. To solve
this we use a change of variable

cos
(θ0

2

)
u = cos

(θ
2

)
u =

cos( θ
2
)

cos( θ0
2

)

du =
−1

2
sin( θ

2
)

cos( θ0
2

)
dθ

cos
(θ0

2

)
du = −

(1

2

)
sin
(θ

2

)
dθ

As θ goes from θ0 to π, u goes from 1 to 0. So performing the change of
variable we obtain

1
√
g

∫ π

θ0

± sin( θ
2
)√

cos2( θ0
2

)− cos2( θ
2
)
dθ =

1

2
√
g

∫ 0

1

± cos( θ0
2

)du

cos( θ0
2

)

√
1− cos2( θ

2
)

cos2(
θ0
2
)

=
1

2
√
g

∫ 0

1

−du√
1− u2

.

The negative is selected since the integral must be positive. Now, although
we can solve this integral (with a sine substitution for example), there is no
need to do so for the integral is independent of the starting position at θ0. So
no matter what the starting height is, the integral is the same. Thus we’ve
proven that the cycloid is a solution to the tautochrone problem. To actually
calculate the time of descent, it is easiest to evaluate the integral in equation
(2) by letting our start point be the top of the cycloid: θ0 = 0 so that the
integral of (2) becomes:

1
√
g

∫ π

θ0

√
1− cos θ√

cos θ0 − cos θ
dθ =

1
√
g

∫ π

0

√
1− cos θ√
1− cos θ

dθ =
1
√
g

∫ π

0

1dθ =
π
√
g
.

Since the θ0 disappeared in the final calculation, this tells us that the
time of descent is independent of its starting position.
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