Test 01 Math 3010 Spring 2021
 Part I Key
 Dr. Smith

Part I. Problems and exercises. Omit one problem or do all seven for extra credit.

Problem 1: Show that $r=3 i$ is a root of the following polynomial:

$$
P(x)=x^{4}-2 x^{3}+4 x^{2}-18 x-45 .
$$

Then use this information to find all the roots of this polynomial.
Solution. First a proof that r is a root:

$$
\begin{aligned}
P(r) & =r^{4}-2 r^{3}+4 r^{2}-18 r-45 \\
& =(3 i)^{4}-2(3 i)^{3}+4(3 i)^{2}-18(3 i)-45 \\
& =81-2(-27 i)+4(-9)-18(3 i)-45 \\
& =81+54 i-36-54 i-45 \\
& =0 .
\end{aligned}
$$

Since the coefficients are real numbers and $3 i$ is a root, then its complex conjugate $-3 i$ is a root too. Since $x-r$ for a root r divides the polynomial, then $x-3 i$ and $x+3 i$ divides the polynomial. So $(x-3 i)(x+3 i)=x^{2}+9$ divides $P(x)$. Long division gives:

$$
x^{4}-2 x^{3}+4 x^{2}-18 x-45=\left(x^{2}+9\right)\left(x^{2}-2 x-5\right) .
$$

So the roots are

$$
r= \pm 3 i \quad \text { and } \quad r=\frac{2 \pm \sqrt{4+4 \cdot 5}}{2}=1 \pm \sqrt{6}
$$

Problem 2: Use induction to prove the following identity about the sum of the even Fibonacci numbers:

$$
\sum_{i=1}^{n} F_{2 i}=F_{2 n+1}-1
$$

[Extra Credit: come up with a similar identity about the sum of the odd Fibonacci numbers and prove that your formula is correct.]

Solution. We prove the theorem by induction. Since the definition of the Fibonacci requires the addition of two previous numbers, we must test $n=1$ and $n=2$ for our base case.

Base case:

$$
\begin{aligned}
& \sum_{i=1}^{1} F_{2 i}=1=2-1=F_{3}-1 \\
& \sum_{i=1}^{2} F_{2 i}=1+3=4=5-1=F_{5}-1
\end{aligned}
$$

We now assume that the statement is true for n and prove that this implies the statement for $n+1$:

$$
\begin{align*}
\sum_{i=1}^{n+1} F_{2 i} & =\sum_{i=1}^{n} F_{2 i}+F_{2(n+1)} \\
& =F_{2 n+1}-1+F_{2(n+1)} \tag{1}\\
& =F_{2 n+1}-1+F_{2 n+2} \\
& =F_{2 n+3}-1=F_{2(n+1)+1}-1 . \tag{2}
\end{align*}
$$

Where step (1) follows from the induction hypothesis and step (2) follows from the definition of the Fibonacci numbers (in term of the two previous numbers).

Problem 3: Use the method of Descartes to find the equation of the line tangent to the curve $f(x)=5 x^{2}$ at the point $\left(p, 5 p^{2}\right)$.

Solution. The equation of the line of slope m containing the point $\left(x_{1}, y_{1}\right)$ is:

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y & =y_{1}+m\left(x-x_{1}\right) .
\end{aligned}
$$

In our case $\left(x_{1}, y_{1}\right)=\left(p, 5 p^{2}\right)$. So that gives us the equation

$$
\begin{aligned}
y & =5 p^{2}+m(x-p) \\
& =m x+5 p^{2}-m p .
\end{aligned}
$$

We want to know where the line intersects the curve $y=5 x^{2}$. To calculate the point of intersection we set the two functions equal to each other:

$$
\begin{aligned}
5 x^{2} & =m x+5 p^{2}-m p \\
5 x^{2}-m x-5 p^{2}+m p & =0
\end{aligned}
$$

Now this equation is supposed to have "two" roots and we know that one of them is $r=p$, so we factor out $x-p$ to obtain the other root; long division works well to obtain:

$$
5 x^{2}-m x-5 p^{2}+m p=(x-p)(5 x+(5 p-m))
$$

Descartes' method assumes that the root p must be a double root, a root of multiplicity 2 so that says that p must also be a root of the reduced polynomial $5 x+(5 p-m)$ (that it the quotient of the long division). So setting $x=p$ then the reduced polynomial is equal to 0 and we can solve for m.

$$
\begin{aligned}
5 p+(5 p-m) & ==0 \\
m & =10 p
\end{aligned}
$$

And we know that this is the correct answer from our calculus class.
So the equation of the line will be:

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y & =5 p^{2}+10 p(x-p) \\
y & =10 p x-5 p^{2} .
\end{aligned}
$$

Problem 4: Use the infinitesimal method of Barrow, Fermat et al. to find the equation of the line tangent to the curve $f(x)=5 x^{2}-3 x$ at the point $(p, f(p))$.
Solution. The technique assumes the existence of an "infinitesimal" triangle at the point $(p, f(p))=\left(p, 5 p^{2}-3 p\right)$ where the triangle has base e and height $f(x+e)-f(x)=\left(5(p+e)^{2}-3(p+e)\right)-\left(5 p^{2}-3 p\right)$. The hypotenuse of the triangle is tangent to the curve. So the slope of the hypotenuse of this infinitesimal triangle is $f(x+e)-f(x)$ divided by e. [Barrow used the inverse of this ratio, so either way is fine, as long as you ultimately get the slope.] So the slope m will be:

$$
\begin{aligned}
m & =\frac{f(x+e)-f(x)}{e} \\
& =\frac{\left(5(p+e)^{2}-3(p+e)\right)-\left(5 p^{2}-3 p\right)}{e} \\
& =\frac{\left(\left(5 p^{2}+10 p e+5 e^{2}\right)-3(p+e)\right)-\left(5 p^{2}-3 p\right)}{e} \\
& =\frac{\left.10 p e+5 e^{2}-3 e\right)}{e} \\
& =10 p+5 e-3 \\
& =10 p-3 .
\end{aligned}
$$

Where the last step follows from the claim that e, and hence $5 e$, is an infinitesimal. So the equation of the line with slope m containing the point $\left(p, 5 p^{2}-3 p\right)$ is

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-\left(5 p^{2}-3 p\right) & =m(x-p) \\
y-\left(5 p^{2}-3 p\right) & =(10 p-3)(x-p)
\end{aligned}
$$

Problem 5: Argue that Cavalieri's principle is equivalent to Archimedes' balance method for find the volume of a solid. [You may look it up on Wikipedia.] Assume that the volume of a square based right pyramid is $\frac{1}{3} h b^{2}$ where h is the height and b is one side of the square base. Then use Cavalieri's principle (or Archimedes' balance method) to argue that the volume of a right circular cone with a height of h and circular base of radius r is $\frac{1}{3} \pi h r^{2}$.

Solution. The interpretation of Archimedes' moment arms as equal give us Cavalieri's principle.

Problem 6: For the following polynomial, how do you "get rid of" the troublesome x^{4} term? (I.e. find a transformation that transforms the equation into a quintic polynomial without the x^{4} term.)

$$
P(x)=x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+e
$$

Solution. The technique is to let $x=t+k$ and find the k value that causes the coefficient of the t^{4} term to be zero.

$$
\begin{aligned}
P(t+k)= & (t+k)^{5}+a(t+k)^{4}+\text { lower powers of } x \\
= & \left(t^{5}+5 k t^{4}+\text { lower powers of } x\right) \\
& \quad+\left(a t^{4}+\text { lower powers of } x\right) \\
& \quad+\text { lower powers of } x \\
= & t^{5}+5 k t^{4}+a t^{4}+\text { lower powers of } x \\
= & t^{5}+(5 k+a) t^{4}+\text { lower powers of } x .
\end{aligned}
$$

So $k=-\frac{a}{5}$ and so the transformation that does this is:

$$
x=t-\frac{a}{5}
$$

Problem 7: Find a root of the following polynomial.

$$
P(x)=x^{3}+3 x-5 .
$$

Solution. From our work on the solution of the cubic we learned that the solution to the equation

$$
x^{3}+p x=q
$$

is given by

$$
\begin{aligned}
x & =\sqrt[3]{\frac{1}{2}\left(\sqrt{q^{2}+\frac{4 p^{3}}{27}}+q\right)}-\sqrt[3]{\frac{1}{2}\left(\sqrt{q^{2}+\frac{4 p^{3}}{27}}-q\right)} \\
\text { or } x & =\sqrt[3]{\frac{q}{2}+\left(\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right)}+\sqrt[3]{\frac{q}{2}-\left(\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right)} .
\end{aligned}
$$

Substituting $p=3$ and $q=5$ yields

$$
x=\sqrt[3]{\frac{1}{2}(\sqrt{29}+5)}-\sqrt[3]{\frac{1}{2}(\sqrt{29}-5)}
$$

