Binomial Series.

Observe that $a+b$ can be put in the form $a+a x$ by setting $x=\frac{b}{a}$. Based on this fact we want to consider the binomial expansion of $(a+a x)^{r}$ for rational r.

First the Modern derivation of a version of the binomial theorem. Let $f(x)=(a+a x)^{\frac{m}{n}}$ then in preparation for using the Maclaurin series expansion:

$$
\begin{aligned}
f(x) & =(a+a x)^{\frac{m}{n}} \\
f^{\prime}(x) & =\frac{m}{n}(a+a x)^{\frac{m}{n}-1} a \\
f^{\prime \prime}(x) & =\frac{m}{n}\left(\frac{m}{n}-1\right)(a+a x)^{\frac{m}{n}-2} a^{2} \\
f^{\prime \prime \prime}(x) & =\frac{m}{n}\left(\frac{m}{n}-1\right)\left(\frac{m}{n}-2\right)(a+a x)^{\frac{m}{n}-3} a^{3} \\
& \vdots
\end{aligned}
$$

from which we have

$$
\begin{aligned}
f(0) & =a^{\frac{m}{n}} \\
f^{\prime}(0) & =\frac{m}{n} a^{\frac{m}{n}-1} a=\frac{m}{n} a^{\frac{m}{n}} \\
f^{\prime \prime}(0) & =\frac{m}{n}\left(\frac{m}{n}-1\right) a^{\frac{m}{n}-2} a^{2}=\left(\frac{m(m-n)}{n^{2}}\right) a^{\frac{m}{n}} \\
f^{\prime \prime \prime}(0) & =\frac{m}{n}\left(\frac{m}{n}-1\right)\left(\frac{m}{n}-2\right) a^{\frac{m}{n}-3} a^{3}=\left(\frac{m(m-n)(m-2 n)}{n^{3}}\right) a^{\frac{m}{n}}
\end{aligned}
$$

$$
\vdots
$$

From Maclaurin's theorem:

$$
\begin{aligned}
f(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots \\
(a+a x)^{\frac{m}{n}} & =a^{\frac{m}{n}}+\frac{m}{n} a^{\frac{m}{n}} x+\frac{m(m-n)}{2!n^{2}} a^{\frac{m}{n}} x^{2}+\frac{m(m-n)(m-2 n)}{3!n^{3}} a^{\frac{m}{n}} x^{3}+\ldots
\end{aligned}
$$

For a rational number $\frac{a}{b}$, Newton's formulation was:

$$
(P+P Q)^{\frac{m}{n}}=\underbrace{P^{\frac{m}{n}}}_{A}+\underbrace{\frac{m}{n} A Q}_{B}+\underbrace{\frac{m-n}{2 n} B Q}_{C}+\underbrace{\frac{m-2 n}{3 n} C Q}_{D}+\ldots
$$

with

$$
\begin{aligned}
A & =P^{\frac{m}{n}} \\
B & =\frac{m}{n} A Q \\
C & =\frac{m-n}{2 n} B Q \\
D & =\frac{m-2 n}{3 n} C Q \\
& \vdots
\end{aligned}
$$

expanding:

$$
\begin{aligned}
A & =P^{\frac{m}{n}} \\
B & =\frac{m}{n} P^{\frac{m}{n}} Q \\
C & =\frac{m(m-n)}{2 n^{2}} P^{\frac{m}{n}} Q^{2} \\
D & =\frac{m(m-n)(m-2 n)}{3!n^{3}} P^{\frac{m}{n}} Q^{3} \\
& \vdots
\end{aligned}
$$

And this matches our formulation. For the special case of

$$
\frac{1}{1+x^{2}}=\left(1+x^{2}\right)^{-1}
$$

replacing $P=a$ with 1 and $Q=x$ with x^{2} and $m=-1, n=1$ we get

$$
\begin{equation*}
\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\ldots \tag{1}
\end{equation*}
$$

on the other hand replacing a with x^{2} and $a x=1$ so x needs to be replaced with x^{-2} and again $m=-1, n=1$ we get

$$
\begin{equation*}
\frac{1}{1+x^{2}}=x^{-2}-x^{-4}+x^{-6}-x^{-8}+\ldots \tag{2}
\end{equation*}
$$

Newton said to use equation (1) if $x<1$ and use equation (2) if $x>1$. We know from more modern consideration that series (1) converges for $|x|<1$ and series (2) converges for $\left|x^{-2}\right|<1$ which is equivalent to $|x|>1$.

Another way to obtain these two series is to do polynomial long division and divide $1+x^{2}$ and $x^{2}+1$ into 1 respectively.

