Binomial Series.

Observe that a + b can be put in the form a + ax by setting z = g
Based on this fact we want to consider the binomial expansion of (a + ax)”
for rational 7.

First the Modern derivation of a version of the binomial theorem. Let

f(z) = (a+azx)™ then in preparation for using the Maclaurin series expan-
sion:
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From Maclaurin’s theorem:
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For a rational number ¢, Newton’s formulation was:
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And this matches our formulation. For the special case of

1

Tz )

replacing P = a with 1 and Q = x with 22 and m = —1, n = 1 we get
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on the other hand replacing a with 22 and az = 1 so x needs to be replaced
with 72 and again m = —1, n = 1 we get
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Newton said to use equation (1) if # < 1 and use equation (2) if z > 1. We
know from more modern consideration that series (1) converges for |z| < 1
and series (2) converges for |[x7?| < 1 which is equivalent to |z| > 1.

Another way to obtain these two series is to do polynomial long division
and divide 1 + 22 and 22 + 1 into 1 respectively.
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