
Binomial Series.

Observe that a + b can be put in the form a + ax by setting x = b
a
.

Based on this fact we want to consider the binomial expansion of (a + ax)r

for rational r.
First the Modern derivation of a version of the binomial theorem. Let
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From Maclaurin’s theorem:

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + . . .

(a+ ax)
m
n = a

m
n +

m

n
a

m
n x+

m(m− n)

2!n2
a

m
n x2 +

m(m− n)(m− 2n)

3!n3
a

m
n x3 + . . .

For a rational number a
b
, Newton’s formulation was:
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with
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expanding:
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And this matches our formulation. For the special case of

1

1 + x2
= (1 + x2)−1

replacing P = a with 1 and Q = x with x2 and m = −1, n = 1 we get

1

1 + x2
= 1− x2 + x4 − x6 + . . . (1)

on the other hand replacing a with x2 and ax = 1 so x needs to be replaced
with x−2 and again m = −1, n = 1 we get

1

1 + x2
= x−2 − x−4 + x−6 − x−8 + . . . (2)

Newton said to use equation (1) if x < 1 and use equation (2) if x > 1. We
know from more modern consideration that series (1) converges for |x| < 1
and series (2) converges for |x−2| < 1 which is equivalent to |x| > 1.

Another way to obtain these two series is to do polynomial long division
and divide 1 + x2 and x2 + 1 into 1 respectively.
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