The Deficit.

Definition. The deficit of a triangle $\triangle A B C$, denoted by $\operatorname{def}(\triangle A B C)$, is defined as $\operatorname{def}(\triangle A B C)=180-(\mathrm{m}(\angle C A B)+\mathrm{m}(\angle A B C)+\mathrm{m}(\angle B C A))$.

Figure 1: Deficit Theorem

We know, by theorems, $\operatorname{def}(\triangle A B C) \geq 0$ and that there exist a triangle with zero deficit if and only if the Euclidean parallel line postulate holds.

Theorem. Given $(\triangle A B C)$ and $D \in \overline{C B}$ is between B and C. Then:

$$
\operatorname{def}(\triangle A B C)=\operatorname{def}(\triangle A C D)+\operatorname{def}(\triangle A D B)
$$

Proof. The result follows from the fact that $\mathrm{m}(\angle A D C)+\mathrm{m}(\angle A D B)$ is the measure of a straight angle (i.e. 180°).

The AAA Theorem in the Hyperbolic Geometry.

Theorem [Hyperbolic Geometry]. If two triangles have their angles congruent, then the triangles are congruent.

Figure 2: AAA Theorem

Proof. Suppose that $\triangle A B C$ and $\triangle D E F$ have corresponding angles congruent to each other, with:

$$
\begin{aligned}
& \angle C A B \cong \angle F D E \\
& \angle A B C \cong \angle D E F \\
& \angle B C A \cong \angle E F D
\end{aligned}
$$

So the two triangles have the same deficit. Now suppose that the triangles are not congruent. Then $\overline{A C}$ is not congruent to $\overline{D F}$. We assume, without loss of generality, that $\mathrm{m}(\overline{A C})<\mathrm{m}(\overline{D F})$. So there is a point C^{\prime} on $\overline{D F}$ between D and F so that

$$
(m)(\overline{A C}) \cong(m)\left(\overline{D C^{\prime}}\right.
$$

Consider the line $\overleftrightarrow{C^{\prime} G}$ with G on the same side of $\overleftrightarrow{D F}$ as E so that $\angle D C^{\prime} G \cong$ $\angle A C B$. The by Pasch's Axiom, $\overrightarrow{C^{\prime} G}$ intersects $\overline{D E}$ or $\overline{E F}$. By the alternate interior angle theorem, $\overleftrightarrow{C^{\prime} G}$ is parallel to $\overleftrightarrow{E F}$ and so must intersect $\overrightarrow{D E}$ at some point B^{\prime}. Then, by ASA

$$
\triangle A B C \cong \triangle D B^{\prime} C^{\prime}
$$

But then we have:

$$
\begin{aligned}
\operatorname{def}(\triangle D E F) & =\operatorname{def}\left(\triangle D B^{\prime} C^{\prime}\right)+\operatorname{def}\left(\triangle B^{\prime} C^{\prime} E\right)+\operatorname{def}\left(\triangle C^{\prime} E F\right) \\
\therefore \operatorname{def}(\triangle D E F) & >\operatorname{def}\left(\triangle D B^{\prime} C^{\prime}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{def}(\triangle D E F) & =\operatorname{def}(\triangle A B C) \\
\operatorname{def}(\triangle A B C) & =\operatorname{def}\left(\triangle D B^{\prime} C^{\prime}\right) \\
\therefore \operatorname{def}(\triangle D E F) & =\operatorname{def}\left(\triangle D B^{\prime} C^{\prime}\right) .
\end{aligned}
$$

This is a contradiction.

