The Deficit.

Definition. The deficit of a triangle $\triangle ABC$, denoted by def($\triangle ABC$), is defined as def($\triangle ABC$) = 180 - (m($\angle CAB$) + m($\angle ABC$) + m($\angle BCA$)).

Figure 1: Deficit Theorem

We know, by theorems, $def(\triangle ABC) \ge 0$ and that there exist a triangle with zero deficit if and only if the Euclidean parallel line postulate holds.

Theorem. Given $(\triangle ABC)$ and $D \in \overline{CB}$ is between B and C. Then:

 $def(\triangle ABC) = def(\triangle ACD) + def(\triangle ADB)$

Proof. The result follows from the fact that $m(\angle ADC) + m(\angle ADB)$ is the measure of a straight angle (i.e. 180°).

The AAA Theorem in the Hyperbolic Geometry.

Theorem [Hyperbolic Geometry]. If two triangles have their angles congruent, then the triangles are congruent.

Figure 2: AAA Theorem

Proof. Suppose that $\triangle ABC$ and $\triangle DEF$ have corresponding angles congruent to each other, with:

So the two triangles have the same deficit. Now suppose that the triangles are not congruent. Then \overline{AC} is not congruent to \overline{DF} . We assume, without loss of generality, that $m(\overline{AC}) < m(\overline{DF})$. So there is a point C' on \overline{DF} between D and F so that

$$(m)(\overline{AC}) \cong (m)(\overline{DC'}.$$

Consider the line $\overleftarrow{C'G}$ with G on the same side of \overrightarrow{DF} as E so that $\angle DC'G \cong \angle ACB$. The by Pasch's Axiom, $\overleftarrow{C'G}$ intersects \overline{DE} or \overline{EF} . By the alternate interior angle theorem, $\overleftarrow{C'G}$ is parallel to \overleftarrow{EF} and so must intersect \overline{DE} at some point B'. Then, by ASA

$$\triangle ABC \cong \triangle DB'C'.$$

But then we have:

$$def(\triangle DEF) = def(\triangle DB'C') + def(\triangle B'C'E) + def(\triangle C'EF)$$

$$\therefore def(\triangle DEF) > def(\triangle DB'C').$$

and

$$def(\triangle DEF) = def(\triangle ABC)$$
$$def(\triangle ABC) = def(\triangle DB'C')$$
$$\therefore def(\triangle DEF) = def(\triangle DB'C').$$

This is a contradiction.