
Euler’s manipulation of infinite series.

Euler first published this technique in 1735; but, apparently aware that
he was making some unwarranted assumptions, he published a proof that
his result was correct in 1741. It took another 100 years for the concept of
infinite products to be placed on a firm rigorous mathematical setting - this
was based on the work of Weierstrass.

Suppose that P (x) is a polynomial with roots r1, r2, r3, . . . rn. Then P (x)
can be written in the form where line (2) is obtained by multiplying out.

P (x) = A(x− r1)(x− r2) . . . (x− rn)

= Axn −A(r1 + r2 + . . .+ rn)xn−1 +A
n∑
j=1

∑
i 6=j

rirjx
n−2

+ . . .+ (−1)n−1A

n∑
j=1

∏
i 6=j

ri︸ ︷︷ ︸
L

x+ (−1)nA

n∏
i=1

ri︸ ︷︷ ︸
K

.

Observe that if

K = (−1)nA
n∏
i=1

ri and L = (−1)n−1A
n∑
j=1

∏
i 6=j

ri

then

L = −K
n∑
i=1

( 1

ri

)
and so for the special case of K = 1 we have

L = −
n∑
i=1

( 1

ri

)
.

Observe that K = P (0).
Euler thought to apply this to the sine and cosine functions, both of which

have infinitely many roots. We apply it to the sine first. But since it looks
like we will be dividing by the roots and 0 is a root of the sine function

we’ll look at P (z) = sin(z)
z . For this function, we’ll get a polynomial P̂ that

doesn’t have 0 as a root:

P̂ (z) =
sin(z)

z
;

and since

lim
z→0

sin(z)

z
= 1

it is reasonable to assume that our infinite polynomial has value 1 at 0. In
fact, defining P̂ as above, where we define P̂ (0) = 1, produces a continuous
polynomial-like function. Observe that in this case K = 1.
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With this result in mind Euler considered the sine series:

sin z = z − z3

3!
+
z5

5!
− z7

7!
+ . . .

= z(1− z2

3!
+
z4

5!
− z6

7!
+ . . .)

And thinking of the right side as a polynomial, since sin z = 0 for z =
0,±π,±2π,±3π, . . . , these values for z are the roots of the “polynomial”.
Letting w = z2 and dividing out the factor of z thereby removing zero from
the roots (so we’re now using P̂ ), it follows (his reasoning indicated) that
w = π2, 22π2, 32π2, . . . are the roots of the infinite polynomial

P̂ (w) = 1− w

3!
+
w2

5!
− w3

7!
+ . . .

So for this equation, K = 1 and the value of L, the coefficient of the w term,
is −1

6 so

L = −
n∑
i=1

( 1

ri

)
−1

6
= −

( 1

π2
+

1

22π2
+

1

32π2
+ . . .

)
π2

6
= 1 +

1

22
+

1

32
+

1

42
+ . . .

We already knew from Calculus II that this series converged, but we didn’t
know what it converged to.

Homework: Similarly one can get another result using the same “trick”
with the cosine series.
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I stuck in an extra page here so that you aren’t tempted to look at the
solution (starting on the next page) before trying it out for your self.
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Solution. Although I will use the same underlying logic, I will do the details
a little differently so as to get a feeling for the technique. First a repeat of
some of the background about polynomials. Suppose one is given a n degree
polynomial P (x):

P (x) = A0 +A1x+A2x
2 + · · ·+Anx

n.

If A0 6= 0 we can get a new polynomial P̂ (x) with leading term 1:

P̂ (x) =
1

A0
P (x) = 1 +

A1

A0
x+

A2

A0
x2 + . . .

An
A0

xn

= 1 +B0x+B2x
2 + . . . Bnx

n.

Suppose now that r1, r2, . . . rn are the n roots of P̂ where roots of multiplicity
k > 1 are repeated k times, then we claim that

P̂ (x) = 1 +B0x+B2x
2 + . . . Bnx

n

=
(

1− x

r1

)(
1− x

r2

)
. . .
(

1− x

rn

)
.

To justify this recall that, for two polynomials with the same roots (with
the same multiplicities), that one must be a multiple of the other. Thus if
they match at one point, different from the n roots, then they are the same.
In our case the two expressions for the polynomial P̂ have the same roots
(this can be checked by letting x = ri) and they match at x = 0, which is
not a root so the expressions must be equal. Observe, by multiplying out,
that:

B1x = −
( x
r1

+
x

r2
+ . . .+

x

rn

)
= −x

( 1

r1
+

1

r2
+ . . .+

1

rn

)
.

Now we apply these ideas to the “infinite” polynomial expression for cosx
obtained from the Maclaurin expansion.

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ . . . .

The roots of the cosine function are ±π
2 ,±

3π
2 ,±

5π
2 , . . .. Then using Euler’s

intuitive jump, we express the cosine as an infinite product:

cosx =
(

1− x
π
2

)(
1 +

x
π
2

)(
1− x

3π
2

)(
1 +

x
3π
2

)
. . .

=
(

1− x2

π2

4

)(
1− x2

32π2

4

)
. . .

= 1− x2
( 4

π2
+

4

32π2
+

4

52π2
+ . . .

)
+ higher powers of xn.
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Since the coefficient of the x2 term in the cosx expansion is −1
2 we have:

−1

2
= −

( 4

π2
+

4

32π2
+

4

52π2
+ . . .

)
π2

8
=

(
1 +

1

32
+

1

52
+

1

72
+ . . .

)
=

∞∑
n=1

1

(2n− 1)2
.

�


