Euler Formulas

The following series representations can easily be obtained by the standard technique that produces the Maclaurin expansions of functions.

$$
\begin{align*}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\ldots \tag{1}\\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \tag{2}\\
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \tag{3}
\end{align*}
$$

Observe that if $i^{2}=-1$ then:

$$
\begin{aligned}
i^{1} & =i \\
i^{2} & =-1 \\
i^{3} & =-i \\
i^{4} & =1 \\
i^{5} & =i \\
\vdots & \vdots
\end{aligned}
$$

and the pattern continues. Substituting $i x$ for x in equation (1) and also $-i x$ for x yields.

$$
\begin{align*}
e^{i x} & =1+i x-\frac{x^{2}}{2!}-\frac{i x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{i x^{5}}{5!}-\frac{x^{6}}{6!}-\frac{i x^{7}}{7!}+\ldots \tag{4}\\
e^{-i x} & =1-i x-\frac{x^{2}}{2!}+\frac{i x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{i x^{5}}{5!}-\frac{x^{6}}{6!}+\frac{i x^{7}}{7!}+\ldots \tag{5}
\end{align*}
$$

Recognizing formulas 2 and 3 as parts of formula 4 and 5 we have:

$$
\begin{align*}
e^{i x} & =\cos x+i \sin x \tag{6}\\
e^{-i x} & =\cos x-i \sin x \tag{7}
\end{align*}
$$

Equation (6) (which implies equation (7)) is called Euler's formula - he derived it around 1740. Substituting $x=\pi$ in equation (6) we get the famous,

$$
e^{i \pi}=-1
$$

This is referenced as Euler's Identity and has be called the most remarkable/beautiful identity in mathematics.

Solving (6) and (7) for sine and cosine yields:

$$
\begin{aligned}
& \cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right) \\
& \sin x=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right) .
\end{aligned}
$$

Recall the definition of the hyperbolic functions and one can see a formal relationship to the trig functions:

$$
\begin{aligned}
\cosh x & =\frac{1}{2}\left(e^{x}+e^{-x}\right) \\
\sinh x & =\frac{1}{2}\left(e^{x}-e^{-x}\right)
\end{aligned}
$$

And derive the following

$$
\begin{aligned}
\cosh x & =\cos (i x) \\
\sinh x & =\frac{1}{i} \sin (i x)=-i \sin (i x)
\end{aligned}
$$

The hyperbolic trigonometric functions were introduced in the 1760's independently by Vincenzo Riccati and Johann Lambert. They have similar algebraic identities to the usual trig functions; for example:

$$
\cosh ^{2}(x)-\sinh ^{2} x=1
$$

Then dividing through by cosh yields an identity relating tanh and sech.

