Hyperbolic Geometry Exercises on Quadrilaterals.

For these exercises you may use the Neutral Geometry theorems. These include the congruence theorems between triangles: SAS, ASA, SSS, AAS; the alternate interior angle theorem.

Definition. The quadrilateral $\square A B C D$ is called a Lambert quadrilateral if it has three right angles. [Notation, for the Lambert quadrilateral $\square A B C D$ the point D is usually assumed to be the angle which has not been designated as a right angle. (Though in Euclidean geometry it will be a right angle.)]

Definition. The quadrilateral $\square A B C D$ is called a Saccheri quadrilateral if has two congruent sides perpendicular to a third side, called the base of the quadrilateral. [Notation, for the Saccheri quadrilateral $\square A B C D$ the side $\overline{A B}$ is usually assumed to be the base with sides $\overline{D A}$ and $\overline{C B}$ perpendicular to it.]

Saccheri Quadrilaterals.

Given: For $\square A B C D$ we have $\overline{A D} \cong \overline{B C}$, angles $\angle A B C$ and $\angle B A D$ are congruent right angles.

Exercise 1. The summit angle of a Saccheri Quadrilateral are equal.

Figure 1: Saccheri Quadrilateral.

Exercise 2. The line joining the midpoint of the base and of the summit of a Saccheri Quadrilateral is perpendicular to both of them.

Figure 2: Saccheri Quadrilateral - Midpoint Theorem.

Exercise 3. If perpendiculars are drawn from the extremities of the base of a triangle upon the line passing through the midpoints of the two sides, then a Saccheri quadrilateral is formed.

Figure 3: Triangle theorem.

Note, you are given the following:

$$
\begin{aligned}
& \overline{A M} \cong \overline{C M} \\
& \overline{B K} \cong \overline{C K} \\
& \overline{A P} \perp \overleftarrow{M K} \\
& \overline{B Q} \perp \overleftarrow{M K}
\end{aligned}
$$

Exercise 4. The line joining the midpoints of the equal sides of a Saccheri quadrilateral is perpendicular to the line joining the midpoints of the base and summit.

Figure 4: Midline theorem.

Exercise 5. If $\square A B C D$ is a rectangle, then opposite side are congruent. [Note: this is a neutral geometry theorem.]

Exercise 6. If $\square A B C D$ is a Saccheri quadrilateral with congruent sides $\overline{D A}$ and $\overline{C B}$, then the angles $\angle C D A$ and $\angle D C B$ are congruent.

Exercise 7. Suppose $\square A B C D$ is a quadrilateral with right angles $\angle D A B$ and $\angle A B C$. Then the angle opposite the smaller side is smaller: if $m(\overline{D A})<$ $m(\overline{C D})$ then $m(\angle A D C)>m(\angle B C D)$.

Figure 5: angle opposite the smaller side is smaller

Observe that we have the following from our exercises: Suppose $\square A B C D$ is a quadrilateral with right angles $\angle D A B$ and $\angle A B C$. Then the side opposite the larger angle is larger: if $m(\angle A D C)>m(\angle B C D)$ then $m(\overline{D A})<$ $m(\overline{C D})$.

Exercise 8. Suppose ℓ and m are two parallel lines so that P and Q are points of ℓ whose distance from m are equal, then ℓ and m have a common perpendicular through the midpoint M of $\overline{P Q}$.

Figure 6:

Exercise 9. On the hypothesis of the previous exercise, every other point of ℓ is farther from m than M.

