Hyperbolic Geometry Exercises on Quadrilaterals.

For these exercises you may use the Neutral Geometry theorems. These include the congruence theorems between triangles: SAS, ASA, SSS, AAS; the alternate interior angle theorem.

Definition. The quadrilateral $\Box ABCD$ is called a *Lambert quadrilateral* if it has three right angles. [Notation, for the Lambert quadrilateral $\Box ABCD$ the point D is usually assumed to be the angle which has not been designated as a right angle. (Though in Euclidean geometry it will be a right angle.)]

Definition. The quadrilateral $\Box ABCD$ is called a *Saccheri quadrilateral* if has two congruent sides perpendicular to a third side, called the base of the quadrilateral. [Notation, for the Saccheri quadrilateral $\Box ABCD$ the side \overline{AB} is usually assumed to be the base with sides \overline{DA} and \overline{CB} perpendicular to it.]

Saccheri Quadrilaterals.

Given: For $\Box ABCD$ we have $\overline{AD} \cong \overline{BC}$, angles $\angle ABC$ and $\angle BAD$ are congruent right angles.

Exercise 1. The summit angle of a Saccheri Quadrilateral are equal.

Figure 1: Saccheri Quadrilateral.

Exercise 2. The line joining the midpoint of the base and of the summit of a Saccheri Quadrilateral is perpendicular to both of them.

Figure 2: Saccheri Quadrilateral - Midpoint Theorem.

Exercise 3. If perpendiculars are drawn from the extremities of the base of a triangle upon the line passing through the midpoints of the two sides, then a Saccheri quadrilateral is formed.

Figure 3: Triangle theorem.

Note, you are given the following:

$$\begin{array}{rcl}
\overline{AM} &\cong & \overline{CM} \\
\overline{BK} &\cong & \overline{CK} \\
\overline{AP} & \bot & \overleftarrow{MK} \\
\overline{BQ} & \bot & \overleftarrow{MK}
\end{array}$$

Exercise 4. The line joining the midpoints of the equal sides of a Saccheri quadrilateral is perpendicular to the line joining the midpoints of the base and summit.

Figure 4: Midline theorem.

Exercise 5. If $\Box ABCD$ is a rectangle, then opposite side are congruent. [Note: this is a neutral geometry theorem.]

Exercise 6. If $\Box ABCD$ is a Saccheri quadrilateral with congruent sides \overline{DA} and \overline{CB} , then the angles $\angle CDA$ and $\angle DCB$ are congruent.

Exercise 7. Suppose $\Box ABCD$ is a quadrilateral with right angles $\angle DAB$ and $\angle ABC$. Then the angle opposite the smaller side is smaller: if $m(\overline{DA}) < m(\overline{CD})$ then $m(\angle ADC) > m(\angle BCD)$.

Figure 5: angle opposite the smaller side is smaller

Observe that we have the following from our exercises: Suppose $\Box ABCD$ is a quadrilateral with right angles $\angle DAB$ and $\angle ABC$. Then the side opposite the larger angle is larger: if $m(\angle ADC) > m(\angle BCD)$ then $m(\overline{DA}) < m(\overline{CD})$.

Exercise 8. Suppose ℓ and m are two parallel lines so that P and Q are points of ℓ whose distance from m are equal, then ℓ and m have a common perpendicular through the midpoint M of \overline{PQ} .

Figure 6:

Exercise 9. On the hypothesis of the previous exercise, every other point of ℓ is farther from m than M.