Hyperbolic Geometry Exercises on Quadrilaterals.

For these exercises you may use the Neutral Geometry theorems. These include the congruence theorems between triangles: SAS, ASA, SSS, AAS; the alternate interior angle theorem.

Definition. The quadrilateral $\Box ABCD$ is called a *Lambert quadrilateral* if it has three right angles. [Notation, for the Lambert quadrilateral $\Box ABCD$ the point D is usually assumed to be the angle which has not been designated as a right angle. (Though in Euclidean geometry it will be a right angle.)]

Definition. The quadrilateral $\Box ABCD$ is called a *Saccheri quadrilateral* if has two congruent sides perpendicular to a third side, called the base of the quadrilateral. [Notation, for the Saccheri quadrilateral $\Box ABCD$ the side AB is usually assumed to be the base with sides DA and CB perpendicular to it.]

Saccheri Quadrilaterals.

Given: For $\Box ABCD$ we have $\overline{AD} \cong \overline{BC}$, angles ∠ABC and ∠BAD are congruent right angles.

Exercise 1. The summit angle of a Saccheri Quadrilateral are equal.

Figure 1: Saccheri Quadrilateral.

Proof. Since $\overline{AD} \cong \overline{BC}$ and ∠ABC $\cong \angle BAD$ then $\triangle ABC \cong \triangle BAD$ by SAS. So $\overline{AC} \cong \overline{BD}$ and then $\triangle DCA \cong \triangle CDB$ by SSS. This gives us $\angle CDA \cong \angle DCB$. \Box Exercise 2. The line joining the midpoints of the base and of the summit of a Saccheri Quadrilateral is perpendicular to both of them.

Figure 2: Saccheri Quadrilateral - Midpoint Theorem.

Proof Outline.

$$
\triangle DAM \cong \triangle CBM \text{ by SAS}
$$

\n
$$
\overline{DM} \cong \overline{CM}
$$

\n
$$
\triangle DKM \cong \triangle CKM \text{ by SSS}
$$

\n
$$
\angle DKM \cong \angle CKM.
$$

Therefore \overline{MK} is perpendicular to \overline{DC} .

Using the similar argument (working from the top down instead of from the bottom up), we obtain the fact that \overline{MK} is perpendicular to \overline{AB} . \Box Exercise 3. If perpendiculars are drawn from the extremities of the base of a triangle upon the line passing through the midpoints of the two sides, then a Saccheri quadrilateral is formed.

Figure 3: Triangle theorem.

Note, you are given the following:

$$
\overline{AM} \cong \overline{CM} \n\overline{BK} \cong \overline{CK} \n\overline{AP} \perp \overline{MK} \n\overline{BQ} \perp \overline{MK}
$$

Proof. Construct E so that $\overline{PM} \cong \overline{EM}$ and F so that $\overline{QK} \cong \overline{FK}$ (in the

case that E and F are in the reverse order, the proof is the same). Then:

$$
\angle AMP \cong \angle CME \text{ (vertical angles)}
$$
\n
$$
\overline{AM} \cong \overline{CM}
$$
\n
$$
\overline{PM} \cong \overline{EM} \text{ (construction)}
$$
\n
$$
\triangle APM \cong \triangle CEM \text{ (SAS)}
$$
\n
$$
\angle APM \cong \angle CEM \text{ and so is a right angle}
$$
\n
$$
\angle BKQ \cong \angle CKF \text{ (vertical angles)}
$$
\n
$$
\overline{BK} \cong \overline{CK}
$$
\n
$$
\overline{QK} \cong \overline{FK} \text{ (construction)}
$$
\n
$$
\triangle BQK \cong \triangle CFK \text{ (SAS)}
$$
\n
$$
\angle BQK \cong \angle CFK \text{ and so is a right angle}
$$
\n
$$
\triangle CEF \cong \angle CFE \text{ (ASA)}
$$
\n
$$
\overline{CE} \cong \overline{CF}
$$
\n
$$
\overline{AP} \cong \overline{CE} \cong \overline{CF} \cong \overline{BQ}
$$

So $\Box PQBA$ is a Saccheri quadrilateral.

 \Box

Exercise 4. The line joining the midpoints of the equal sides of a Saccheri quadrilateral is perpendicular to the line joining the midpoints of the base and summit.

Figure 4: Midline theorem.

Exercise 5. If $\Box ABCD$ is a rectangle, then opposite side are congruent. [Note: this is a neutral geometry theorem.]

Exercise 6. If $\Box ABCD$ is a Saccheri quadrilateral with congruent sides \overline{DA} and CB, then the angles $\angle CDA$ and $\angle DCB$ are congruent.

Exercise 7. Suppose $\Box ABCD$ is a quadrilateral with right angles $\angle DAB$ and ∠ABC. Then the angle opposite the smaller side is smaller: if $m(\overline{DA})$ < $m(\overline{CD})$ then $m(\angle ADC) > m(\angle BCD)$.

Figure 5: angle opposite the smaller side is smaller

Proof. Let E be chosen on \overrightarrow{BC} so that $\overrightarrow{BE} \cong \overrightarrow{AD}$; since $m(AD) < m(BC)$ we have $B - -E - D$.

 $\angle ADE \cong \angle BED$, by Saccheri quadrilateral. So $m(\angle ADE) < m(\angle ADC)$ since \overrightarrow{DE} lies in the interior of $\angle ADC$. $\angle BED > \angle BCD$, exterior angle theorem. So $m(\angle ADC) > m(\angle BCD)$.

 \Box

Observe that we have the following from our exercises: Suppose $\Box ABCD$ is a quadrilateral with right angles $\angle DAB$ and $\angle ABC$. Then the side opposite the larger angle is larger: if $m(\angle ADC) > m(\angle BCD)$ then $m(\overline{DA})$ < $m(CD)$.

Exercise 8. Suppose ℓ and m are two parallel lines so that P and Q are points of ℓ whose distance from m are equal, then ℓ and m have a common perpendicular through the midpoint M of \overline{PQ} .

Figure 6:

Proof. Let M be the midpoint of \overline{PQ} and let A, B, D be the bases of perpendicularity respectively from P, Q, M to ℓ .

 $\overline{PA} \cong \overline{QB}$ by hypothesis; $\angle APM \cong \angle BQM$, since $\Box PABQ$ is a Saccheri quadrilateral; $\overline{PM} \cong \overline{QM}$ since M is the midpoint; so $\triangle MPA \cong \triangle MQB$ by SAS. $\angle PMA \cong QMB$ congruencies. $\overline{AM} \cong \overline{BM}$ congruencies; $\overline{MB} \cong \overline{MB}$ identity; $\angle MDA \cong MDB$ right angles; $\triangle MDA \cong \triangle MDB$ SS -right angle. ∠AMD ≅ ∠BMD congruencies; $\angle PMD \cong \angle QMD$ angle addition of congruent angles. Therefore $\overline{MD} \perp \overline{AB}$.

 $\overline{AD} \cong \overline{BD}$ congruencies; therefore D is the midpoint of \overline{AB} .

 \Box

Exercise 9. On the hypothesis of the previous exercise, every other point of ℓ is farther from m than M.

Proof. Referring to Figure 2: If $R \in \mathbb{R}$ and X is the base of perpendicularity to ℓ then the quadrilateral $\Box RXDM$ has right angles $\angle RXD$, $\angle XDM$, ∠DMR; since $def(\square RXDM > 0)$ it follows that $m(\angle MRX) < 90$. So the result follows from Claim 4. \Box

Claim 7. Suppose that ℓ and m are lines such that there is a segment PD with $P \in m$ and $D \in \ell$ so that PD is parallel to both ℓ and m. Then m and ℓ are perpendicular and if Q and R are points of m so that $QP \cong RP$ then Q and R are the same distance from ℓ .