The Interpolation Problem; the Gamma Function

The interpolation problem: given a function with values on some discrete set, like the positive integer, then what would be a reasonable way to extend the function so that it is defined for all the reals? Euler wanted to do this for the factorial function. He presented his results in a 1729 paper. Euler concluded that

$$
n!=\int_{0}^{1}(-\ln x)^{n} d x
$$

Observe that (in modern calculation)

$$
\begin{aligned}
\int_{0}^{1}-\ln x d x & =-x \ln x+\left.x\right|_{0} ^{1} \\
& =1+\lim _{x \rightarrow 0^{+}} x \ln x \\
& =1+\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}} \\
& =1+\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}} \\
& =1+\lim _{x \rightarrow 0^{+}} \frac{-x}{1}=1-0=1
\end{aligned}
$$

Which is consistent with $1!=1$. Now consider the following integration,

$$
\int_{0}^{1}(-\ln x)^{n} d x
$$

We apply the (Leibnitz version) of the integration by parts formula $\int u d v=$ $u v-\int v d u$.

$$
\begin{array}{rl}
d v=1 & v=x \\
u=(-\ln x)^{n} & d u=n(-\ln x)^{n-1}\left(-\frac{1}{x}\right) d x \\
\int_{0}^{1}(-\ln x)^{n} d x= & \left.x(-\ln x)^{n}\right|_{0} ^{1}+n \int_{0}^{1}(-\ln x)^{n-1} d x
\end{array}
$$

Since (in modern notation and using the same limit techniques as above)

$$
\lim _{x \rightarrow 0^{+}} x(\ln x)^{n}=0
$$

(Euler would have probably said that $0(\ln (0))^{n}=0$.) We have:

$$
\int_{0}^{1}(-\ln x)^{n} d x=n \int_{0}^{1}(-\ln x)^{n-1} d x
$$

which is consistent with our inductive definition of the factorial function: $n!=n \cdot(n-1)!$; so for integers the formula clearly works. Then he used the transformation $t=-\ln x$ so that $x=e^{-t}$ to obtain the following. Note that when $x=1, t=0$ and when $x \rightarrow 0, t \rightarrow \infty$.

$$
\begin{aligned}
\int_{0}^{1}(-\ln x)^{n} d x & =\int_{\infty}^{0}(t)^{n} d\left(e^{-t}\right) \\
& =\int_{\infty}^{0}-(t)^{n} e^{-t} d t \\
& =\int_{0}^{\infty}(t)^{n} e^{-t} d t
\end{aligned}
$$

which is the modern formulation and leads us to the definition of the gamma function. For historical reasons (the fact that Gauss' π function was $\pi(n)=$ $(n-1)!)$ the gamma function Γ is defined by

$$
\begin{aligned}
\Gamma(n+1) & =\int_{0}^{\infty}(t)^{n} e^{-t} d t \\
& =n!
\end{aligned}
$$

Lets calculate $\Gamma\left(\frac{1}{2}\right)$:

$$
\begin{aligned}
\Gamma(n+1) & =\int_{0}^{\infty}(t)^{n} e^{-t} d t \\
\Gamma\left(\frac{1}{2}\right) & =\int_{0}^{\infty}(t)^{-\frac{1}{2}} e^{-t} d t
\end{aligned}
$$

consider the change of variable $t=x^{2}$:

$$
\begin{aligned}
\int_{0}^{\infty}(t)^{-\frac{1}{2}} e^{-t} d t & =\int_{0}^{\infty}\left(x^{2}\right)^{-\frac{1}{2}} e^{-x^{2}} d x^{2} \\
& =\int_{0}^{\infty} \frac{1}{x} e^{-x^{2}} 2 x d x \\
& =2 \int_{0}^{\infty} e^{-x^{2}} d x \\
& =\int_{-\infty}^{\infty} e^{-x^{2}} d x \\
\Gamma\left(\frac{1}{2}\right) & =\sqrt{\pi}
\end{aligned}
$$

So we need the calculation of $\int_{-\infty}^{\infty} e^{-x^{2}} d x$. I'll remind us how it's done. We will use a change of variable from rectangular to polar coordinates. So we will need $|J|$ for the Jacobian.

$$
\begin{gathered}
x=r \cos \theta \\
y=r \sin \theta \\
J=\left[\begin{array}{cc}
\frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\
\frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right] \\
|J|=r \cos ^{2} \theta+r \sin ^{2} \theta=r
\end{gathered}
$$

$$
\begin{aligned}
\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{2} & =\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}}|J| d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta \\
& =\int_{0}^{2 \pi}-\left.\frac{1}{2} e^{-r^{2}}\right|_{0} ^{\infty} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{2} d \theta \\
& =\frac{1}{2} \cdot 2 \pi=\pi \\
\int_{-\infty}^{\infty} e^{-x^{2}} d x & =\sqrt{\pi}
\end{aligned}
$$

From our probability and/or statistics class we will want to calculate

$$
\int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x
$$

Using a change of variable $u=\frac{x-\mu}{\sqrt{2} \sigma}$ so that $d u=\frac{1}{\sqrt{2} \sigma}$ So

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} & =\int_{-\infty}^{\infty} e^{-u^{2}} \sqrt{2} \sigma d u \\
& =\sqrt{2} \sigma \sqrt{\pi}=\sigma \sqrt{2 \pi}
\end{aligned}
$$

Which gives us the normal distribution probability density function:

$$
f_{\mu, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} .
$$

Factorial like property of the gamma function.

From the definition of the gamma function we have the following:

$$
\begin{aligned}
\Gamma(n+1) & =n! \\
\Gamma(n+2) & =(n+1)! \\
& =(n+1) \Gamma(n+1)
\end{aligned}
$$

So the choice of the gamma function as a generalization of the factorial would be particular nice if we could show this for all x and not just for positive integers. We'd like to prove that $\Gamma(x)=(x-1) \Gamma(x-1)$. In the following assume x is a particular positive real number (we'll see why we need positive below). From our definition of $\Gamma(x)$ we have

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

We proceed with integration by parts using Leibnitz notation treating x as a constant:

$$
\begin{aligned}
\int u d v= & u v-\int v d u \\
\Gamma(x)= & \int_{0}^{\infty} t^{x-1} e^{-t} d t \\
& u=t^{x-1} ; d v=e^{-t} d t \\
& d u=(x-1) t^{x-2} d t ; v=-e^{-t} \\
\int_{0}^{\infty} t^{x-1} e^{-t} d t= & \int_{0}^{\infty} t^{x-1} e^{-t} d t \\
= & -\left.t^{x-1} e^{-t}\right|_{0} ^{\infty}-\int_{0}^{\infty}(x-1) t^{x-2}\left(-e^{-t}\right) d t
\end{aligned}
$$

It's a simple exercise to evaluate $\left.t^{x-1} e^{-t}\right|_{0} ^{\infty}$ as long as $x \geq 1$. When x is less than 1 the lower integration limit yields division by zero so the integration will only be finite for $x \geq 1$. In these cases we have:

$$
\begin{aligned}
\int_{0}^{\infty} t^{x-1} e^{-t} d t & =-\left.t^{x-1} e^{-t}\right|_{0} ^{\infty}-\int_{0}^{\infty}(x-1) t^{x-2}\left(-e^{-t}\right) d t \\
& =0+\int_{0}^{\infty}(x-1) t^{x-2} e^{-t} d t \\
\Gamma(x) & =(x-1) \Gamma(x-1) .
\end{aligned}
$$

I add one more observation by Gauss where he generalized the gamma function to a function of a complex variable z :

$$
\Gamma(z)=\frac{e^{-\gamma z}}{z} \prod_{k=1}^{\infty}\left(1+\frac{z}{k}\right)^{-1} e^{\frac{z}{k}}
$$

The number γ is Euler's constant. Note the use of "infinite" products.

