The Interpolation Problem; the Gamma Function

The interpolation problem: given a function with values on some discrete
set, like the positive integer, then what would be a reasonable way to extend
the function so that it is defined for all the reals? Euler wanted to do this
for the factorial function. He presented his results in a 1729 paper. Euler
concluded that
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Which is consistent with 1! = 1. Now consider the following integration,
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We apply the (Leibnitz version) of the integration by parts formula [ u dv =
w — [ du.
dv=1 wv=x

u=(—Inz)" du=n(—In :17)”_1< - %)dw

1 1 1
/(—lnm)”dm = z(—Inz)" +n/ (—Inz)" dx
0 0 0

Since (in modern notation and using the same limit techniques as above)
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(Euler would have probably said that 0(In(0))™ = 0.) We have:
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which is consistent with our inductive definition of the factorial function:
n! =n-(n—1)}; so for integers the formula clearly works. Then he used the

transformation ¢ = —Inx so that z = e™* to obtain the following. Note that
when x = 1,t = 0 and when x — 0,¢ — oo.
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which is the modern formulation and leads us to the definition of the gamma
function. For historical reasons (the fact that Gauss’ 7 function was m(n) =
(n — 1)!) the gamma function I' is defined by
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Lets calculate I'(3):
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consider the change of variable t = z?:
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So we need the calculation of ffooo e~ dx. Tl remind us how it’s done.
We will use a change of variable from rectangular to polar coordinates. So
we will need |J| for the Jacobian.
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From our probability and/or statistics class we will want to calculate
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Using a change of variable u = % so that du = ﬁ So
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Which gives us the normal distribution probability density function:
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Factorial like property of the gamma function.



From the definition of the gamma function we have the following:

'n+1) = n!
'n+2) = (n+1)!
= (n+1)I'(n+1).
So the choice of the gamma function as a generalization of the factorial would
be particular nice if we could show this for all x and not just for positive
integers. We'd like to prove that I'(x) = (z — 1)['(z — 1). In the following

assume z is a particular positive real number (we’ll see why we need positive
below). From our definition of I'(x) we have
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We proceed with integration by parts using Leibnitz notation treating x as

a constant:
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It’s a simple exercise to evaluate t”_le_t|8° as long as x > 1. When z is less
than 1 the lower integration limit yields division by zero so the integration
will only be finite for > 1. In these cases we have:
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I add one more observation by Gauss where he generalized the gamma
function to a function of a complex variable z:

['(z) = ﬁ (1 + %>_1ei.

The number ~ is Euler’s constant. Note the use of “infinite” products.



