Ancient Method for Calculating Square Roots

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function and one is interested in finding a point of the function so that $f(p)=p$. Such a point is called a fixed point of the function. Under certain continuity conditions, if one selects a starting value x_{0} and iterates the function to obtain successive iterates:

$$
x_{n+1}=f\left(x_{n}\right)
$$

then the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to the fixed point p. Conditions that imply this convergence include the following: that f be continuously differentiable around p and that $\left|f^{\prime}(p)\right|<1$. [I'll discuss this in class.]

It is conjectured (under questionable assumptions) that (circa 1,500 BCE) the Babylonians used an iterative process on the following function to calculate the square root of a number a :

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right) .
$$

It is thought that the reasoning went something like this: if x_{n} is a guess for \sqrt{a} and x_{n} is too large, then note that $\frac{a}{x_{n}}$ will be too small, so the average of the two should be a better guess; similarly, if x_{n} is too small, then $\frac{a}{x_{n}}$ will be too large.

Show that $p=\sqrt{a}$ is a fixed point of the iteration function $f(x)=\frac{1}{2}\left(x+\frac{a}{x}\right)$ and show that

$$
\left|f^{\prime}(\sqrt{a})\right|<1
$$

Around 100 CE the Greek mathematician Heron showed that this method works - it is often called Heron's method for calculating the square root of a number.

Show that this iterative process is equivalent to applying Newton's method for finding the roots of an equation to the equation $x^{2}-a=0$.

Additional exercises.

1. Suppose a Babylonian scribe wanted to calculate $\sqrt[3]{a}$ and he uses the square root as a model to obtain:

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}^{2}}\right)
$$

Check to make sure that the fixed point of the iterating function is the desired root; the determine if this method would work.
2. Repeat exercise 1 for the following iteration processes, in each of these cases a "weighted" average was used:

$$
\begin{aligned}
& \text { (a.) } x_{n+1}=\frac{1}{3}\left(x_{n}+2 \frac{a}{x_{n}^{2}}\right) \\
& \text { (b.) } x_{n+1}=\frac{1}{3}\left(2 x_{n}+\frac{a}{x_{n}^{2}}\right) .
\end{aligned}
$$

3. Of the three iteration processes, which is the most efficient and why do you think so.
