Geometric interpretation of the Hyperbolic Functions.
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Consider the unit circle 22 +y* = 1 and let u denote the area of the sector
OPAP'. Then the radian measure of the angle ZPOP’ will be 26. So the
area u of the sector will be to the area of the circle as the length of the arc

P/A?’ is to the circumference of the circle:

uo 20
T 27
0 = u.
So:
cosu = X
siny =

Now we consider the “unit” hyperbolic curve 2 —y? = 1 and let u denote
the area OPAP'.

Then, since the area of the triangle is %x - 2y, the area of OPAP’ is
u = xy—Q/ V2 — 1dt
1

1



(x,y)

P’

Figure 2: 22 —y? =1

where the integral is the area of the region below the hyperbola bounded by
the x-axis and the vertical line at coordinate x.
Recall the definitions of the hyperbolic functions:
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and the following identities
cosh®t — sinh*t = 1

sinht = +/cosh?—1



We will need the following integral

/sinh%dt = /(et;‘a_tfdt
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We now calculate the integral using the substitution ¢ = cosh 6

u = :Uy—2/ V2 — 1dt
1

cosh™' z

= xy—2 v/ cosh? @ — 1d cosh #
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= xy— (sinh(coshf1 ) cosh(cosh™ ) — cosh™ a:)

1 1
= xy— 2(5 sinh 6 cosh 6 — 59

= ay— (yr — cosh™ ' )

= cosh™'z.

This gives us coshu = x and by our identities sinhu = y.



