## Geometric interpretation of the Hyperbolic Functions.



Figure 1: $x^{2}+y^{2}=1$

Consider the unit circle $x^{2}+y^{2}=1$ and let $u$ denote the area of the sector $O P A P^{\prime}$. Then the radian measure of the angle $\angle P O P^{\prime}$ will be $2 \theta$. So the area $u$ of the sector will be to the area of the circle as the length of the arc $\widehat{P A P^{\prime}}$ is to the circumference of the circle:

$$
\begin{aligned}
\frac{u}{\pi} & =\frac{2 \theta}{2 \pi} \\
\theta & =u
\end{aligned}
$$

So:

$$
\begin{aligned}
\cos u & =x \\
\sin u & =y .
\end{aligned}
$$

Now we consider the "unit" hyperbolic curve $x^{2}-y^{2}=1$ and let $u$ denote the area $O P A P^{\prime}$.

Then, since the area of the triangle is $\frac{1}{2} x \cdot 2 y$, the area of $O P A P^{\prime}$ is

$$
u=x y-2 \int_{1}^{x} \sqrt{t^{2}-1} d t
$$



Figure 2: $x^{2}-y^{2}=1$
where the integral is the area of the region below the hyperbola bounded by the $x$-axis and the vertical line at coordinate $x$.

Recall the definitions of the hyperbolic functions:

$$
\begin{aligned}
\sinh t & =\frac{e^{t}-e^{-t}}{2} \\
\cosh t & =\frac{e^{t}+e^{-t}}{2}
\end{aligned}
$$

and the following identities

$$
\begin{aligned}
\cosh ^{2} t-\sinh ^{2} t & =1 \\
\sinh t & =\sqrt{\cosh ^{2}-1}
\end{aligned}
$$

We will need the following integral

$$
\begin{aligned}
\int \sinh ^{2} t d t & =\int\left(\frac{e^{t}-e^{-t}}{2}\right)^{2} d t \\
& =\int \frac{e^{2 t}-2+e^{-2 t}}{4} d t \\
& =\frac{e^{2 t}}{8}-\frac{1}{2} t-\frac{e^{-2 t}}{8} \\
& =\frac{e^{2 t}-e^{-2 t}}{8}-\frac{1}{2} t \\
& =\frac{1}{2}\left(\frac{e^{t}-e^{-t}}{2}\right)\left(\frac{e^{t}+e^{-t}}{2}\right)-\frac{1}{2} t \\
& =\frac{1}{2} \sinh t \cosh t-\frac{1}{2} t
\end{aligned}
$$

We now calculate the integral using the substitution $t=\cosh \theta$

$$
\begin{aligned}
u & =x y-2 \int_{1}^{x} \sqrt{t^{2}-1} d t \\
& =x y-2 \int_{0}^{\cosh ^{-1} x} \sqrt{\cosh ^{2} \theta-1} d \cosh \theta \\
& =x y-2 \int_{0}^{\cosh ^{-1} x} \sinh \theta \sinh \theta d \theta \\
& =x y-2 \int_{0}^{\cosh ^{-1} x} \sinh ^{2} \theta d \theta \\
& =x y-2\left(\frac{1}{2} \sinh \theta \cosh \theta-\left.\frac{1}{2} \theta\right|_{0} ^{\cosh ^{-1} x}\right) \\
& =x y-\left(\sinh \left(\cosh ^{-1} x\right) \cosh \left(\cosh ^{-1} x\right)-\cosh ^{-1} x\right) \\
& =x y-\left(y x-\cosh ^{-1} x\right) \\
& =\cosh ^{-1} x .
\end{aligned}
$$

This gives us $\cosh u=x$ and by our identities $\sinh u=y$.

