## Neutral Geometry Theorems

Pasch's Theorem/Axiom. If a line $\ell$ intersects one of the sides of a triangle, then it must intersect one of the other two sides.


Figure 1: Pasch's theorem

Equivalently: If the line $\ell$ intersects side $\overline{A C}$ of $\triangle A B C$ and contains neither $A$ nor $B$ then it intersects $\overline{A B}$ or $\overline{C B}$.

Crossbar Theorem. If $\angle B A C$ is an angle, and $\ell$ is a ray emanating from $A$ and $\overrightarrow{D E}$ is a segment intersecting rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$, then $\ell$ intersects $\overrightarrow{D E}$.


Figure 2: Crossbar theorem

Theorem ASA.
Proof. Let $\triangle A B C$ have two angles and the included side respectively congruent to $\triangle D E F$ with:

$$
\begin{aligned}
\angle C A B & \cong \angle F D E \\
\overline{A B} & \cong \overline{D E} \\
\angle A B C & \cong \angle D E F .
\end{aligned}
$$



Figure 3: ASA

Suppose that the triangles are not congruent. Then (by SAS axiom) $m(\overline{A C}) \neq m(\overline{D F})$. So we may assume, without loss of generality, that $m(\overline{A C})<m(\overline{D F})$. Then there is a point $C^{\prime}$ between $D$ and $F$ so that $\overline{A C} \cong \overline{D C^{\prime}}$. Then by SAS axiom, $\triangle A B C \cong \triangle D E C^{\prime}$. So $\angle A B C \cong \angle D E C^{\prime}$; but $\overline{C^{\prime} F}$ lies in the interior of $\angle D E F$ and so $m\left(\angle D E C^{\prime}\right)<m(\angle D E F)$. This contradicts $\angle D E C^{\prime} \cong \angle A B C \cong \angle D E F$.

Theorem SSS. Suppose that two triangles have three corresponding sides congruent to each other. Then the triangles themselves are congruent to each other.


Figure 4: SSS

Proof. Let $\triangle A B C$ have three sides respectively congruent to three sides of $\triangle D E F$ with:

$$
\begin{aligned}
& \overline{A B} \cong \overline{D E} \\
& \overline{B C} \cong \overline{E F} \\
& \overline{C A} \cong \overline{F D} .
\end{aligned}
$$

Let $G$ be a point on the opposite side of $\overleftrightarrow{A B}$ than $C$ so that $\angle B A G \cong \angle E D F$ and so that $\overline{A G} \cong \overline{D F}$. Then, by SAS, $\triangle B A G \cong \triangle E D F$. We consider first the case where $\overline{C G}$ is interior to $\angle A C B$ and therefore intersects $\overline{A B}$. Since $\triangle C A G$ is isosceles we have $\angle A C G \cong \angle A G C$. Similarly $\triangle C B G$ is isosceles and we also have $\angle B C G \cong \angle B G C$. Therefore, using the summation property, $\angle A C B \cong \angle A G B$ and we have $\triangle A C B \cong \triangle A G B$ by SAS. And since, $\triangle B A G \cong \triangle E D F$, we have $\triangle B A C \cong \triangle E D F$.


Figure 5: $\quad$ SSS Case 2

Case 2 is very similar except that two angle measurements subtract rather than add.

Theorem [Alternate Interior Angles.] Suppose that $\ell$ and $m$ are two line cut by a transversal line $n$. Let $A$ and $B$ be the intersection points of $n$ with $\ell$ and $m$ respectively. Let $C$ be a point on $\ell$ and not on $n$, let $D$ be a point on $m$ the other side of $n$ than $C$. Suppose that the alternate interior angles $\angle C A B$ and $\angle D B A$ are congruent. Then the lines $\ell$ and $m$ are parallel.


Figure 6: Alternate Interior Angles

Proof. Suppose not and that $\ell$ and $m$ intersect. Without loss of generality, we may assume that $\ell$ and $m$ intersect at the point $C$. Then let $E$ be a point of $m$ on the same side of $m$ as $D$ so that $\overline{B E} \cong \overline{A C}$.

Then by SAS $\triangle C A B \cong \triangle E B A$.
So, $\angle A B C \cong \angle B A E$; but $\angle A B E$ is supplementary to $\angle A B C$. So $\angle B A E$ is supplementary to $\angle B A C$ since these angle are congruent. And so the point $E$ must also lie on line $\ell$ since $\angle B A E$ together with $\angle B A C$ form a straight angle.

Then lines $\ell$ and $m$ have the two points $C$ and $E$ in common and so $\ell=m$ which contradicts the hypothesis that these are two different line.

Therefore $\ell$ does not intersect $m$ and so the lines are parallel.

Exterior Angle Theorem. Suppose that $\triangle A B C$ is a triangle and $\overline{A B}$ is extended to the ray $\overrightarrow{A D}$ (with $B$ between $A$ and $D$ ). Then the measure of $\angle D B C$ is greater then either of the two interior angles $\angle B A C$ and $\angle B C A$. [Note $\angle D B C$ is said to be an angle exterior to $\angle A B C$.]


Figure 7: Exterior Angle Theorem

Proof. Suppose the theorem is not true and that, without loss of generality, assume $m(\angle D B C) \leq \angle m(A C B)$. Now if $m(\angle D B C)=\angle m(A C B)$ then by the alternate interior angle theorem, $\overleftrightarrow{A C}$ would be parallel to $\overleftrightarrow{A B}$, which is not possible. Therefore, $m(\angle D B C)<m(\angle A C B)$. Let $\overrightarrow{C E}$ be a ray emanating from $C$ so that $\angle B C E \cong \angle D B C$; furthermore, since $m(\angle D B C) \leq \angle m(B C A), E$ can be chosen to be in the interior of $\angle B C A$. By the alternate interior angle theorem $\overleftrightarrow{C E}$ is parallel to $\overleftrightarrow{A B}$ and by the crossbar theorem $\overrightarrow{C E}$ intersects $\overrightarrow{A B}$. Which is a contradiction.

