
Neutral Geometry Theorems

Pasch’s Theorem/Axiom. If a line ` intersects one of the sides of a trian-
gle, then it must intersect one of the other two sides.
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Figure 1: Pasch’s theorem

Equivalently: If the line ` intersects side AC of 4ABC and contains
neither A nor B then it intersects AB or CB.
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Crossbar Theorem. If ∠BAC is an angle, and ` is a ray emanating from

A and DE is a segment intersecting rays
−→
AB and

−→
AC, then ` intersects DE.
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Figure 2: Crossbar theorem
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Theorem ASA.

Proof. Let 4ABC have two angles and the included side respectively con-
gruent to 4DEF with:

∠CAB ∼= ∠FDE

AB ∼= DE

∠ABC ∼= ∠DEF.
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Figure 3: ASA

Suppose that the triangles are not congruent. Then (by SAS axiom)
m(AC) 6= m(DF ). So we may assume, without loss of generality, that
m(AC) < m(DF ). Then there is a point C ′ between D and F so that
AC ∼= DC ′. Then by SAS axiom, 4ABC ∼= 4DEC ′. So ∠ABC ∼= ∠DEC ′;
but C ′F lies in the interior of ∠DEF and so m(∠DEC ′) < m(∠DEF ). This
contradicts ∠DEC ′ ∼= ∠ABC ∼= ∠DEF .
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Theorem SSS. Suppose that two triangles have three corresponding sides
congruent to each other. Then the triangles themselves are congruent to each
other.
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Figure 4: SSS

Proof. Let 4ABC have three sides respectively congruent to three sides of
4DEF with:

AB ∼= DE

BC ∼= EF

CA ∼= FD.

Let G be a point on the opposite side of
←→
AB than C so that ∠BAG ∼= ∠EDF

and so that AG ∼= DF . Then, by SAS, 4BAG ∼= 4EDF . We consider
first the case where CG is interior to ∠ACB and therefore intersects AB.
Since 4CAG is isosceles we have ∠ACG ∼= ∠AGC. Similarly 4CBG is
isosceles and we also have ∠BCG ∼= ∠BGC. Therefore, using the summation
property, ∠ACB ∼= ∠AGB and we have 4ACB ∼= 4AGB by SAS. And
since, 4BAG ∼= 4EDF , we have 4BAC ∼= 4EDF .
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Figure 5: SSS Case 2

Case 2 is very similar except that two angle measurements subtract rather
than add.
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Theorem [Alternate Interior Angles.] Suppose that ` and m are two line
cut by a transversal line n. Let A and B be the intersection points of n with
` and m respectively. Let C be a point on ` and not on n, let D be a point
on m the other side of n than C. Suppose that the alternate interior angles
∠CAB and ∠DBA are congruent. Then the lines ` and m are parallel.
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Figure 6: Alternate Interior Angles

Proof. Suppose not and that ` and m intersect. Without loss of generality,
we may assume that ` and m intersect at the point C. Then let E be a point
of m on the same side of m as D so that BE ∼= AC.

Then by SAS 4CAB ∼= 4EBA.
So, ∠ABC ∼= ∠BAE; but ∠ABE is supplementary to ∠ABC. So ∠BAE

is supplementary to ∠BAC since these angle are congruent. And so the point
E must also lie on line ` since ∠BAE together with ∠BAC form a straight
angle.

Then lines ` and m have the two points C and E in common and so ` = m
which contradicts the hypothesis that these are two different line.

Therefore ` does not intersect m and so the lines are parallel.
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Exterior Angle Theorem. Suppose that 4ABC is a triangle and AB is

extended to the ray
−−→
AD (with B between A and D). Then the measure of

∠DBC is greater then either of the two interior angles ∠BAC and ∠BCA.
[Note ∠DBC is said to be an angle exterior to ∠ABC.]
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Figure 7: Exterior Angle Theorem

Proof. Suppose the theorem is not true and that, without loss of general-
ity, assume m(∠DBC) ≤ ∠m(ACB). Now if m(∠DBC) = ∠m(ACB)

then by the alternate interior angle theorem,
←→
AC would be parallel to

←→
AB,

which is not possible. Therefore, m(∠DBC) < m(∠ACB). Let
−−→
CE be

a ray emanating from C so that ∠BCE ∼= ∠DBC; furthermore, since
m(∠DBC) ≤ ∠m(BCA), E can be chosen to be in the interior of ∠BCA.

By the alternate interior angle theorem
←→
CE is parallel to

←→
AB and by the

crossbar theorem
−−→
CE intersects AB. Which is a contradiction.
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