Presentations04 Greek and Arab Mathematics Solving Polynomial Equations

	Topic/Exercise	Presenter
1	Assume that the volume of a square based pyramid is $1 / 3$ area of the base times the height. Use the balance method of Archimedes to determine that volume of a right circular cone with base a circle of radius \boldsymbol{r} and height \boldsymbol{h}.	
2	Use the results of the above and the balance system that I posted at http://webhome.auburn.edu/~smith01/math3010Sp21/ArchimedesBalanceMethod.pdf to determine the volume of a sphere using the "method" of Archimedes.	
3	Generic presentation: Select a problem from your textbook in the section on Greek mathematics and solve it. Get my okay and confirmation as a presentation topic.	
4	State and solve a Diophantine equation.	
5	Generic presentation: Select a problem from your textbook in the section on Arabian and/or Indian mathematics and solve it. Get my okay and confirmation as a presentation topic. [See if you can find one by Omar Khayyam.]	
6	Show that if r is a root of the polynomial $\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{c}+\boldsymbol{c}$ then $\boldsymbol{x}-\boldsymbol{r}$ is a factor of that polynomial; similarly show that if r is a root of the polynomial $\boldsymbol{x}^{3}+\boldsymbol{b} \boldsymbol{x}^{2}+\boldsymbol{c x}+\boldsymbol{d}$ then $\mathrm{x}-\mathrm{r}$ is a factor of that polynomial. [Hint, use long division.]	
7	Show that if $P(x)=x^{n}+A_{n-1} x^{n-1}+A_{n-2} x^{n-2}+\cdots+A_{1} x+A_{0}$ and $P(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right)$ then $\boldsymbol{A}_{\mathbf{0}}=(-1)^{\mathrm{n}} \boldsymbol{r}_{\mathbf{1}} \cdot \boldsymbol{r}_{\mathbf{2}} \cdot \ldots \cdot \boldsymbol{r}_{\boldsymbol{n}}$ and $\boldsymbol{A}_{\boldsymbol{n}-\mathbf{1}}=-\boldsymbol{r}_{\mathbf{1}}-\boldsymbol{r}_{\mathbf{2}} \ldots-\boldsymbol{r}_{\boldsymbol{n}}$. [Hint: do it for the quadratic ($\mathrm{n}=2$) and cubic ($\mathrm{n}=3$) first.]	
8	Problem (translated) from an old text: A man put one pair of rabbits in a certain place entirely surrounded by a wall. How many rabbits can be produced from that pair in a year, if the nature of these rabbits is such that every month each pair bears a new pair which from the second month on becomes productive?	
9	Argue, using \#6, that if a polynomial has real coefficients and $\boldsymbol{r}_{\boldsymbol{1}}=\boldsymbol{a}+\boldsymbol{b} \boldsymbol{i}$ is a root, then $\boldsymbol{r}_{\mathbf{2}}=\boldsymbol{a}-\boldsymbol{b i}$ must also be a root. Show that this implies that a polynomial with real coefficients can be factored into quadratic terms with real coefficients. Do the special case of the quadratic and cubic equations first.	
10	Consider the polynomial $P(x)=x^{4}+x^{3}-4 x^{2}+4 x-32$ Show that $\boldsymbol{r}=2 \boldsymbol{i}$ is an "imaginary" root of the polynomial. Use that information and the properties that Cardano would have given this root to determine the "real" roots (as the mathematicians of the $16^{\text {th }}$ century would have viewed them.) [Hint: calculate $(\boldsymbol{x}-\mathbf{2 i})(\boldsymbol{x}+\mathbf{2 i})$ and use long division.] Although the Europeans at this time did not accept negative numbers, some began to work with these "fictitious" numbers to get answers to problems, so feel free to do to.	

