Presentations06
 Early Modern and Early Calculus

	Topic/Exercise	Presenter	
1	Calculate the Parallax, from opposite sides of earth's orbit (~184,000) miles), of the nearest star.		
2	Show that light traveling along a line toward a parabolic mirror (assume equation $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}$) parallel to the axis of symmetry is reflected toward the focus. (Use some modern calculus and DE's.)		
3	State and explain Newton's generalized binomial theorem. 4	Use the binomial theorem to expand $\frac{\mathbf{1}}{\mathbf{1 + \boldsymbol { x }}}$. Then use long division to do the same expansion.	
5	Use the binomial theorem to expand $\sqrt{\mathbf{1}+\boldsymbol{x}}$.		
6	Use long division and (modern) integration to obtain Mercator's identity: [See \#4 above.]		
7	Derive Newton's method to calculate a root of an equation. Do an example.	$\boldsymbol{x}^{\mathbf{3}} \boldsymbol{x}^{\mathbf{4}}$	
8	Select problems from your textbook from the section on the development of probability theory to do.		
9	Select problems from your textbook from the Early Calculus section to do.		

