Presentations07 The Beginning of Infinitesimal Calculus

	Topic/Exercise	Presenter	
1	Find the Maclaurin expansion for e^x , sin x and cos x. Then substitute		
	$x \leftarrow ix$ to obtain the identity $e^{ix} = \cos x + i \sin x$; then repeat with		
	$x \leftarrow -ix$ to get another identity; finally solve two equations in two		
	unknowns to get sin x and cos x in terms of e^{ix} and e^{-ix} .		
2	Consider the equation $(x + iy)^2 = 0 + 1i$. Set up two equations in x and		
	y and find real numbers that satisfy the equations. This will calculate \sqrt{i} .		
3	Prove de Moivre's theorem:		
	$(\cos x + i \sin x)^n = \cos nx + i \sin nx$		
	Where $i = \sqrt{-1}$. Hint: use induction.		
4	Look up the hyperbolic trig functions, sinh and cosh; prove the identity:		
	$\cosh^2(x) - \sinh^2(x) = 1$		
5	Prove that the sum of all the elements in a row of Pascal's triangle is an		
	integral power of 2. Hint: try induction.		
6	Use the fact that		
	$\binom{n}{l} = \frac{n!}{\frac{n}{l}}$		
	(k) $k!(n-k)!$		
	to obtain the identity (m) $(m-1)$		
	$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$		
	$(\kappa) (\kappa - 1) (\kappa)$		
7	In your textbook select some problems to do from the section on the		
	history of the development of the infinitesimal calculus.		