The Beginning of Infinitesimal Calculus

	Topic/Exercise	Presenter	
1	Find the Maclaurin expansion for $e^{x}, \sin x$ and $\cos x$. Then substitute $x \leftarrow i x$ to obtain the identity $e^{i x}=\cos x+i \sin x$; then repeat with $x \leftarrow-i x$ to get another identity; finally solve two equations in two unknowns to get $\sin x$ and $\cos x$ in terms of $e^{i x}$ and $e^{-i x}$.		
2	Consider the equation $(x+i y)^{2}=0+1 i$. Set up two equations in x and y and find real numbers that satisfy the equations. This will calculate \sqrt{i}.		
3	Prove de Moivre's theorem: $(\cos x+\mathrm{i} \sin x)^{n}=\cos n x+i \sin n x$ Where $i=\sqrt{-1}$. Hint: use induction.		
4	Look up the hyperbolic trig functions, sinh and cosh; prove the identity: $\cosh ^{2}(x)-\sinh ^{2}(x)=1$		
5	Prove that the sum of all the elements in a row of Pascal's triangle is an integral power of 2 . Hint: try induction.		
6	Use the fact that $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ to obtain the identity $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$		
7	In your textbook select some problems to do from the section on the history of the development of the infinitesimal calculus.		

