Presentations09 Non-Euclidean Geometry

	Topic/Exercise	Presenter	
1	Look up and derive the Binet formula for the Fibonacci numbers.		
2	Look up and solve the Königsberg bridges problem.		
3	Show that the subset of the complex numbers		
	$\{ z = x + iy z^2 = 1 \}$		
	is a group with respect to the multiplication operator.		
4	Consider the function defined by:		
	$f(x) = e^{-\frac{1}{x^2}}$		
	if $x \neq 0$ with $f(0) = 0$.		
	Calculate $f'(0)$. [Hint: use L'Hôpital's rule.]		
5	Prove the AAS Theorem in the Neutral Geometry.		
6	Do one of the exercises (#1 - #10) on quadrilaterals in the neutral		
	geometry. [Note that the figures are supposed to be hints.]		
7	Look up a problem on non-Euclidean geometry in your textbook to do.		