Presentations09 Non-Euclidean Geometry

	Topic/Exercise	Presenter	
1	Look up and derive the Binet formula for the Fibonacci numbers.		
2	Look up and solve the Königsberg bridges problem. 3	Show that the subset of the complex numbers is a group with respect to the multiplication operator.	
4	Consider the function defined by: if $x \neq 0$ with $f(0)=0$. Calculate $f^{\prime}(0) .[$ Hint: use L'Hôpital's rule.]		
5	Prove the AAS Theorem in the Neutral Geometry.		
6	Do one of the exercises (\#1 - \#10) on quadrilaterals in the neutral geometry. [Note that the figures are supposed to be hints.]		
7	Look up a problem on non-Euclidean geometry in your textbook to do.		

