Incommensurability of the diagonal and side of the square.

Problem: Show geometrically that the diagonal and side of a square are incommensurable.

Assume that we have a square pictured below with diagonal $\overline{A B}$ and sides $\overline{A F}$ and $\overline{F B}$. We assume that there is some quantity x that measure both $A F$ and $A B$ an integer number of times. Say the integers m and n respectively. We mark off $\overline{A C}$ congruent to $\overline{A F}$ and $\overline{C D}$ is constructed perpendicular to $\overline{A B}$.

Then using properties of isosceles triangles and elementary geometry, we have:

$$
\begin{aligned}
\mathrm{m}(\overline{A F}) & =m \\
\mathrm{~m}(\overline{A B}) & =n \\
\mathrm{~m}(\overline{A C}) & =m \\
\mathrm{~m}(\overline{C E}) & =n-m \\
\mathrm{~m}(\overline{E D}) & =2 m-n \\
\mathrm{~m}(\overline{F D}) & =n-m \\
\mathrm{~m}(\overline{G D}) & =2(n-m)
\end{aligned}
$$

This means that the quantity x also measures, an integer number of times, both $\overline{E D}$ and $\overline{G D}$ with measurements $2 m-n$ and $2(n-m)$ respectively.

Again, this leads to a contradiction. So the assumption that the quantities $\overline{A B}$ and $\overline{A F}$ are commensurable is false.

Figure 1: Square

