Incommensurability of the diagonal and side of the square.

Problem: Show geometrically that the diagonal and side of a square are incommensurable.

Assume that we have a square pictured below with diagonal \overline{AB} and sides \overline{AF} and \overline{FB} . We assume that there is some quantity x that measure both AF and AB an integer number of times. Say the integers m and n respectively. We mark off \overline{AC} congruent to \overline{AF} and \overline{CD} is constructed perpendicular to \overline{AB} .

Then using properties of isosceles triangles and elementary geometry, we have:

This means that the quantity x also measures, an integer number of times, both \overline{ED} and \overline{GD} with measurements 2m - n and 2(n - m) respectively.

Again, this leads to a contradiction. So the assumption that the quantities \overline{AB} and \overline{AF} are commensurable is false.

Figure 1: Square