
The Early Calculus.
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Figure 1: Barrow’s Characteristic Triangle

Barrow used the following reasoning to calculate the slope of the line
tangent to a curve. Consider the above figure, he assumed that the “charac-
teristic triangle” 4PQR is similar to the triangle made by the tangent line:
4PQR ≈ 4PTM . Let e and a be the lengths of QR and PR respectively;
then we have P = (x, y) and Q = (x − e, y − a) and he assumed that the
point Q lies on the curve. From this assumption he calculates the ratio a

e
.

An example will be helpful. Let’s calculate the slope of the line tangent to
the circle x2 + y2 = r2 at the point P = (x, y). By assumption the point
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Q = (x− e, y − a) is on the curve and so satisfies the equation of the circle:

(x− e)2 + (y − a)2 = r2

x2 − 2xe+ e2 + y2 − 2ya+ a2 = r2

−2xe+ e2 − 2ya+ a2 = 0 (1)

−2xe− 2ya = 0 (2)
a

e
= −x

y
.

Step (1) follows from the fact that (x, y) satisfies the equation and step (2)
is obtained by ignoring the higher powers of e and a.

We can check this using the rules of implicit differentiation learned in
calculus. We want the value of y′ at the point (x, y):

x2 + y2 = r2

differentiating 2x+ 2y · y′ = 0

y′ = −x
y
.

Barrow led an interesting life: rebellious when young, went to Trinity col-
lege, was the first occupant of the Lucasin chair at Cambridge, was driven out
of Cambridge during the Puritan purge (during the time of Oliver Cromwell),
went on a tour of Eastern Europe that included fighting off pirates, returned
to England, acquired Isaac Newton as a student, and recommended him for
the Lucasin chair when he resigned the chair to pursue a career in theol-
ogy, became a Doctor of Divinity (by Royal Decree) and Master of Trinity
College, a position he held till the end of his life.

Newton

Some significant events in Newton’s life:
• He was born Christmas day 1642 nearly a year after Galileo died (Jan.

8, 1942) - though most textbooks emphasize the fact that he was born the
year that Galileo died.
• He was born after his father had died.
• During the London Plague Years 1665 - 1666 (the mortality rate in

London was about 25%) he went back to the “family farm” where he made
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many of his mathematical and scientific discoveries. Most noteworthy of that
time, in the area of physics, was his work on the splitting of white light by a
prism.
• His Methodis Serierium et Flusionum - Methods on [Infinite] Series and

Fluxions was written in 1671.
• He published the first edition of Philosophiæ Naturalis Principia Math-

ematica in Latin, generally referred to as the “Principia”, in 1687.
• Master of the Mint.
• Theological research.

An example of Newton’s use of infinitesimals (he used the expression
“Ultimate Ratios”) and his generalized binomial theorem follows: He was
interested in calculating the area under the curve y = axr. He used his
generalized binomial expansion, which for non integer values, is an infinite
series. He considered the case where r = m

n
is rational and used the fact

that the derivative of the area function is the original function (i.e. The
Fundamental Theorem of Calculus). So he assumed A(x) (which we would
write as

∫ x

0
at

m
n dt) is

A(x) =
na

m+ n
x

m+n
n .

Next he proved that the function worked by showing that its derivative is
the original function, he uses the letter ‘o’ to indicate an infinitesimal:

A(y + o) =
na

m+ n
(x+ o)

m+n
n

=
na

m+ n
x

m+n
n +

m+ n

n

na

m+ n
x

m+n
n o+R · o2 (3)

+something · higher order terms of o

A(y + o)− A(y) =
m+ n

n

na

m+ n
x

m+n
n o+R · o2 + Something · o3+

A(y + o)− A(y)

o
=

m+ n

n

na

m+ n
x

m+n
n +R · o+ Something · o2+

=
m+ n

n

na

m+ n
x

m+n
n (4)

= ax
m+n

n .

Line (3) follows from his generalized binomial theorem. Line (4) follows from
the assumption that o has an “ultimate” value of 0.
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Therefore, using the Fundamental Theorem, the result has been shown
to be correct.

One of the important problems that Newton had to address with his
Gravitation Theory is to prove, for two spheres of constant density, that to
obtain the force between them he may assume that all the mass is concen-
trated at the center. His assumption was that for two point masses of m
and M and distance r between them, that the force (as expressed with the
modern gravitational constant) is:

F =
GmM

r2
.

The solution to this problem involves two steps where each step requires
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Figure 2: Force between a point mass and a sphere

the calculation of a triple integral. Using modern notation, in the pictures
one can assume the dimensions of the little box is either ∆x × ∆y × ∆z
or dx × dy × dz, where the modern definitions of continuity and limits is
used with the former to obtain an integral that is mathematically sound and
where the latter uses infinitesimals (with Liebniz’s notation) which is not
mathematically sound but is more akin to the techniques of Newton’s time
and still (miraculously?) produces the same result. If ρ is the density of the

4



sphere and r(x, y, z) is the distance from the point P to the little box, the
force would look something like the following:

F =

∫ ∫ ∫
S

Gmρ

r(x, y, z)2
.

The region inside the sphere over which the integration is performed is de-
noted by S. He must show that this integral is equal to

F =
GmρV

r(x0, y0, z0)2

where V is the volume of the sphere and (x0, y0, z0) is the center of the sphere.
The next step actually follows easily from the first step; it is to integrate over

.
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Figure 3: Force between two spheres

all the points in one sphere using r(x, y, z) to be the distance from the little
box in the second sphere to the center of the first sphere; and one will obtain
an integral similar to the previous one. The resulting force, Newton proved,
is

F =
Gρ1V1ρ2V2

r2

where V1 and V2 are the volumes of the two spheres with densities ρ1 and ρ2

respectively and r is the distance between their centers.
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Newton would have realized that the density need not be constant, it
is sufficient that if varies symmetrically according to the distance from the
center. One last interesting fact about the inverse square force law, is that
this reduction of the problem to using the distance between centers does not
work for other exponents besides 2.

Leibniz

Some significant events in Leibniz’s life.

• Was also a philosopher, still being studied today. Had a theory that
the universe was made up of ’Monads’ each one of which reflects (in some
mysterious way) the rest of the universe.
• His main paid occupation was as Historian to the House of Hanover.

One of his later employers went to England to became George I, King of
England (but left Leibniz behind).
• Had a theological theory that God created this world as the “Best of

all Possible World” a position satirized by Voltaire in Candid.
• Next an example from 1676 of Leibniz’s derivation of the product rule:

dxy = (x+ dx)(y + dy)− xy
= xy + ydx+ xdy + dxdy − xy
= ydx+ xdy + dxdy︸ ︷︷ ︸

→0

= ydx+ xdy.

Dividing by dt gives us:

dxy

dt
= y

dx

dt
+ x

dy

dt
.

This is exactly the product rule. Now he used this to get the quotient rule:
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Let z = x
y
:

z =
x

y
x = zy

dx = d(zy) = zdy + ydz

ydz = dx− zdy

dz =
dx− zdy

y

=
dx− x

y
dy

y

=
ydx− xdy

y2
.

Which is the quotient rule. Once we’ve got these two results the following is
a corollary (Leibniz, 1676) for any rational number n:

d(xn) = nxn−1dx.

Leibniz said that he got the idea from Pascal that is equivalent to Barrow’s
“characteristic triangle.”

Newton said, upon reading the work of Leibniz, “not a single previously
unsolved problem was solved.”

Rond d’Alembert in the Encyclopédie of 1751 had a discussion of a con-
cept of the limit

lim
∆x→0

∆x

∆y
.

But it was not much less confusing than the then current definition of dy
dx

or

of ẏ = ḟ .
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