
The Definition of the Limit.

Following is the definition of limit due to Weierstrass following the work
of Bolzano (1817) and Cauchy (1821).

For ease of understanding assume that f : R→ R.

Definition 1. The limit of a function f .

L = lim
x→p

f(x)

means that for each positive number ε there is a number δε so that:

If 0 < |x− p| < δε then |f(x)− L| < ε.

Equivalently: the limit of a function f(x) as x approaches p is L means
that for each ε > 0 there is a δε > 0 (which is typically dependent on ε) so
that for all values of x within δε of p the corresponding f(x) value is within
ε of L.

One can compare this to an archery contest between Robin Hood and a
sequence of contestants trying to hit a bull’s eye on a target. Each contestant
makes the target bull’s eye smaller than the previous one (the ε’s) but Robin
Hood can still hit inside the bull’s eye by adjusting the angle of arrow within
a certain range (the δε used to adjust his aim). The angle adjustments have
to be finer and finer as the contestants narrow the size of the bull’s eye.
And he does this without every having to hit the exact center. The “exact
center” is the point that Robin Hood is aiming for, and that point is the
mathematical limit of the ε− δ definition.

Based on this idea I’ve created a “limit game” between archery challengers
(player E) and Robin Hood (player D):

The limit game.

The Limit game is played on the reals R and starts with a function f , a
point p and a number L, the function need not be defined at p. For example:

f(x) =

√
x− 2

x− 4
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where p is the number 4 and the function is not defined at 4.

There are two players: Player E and player D.
Player E goes first and picks a number ε > 0. Then player D must pick a

number δ > 0; the number δ must have the property that if t is within δ of
p (but not equal to p), then f(t) is within ε of L. Algebraically:

If 0 < |p− t| < δ then |L− f(t)| < ε.

Then the play continues turn by turn, in the nth turn of play: player E picks
a number εn then player D must pick a number δn > 0 that satisfies the rules
of the game ... and so on.
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Figure 1: Player D selecting a good move.

Player E wins at the nth step of the game if player D cannot find a
number that satisfies the rules of the game. Player D wins if D can always
find a δn > 0 that satisfies the rules of the game.

Using the Robin Hood metaphor, E sets up a target for D to shoot at
and with each turn E is allowed to make the target smaller and smaller (but
never zero).

Since this game has the possibility of being an infinite game, what is
required for player D to win is for D to provide a “winning strategy.” (Alter-

natively, one can assume that each player makes their nth move in the time
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interval between 1
n

and 1
n+1

minutes before midnight and D wins if the game
didn’t end before midnight with a win on E ’s part.)

Examples. For the following “Gameboards”, determine who will win and
give a winning strategy for that player:

a.) f(x) = 7x p = 3 L = 21
b.) f(x) = 7x p = 3 L = 22
c.) f(x) = x2 p = 2 L = 4
d.) f(x) = x2 p = 1

2
L = 1

2

e.) f(x) = x2 p = 1
2

L = 1
4

f.) f(x) = x2−4
x−2

p = 2 L = 4

g.) f(x) = x2−4
x−2

p = 2 L = 3.5

h.) f(x) = x3−8
x−2

p = 2 L =?

i.) f(x) =
√
x−2
x−4

p = 4 L = 1
2

j.) f(x) =
√
x−2
x−4

p = 4 L = 1
4

k.) f(x) = x2+5x−14
x−2

p = 2 L =?

l.) f(x) = 1
x

p = 0 L = 2

m.) f(x) = 1
x

p = 0 L = 1000

n.) f(x) = 1
x

p = 0 L > 0

o.) f(x) = 45−5x2

3−x p = 3 L = 30.

Theorem: The function f : (a, b) → R is continuous at (p, f(p)) if and
only if p ∈ (a, b) and player D has a winning strategy for the point p and
L = f(p).

3



Lets do an example. We’ll do exercise (o.) above.
We claim that a wining strategy for D is as follows: If E selects ε then player
D selects δε to be any positive number so that δε ≤ ε

5
. We now prove that

this strategy works:

Proof. Suppose that ε > 0 and δε ≤ ε
5
. Then whenever x is such that

|x− 3| < δε we have:

∣∣∣45− 5x2

3− x
− 30

∣∣∣ =
∣∣∣5(3 + x)(3− x)

3− x
− 30

∣∣∣
= |15 + 5x− 30|
= |15 + 5x− 30|
= |5x− 15|
= |5(x− 3)|
< 5δε = 5

ε

5
= ε.

Here’s the scratch work that I used to figure out the δ that would work I
want ∣∣∣45− 5x2

3− x
− 30

∣∣∣ < ε.

So I did the same algebra to obtain:∣∣∣45− 5x2

3− x
− 30

∣∣∣ =
∣∣∣5(3 + x)(3− x)

3− x
− 30

∣∣∣
=

...

= |5(x− 3)|.

So I need |5(x− 3)| < ε; solving for |x− 3|:

|5(x− 3)| < ε

|(x− 3)| <
ε

5
.

So selecting δε ≤ ε
5

should work; and indeed it does as the proof shows.
Notice that δ is dependent on ε.
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Let’s see how Weierstrass’s definition can be used to rigorously calculate
a derivative. First we’ll use Leibnitz’ technique to derive the derivative of
f(x) = 5x2.

dy

dx
=

y(x+ dx)− y(x)

dx

=
y(x+ dx)− y(x)

dx

=
5(x+ dx)2 − 5 · x2

dx

=
5(x2 + 2xdx+ (dx)2)− 5x2

dx

=
10xdx+ 5(dx)2

dx
= 10x+ 5dx

= 10x.

Where the last step follows from the fact that dx and hence 5dx is an
infinitesimal which when added to something doesn’t change its value.

Now I’ll use the definition of limit due to Weierstrass to prove that this
is correct. The limit definition of the derivative is

lim
∆x→0

∆y

∆x
= lim

h→0

y(x+ h)− y(x)

h

Where I use h = ∆x to make the limit look more like what we saw in Calculus
I.

We want to prove that:

lim
h→0

y(x+ h)− y(x)

h
= 10x.

Proof. First observe that the number x is some fixed number, like x = 3. So
as the limit game’s player E tells us, suppose ε > 0. Then player D needs to
pick a δε. Player D’s strategy is to pick δε = ε

5
. [How they decided this will

be clear when we examine the calculations.] Then when 0 < |h − 0| < δ we
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have: ∣∣∣y(x+ h)− y(x)

h
− L

∣∣∣ =
∣∣∣5(x+ h)2 − 5 · x2

h
− 10x

∣∣∣
=

∣∣∣5(x2 + 2xh+ h2)− 5x2

h
− 10x

∣∣∣
=

∣∣∣5x2 + 10xh+ 5h2 − 5x2

h
− 10x

∣∣∣
=

∣∣∣10xh+ 5h2

h
− 10x

∣∣∣
= |10x+ 5h− 10x|
= |5h| = 5|h| < 5δ = 5

ε

5
= ε.

Therefore for our choice of δ, if 0 < |h− 0| < δ then∣∣∣5(x+ h)2 − 5 · x2

h
− 10x

∣∣∣ < ε.
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