Presentations07 The Beginning of Infinitesimal Calculus

	Topic/Exercise	Presenter
1	Find the Maclaurin expansion for e^x , $\sin x$ and $\cos x$. Then substitute	
	$x \leftarrow ix$ to obtain the identity $e^{ix} = \cos x + i \sin x$; then repeat with	
	$x \leftarrow -ix$ to get another identity; finally solve two equations in two unknowns to get	
	$\sin x$ and $\cos x$ in terms of e^{ix} and e^{-ix} . (See my notes on the class website:	
	http://webhome.auburn.edu/~smith01/math3010Sp25/EulerFormulas.pdf)	
2	Consider the equation $(x + iy)^2 = 0 + 1i$. Set up two equations in x and y and	
	find real numbers that satisfy the equations. This will calculate \sqrt{i} .	
3	Prove de Moivre's theorem:	
	$(\cos x + i \sin x)^n = \cos nx + i \sin nx$	
	Where $i = \sqrt{-1}$. Hint: use induction.	
4	Look up the hyperbolic trig functions, sinh and cosh; prove the identity:	
	$\cosh^{2}(x) - \sinh^{2}(x) = 1$ Prove that the sum of all the elements in a row of Pascal's triangle is an integral	
5		
	power of 2. Hint: try induction. (See my notes on the class website:	
	http://webhome.auburn.edu/~smith01/math3010Sp25/PascalTriangleIdentities.pdf	
	.)	
6	Use the fact that	
	$\binom{n}{k} = \frac{n!}{k! (n-k)!}$	
	,	
	to obtain the identity $\binom{n}{2}$ $\binom{n}{2}$ $\binom{n}{2}$ $\binom{n}{2}$ $\binom{n}{2}$	
	$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$	
	$(K - 1) \times K$	
7	In your textbook select some problems to do from the section on the history of the	
	development of the infinitesimal calculus.	
	-	
8	Use the method of exhaustion to calculate the area of a parabolic sector.	
	(See my notes on the class website:	
	http://webhome.auburn.edu/~smith01/math3010Sp25/MethodOfExhaustion.pdf .)	
9	Select one of the "notes" from the notes region of the class website to present on	
	the early calculus or related to the current class discussions.	