Incommensurability of the diagonal and side of the square. Problem: Show geometrically that the diagonal and side of a square are incommensurable. Assume that we have a square pictured below with diagonal \overline{AB} and sides \overline{AF} and \overline{FB} . We assume that there is some quantity x that measure both AF and AB an integer number of times. Say the integers m and n respectively. We mark off \overline{AC} congruent to \overline{AF} and \overline{CD} is constructed perpendicular to \overline{AB} . Then using properties of isosceles triangles and elementary geometry, we have: $$\begin{array}{rcl} \mathbf{m}(\overline{AF}) & = & m \\ \mathbf{m}(\overline{AB}) & = & n \\ \mathbf{m}(\overline{AC}) & = & m \\ \mathbf{m}(\overline{CE}) & = & n-m \\ \mathbf{m}(\overline{ED}) & = & 2m-n \\ \mathbf{m}(\overline{FD}) & = & n-m \\ \mathbf{m}(\overline{GD}) & = & 2(n-m). \end{array}$$ This means that the quantity x also measures, an integer number of times, both \overline{ED} and \overline{GD} with measurements 2m-n and 2(n-m) respectively. Again, this leads to a contradiction. So the assumption that the quantities \overline{AB} and \overline{AF} are commensurable is false. Figure 1: Square