## Incommensurability of the diagonal and side of the square.

Problem: Show geometrically that the diagonal and side of a square are incommensurable.

Assume that we have a square pictured below with diagonal  $\overline{AB}$  and sides  $\overline{AF}$  and  $\overline{FB}$ . We assume that there is some quantity x that measure both AF and AB an integer number of times. Say the integers m and n respectively. We mark off  $\overline{AC}$  congruent to  $\overline{AF}$  and  $\overline{CD}$  is constructed perpendicular to  $\overline{AB}$ .

Then using properties of isosceles triangles and elementary geometry, we have:

$$\begin{array}{rcl} \mathbf{m}(\overline{AF}) & = & m \\ \mathbf{m}(\overline{AB}) & = & n \\ \mathbf{m}(\overline{AC}) & = & m \\ \mathbf{m}(\overline{CE}) & = & n-m \\ \mathbf{m}(\overline{ED}) & = & 2m-n \\ \mathbf{m}(\overline{FD}) & = & n-m \\ \mathbf{m}(\overline{GD}) & = & 2(n-m). \end{array}$$

This means that the quantity x also measures, an integer number of times, both  $\overline{ED}$  and  $\overline{GD}$  with measurements 2m-n and 2(n-m) respectively.

Again, this leads to a contradiction. So the assumption that the quantities  $\overline{AB}$  and  $\overline{AF}$  are commensurable is false.



Figure 1: Square