Set Theory.

Undefined terms: Sets, elements of, \in , \cap , \cup , \subset , \emptyset , $\{\dots\}$, \mathbb{U} .

Axiom 0. If each of A and B is a set then

$$(A = B) \Leftrightarrow ((\text{if } x \in A \text{ then } x \in B) \text{ and } (\text{if } x \in B \text{ then } x \in A)).$$

 $(A \subset B) \Leftrightarrow (\text{if } x \in A \text{ then } x \in B).$

Axiom 1. Rules of the set operators. If each of A and B is a set then:

$$A \cap B = \{x | x \in A \text{ and } x \in B\}$$

 $A \cup B = \{x | x \in A \text{ or } x \in B\}$

Axiom 2. If x is an element and each of A and B is a set then:

$$\begin{array}{cccc} x & \in & \mathbb{U} \\ A \cap B & \subset & \mathbb{U} \\ A \cup B & \subset & \mathbb{U} \\ \varnothing & \subset & \mathbb{U} \\ \varnothing & \subset & A \\ A & \subset & \mathbb{U} \end{array}$$

Note: U is sometimes called the "Universe" under consideration.

Axiom 3. If S is a set then $S \notin S$.

Theorem 5.1. The set operators \cap and \cup are commutative. If each of A and B is a set then:

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Theorem 5.2. The set operators \cap and \cup are associative. If each of A, B and C is a set then:

$$A \cap (B \cap C) = (A \cap B) \cap C$$

 $A \cup (B \cup C) = (A \cup B) \cup C$

Theorem 5.3. Each of the set operators \cap and \cup distributes over the other. If each of A, B and C is a set then:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Definition. Let \mathbb{U} be a set of elements under consideration (the Universe.) If $A \subset \mathbb{U}$ is a set then the complement of A (with respect to \mathbb{U}) is denoted by A^c and is the set $A^c = \{x \in \mathbb{U} | x \notin A\}$.

Thus we can assume that:

$$\emptyset^c = \mathbb{U}$$
 $\mathbb{U}^c = \emptyset$.

Theorem 5.4. If A is a set then

$$(A^c)^c = A$$

Theorem 5.5. [De Moivre's theorem for sets.]. If each of A and B is a set then:

$$(A \cup B)^c = (A^c) \cap (B^c)$$
$$(A \cap B)^c = (A^c) \cup (B^c)$$

Big Exercise: Go to the class website and pull up the file on the logic (AMNotes01BLogicExercises.pdf). Then for exercise 5.1 do the following symbol replacement in exercise 1 of the logic section:

assume that the symbols P, Q and R now are sets; then determine which are theorems and provide proofs. (You will need to figure out for yourself how to replace the symbols \Leftarrow and \Rightarrow .)

For exercise 5.2 do the same replacements in exercise 2 of the logic section and then determine which sets yield the universe \mathbb{U} . In other words for 2a, prove that $P \cup (P^c) = \mathbb{U}$.

Hint: use Venn diagrams for your scratch work.

Definition. If S is a set then the *power set* of S is the set of all subsets of S; the power set is often denoted by $\mathcal{P}(S)$ or 2^S . (For the reason behind the second notation look at the next exercise.) Thus, $\mathcal{P}(S) = \{A | A \subset S\}$.

Definition. If F is a finite set then |F| denotes the number of elements of the set, in other words the *cardinality* of the set.

Thus, for example $|\{1, 2, 4, 8\}| = 4$.

Exercise 5.3. Suppose that S is a finite set. Then:

- (a) calculate $|\emptyset|$ and $|\mathcal{P}(\emptyset)|$;
- (b) calculate $|\{1\}|$ and $|\mathcal{P}(\{1\})|$;
- (c) calculate $|\{1,2\}|$ and $|\mathcal{P}(\{1,2\}|;$
- (d) calculate $|\{1, 2, 3\}|$ and $|\mathcal{P}(\{1, 2, 3\}|$.

Exercise 5.4. Find the pattern in exercise 5.3 and formulate and prove a theorem that says: If S is a finite set and |S| = n then $|\mathcal{P}(S)| = ?$. Hint: use induction.