Relations.

Definition. Suppose that each of A and B is a set. Then the Cartesian product $A \times B$ is defined to be:

$$A \times B = \{(a, b) | a \in A, b \in B\}.$$

Definition. The set R is a relation from A to B means that $R \subset A \times B$. If $(a, b) \in R$ then "a is related to b" is often denoted by aRb.

Definition. If R is a relation from the set A to the set B then the domain (Dom) and range (Rng) of R are defined as the following:

 $Dom(R) = \{a \in A | \text{ there exists a } b \in B \text{ such that } (a, b) \in R \}$ Rng(R) = $\{b \in B | \text{ there exists an } a \in A \text{ such that } (a, b) \in R \}.$

Definition. A relation f from the set A to the set B is said to be a function if for each $x \in \text{Dom}(f)$ there is a unique element $y \in B$ so that $(x, y) \in f$. Notation. If f is a function and $(x, y) \in f$ then the unique element y is denoted by f(x).

Definition. If R is a relation from the set A to the set B then the inverse relation, written as R^{-1} , is a relation from the set B to the set A defined by:

$$R^{-1} = \{(b,a) | (a,b) \in A\}.$$

Definition. If R is a relation from the set A to the set B and S is a relation from the set B to the set C then the composition of S and R relations, written as $S \circ R$, is a relation from the set A to the set C defined by:

$$S \circ R = \{(a, c) | \text{ there exists } b \in B \text{ so that } (a, b) \in R, (b, c) \in S \}.$$

Example 6.1. Let $R = \{(n,m) | |n-3| + |m-5| = 20; n, m \in \mathbb{Z}\}$. Then R is a relation.

a.) Find the domain and range of R.

b.) Find R^{-1} . c.) Find $(R^{-1})^{-1}$.

Example 6.2. Let $R = \{(n, m) | n < m; n, m \in \mathbb{Z}\}$. Then R is a relation. a.) Find the domain and range of R. b.) Find R^{-1} .

Following are some helpful properties of relations, you may already have seen some of these in working with functions. They generalize properties of functions. You may wish to prove them:

Property 6.1. Suppose that $f: A \to B$ is a function and $g = f^{-1}$ is also a function then:

$$g(f(x)) = x$$
 for each $x \in \text{Dom}(f)$
 $f(g(y)) = y$ for each $y \in \text{Rng}(f)$.

Question. Is it necessary that g be a function for the theorem to hold?

Property 6.2. If R is a relation from the set A to the set B then

$$(R^{-1})^{-1} = R.$$

Property 6.3. If f is a function from the set A to the set B and g is a function from the set B to the set C, then

$$(g \circ f)^{-1} = (f^{-1}) \circ (g^{-1}).$$

Examples.

(i) Give an example to show that $f \circ g \neq g \circ f$. (ii) Give an example of a function whose inverse is not a function.

Equivalence Relations.

Definitions. Suppose that R is a relation from the set A to itself. We will use the notation $a \sim b$ to mean that a and b are in A and a is related to b or equivalently $(a, b) \in R$. Then:

R is said to be *reflexive* if $x \sim x$ for all $x \in A$.

R is said to be symmetric if it is true that if $x \sim y$ then $y \sim x$.

R is said to be *transitive* if it is true that if $x \sim y$ and $y \sim z$ then $x \sim z$.

Definition. A relation from a set into itself is said to be an *equivalence* relation if it is reflexive, symmetric and transitive.

Definition. Let $R = \{(a, b) | a \sim_R b\}$ be an equivalence relation on the set A. Then for each $x \in A$, we define $[x]_R = \{y | y \sim_R x\}$; this is called the equivalence class of x. If the relation is understood from the context, then the subscript may be omitted.

Exercise 6.1. Let $A = \mathbb{Z}$ and n be a positive integer; let R be the relation so that $x \sim y$ if and only if n|(y-x). Show that R is an equivalence relation.

(Notation. We use the notation $y = x \mod (n)$ to indicate this specific relation R. Another notation is $x \equiv_n y$. If the integer n is understood then the notation $x \equiv y$ may be used.)

Notation: $\mathbb{Z}_n = \{ [m]_{\equiv_n} | m \in \mathbb{Z} \}.$

Calculate $|\mathbb{Z}_n|$. [Hint: Do it for 2, 3, 4, ... first, then generalize.]

Theorem 6.4. Let R be an equivalence relation on the set A. Then the following are equivalent.

1.
$$[x] \cap [y] \neq \emptyset;$$

2. $x \sim y;$
3. $[x] = [y].$

Exercise 6.2.

a. Let $A = \mathbb{R}$ and \mathbb{Q} be the rational numbers; let R be the relation so that $x \sim y$ if and only if $(y - x) \in \mathbb{Q}$. Show that R is an equivalence relation. Determine $[\sqrt{2}]_R$; which of the following numbers are in $[\sqrt{2}]$: $\frac{1}{2}, \sqrt{8}, \sqrt{3}$.

b. Let $B = \mathbb{R}^+$ and \mathbb{Q} be the rational numbers; let S be the relation on B so that $x \sim_S y$ if and only if $\frac{x}{y} \in \mathbb{Q}$. Show that S is an equivalence relation. Determine $[\sqrt{2}]_S$. Again determine which of the following numbers are in $[\sqrt{2}]_S$: $\frac{1}{2}, \sqrt{8}, \sqrt{3}$

Exercise 6.3. Let $A = \mathbb{Z} \times \{\mathbb{Z} - \{0\}\}$; let \equiv be the relation so that $(a, b) \equiv (c, d)$ if and only if ad = cb. Show that \equiv is an equivalence relation.

Determine [(1,1)], [(2,3)], [(-3,5)] (give a formula if you can).

Exercise 6.4. Let $\mathbb{Z}_n = \{ [x]_{\equiv_n} | x \in \mathbb{Z} \}$. Determine the cardinality $|\mathbb{Z}_n|$ of \mathbb{Z}_n .

Definition. Suppose that S is a set and Γ an index set (often Γ will be the positive integers); then the collection of sets $\{S_{\gamma}\}_{\gamma \in \Gamma}$ is called a *partition* of S if and only if:

(i) $S = \bigcup_{\gamma \in \Gamma} S_{\gamma};$ (ii) $S_{\gamma} \cap S_{\delta} = \emptyset$ whenever $\gamma \neq \delta;$ (iii) $S_{\gamma} \neq \emptyset$ for all $\gamma \in \Gamma$.

Theorem 6.5. Suppose S is a set and $\{S_{\gamma}\}_{\gamma\in\Gamma}$ is a partition of S and the relation R on S defined by $x \sim y$ if and only if $\{x, y\} \subset S_{\gamma}$ for some $\gamma \in \Gamma$. Then R is an equivalence relation on S.

Suppose S is a set and \equiv is an equivalence relation on S, then $\{[x]_{\equiv} \mid x \in S\}$ is a partition of S.

Exercise 6.6. Let S denote the set of all finite subsets of \mathbb{R} and let $A \sim B$ mean that |A| = |B|. Show that \sim is an equivalence relation on S.

Definitions: Suppose A and B are sets and $f : A \to B$ is a function. The function f is said to be *onto* (or *surjective*) if for each $b \in B$ there is an $a \in A$ so that f(a) = b.

The function f is said to be one-to-one (or injective) if whenever f(x) = f(y) we have x = y.

Definition. Suppose that \equiv_A is an equivalence relation on the set A, \equiv_B is an equivalence relation on the set B; \mathcal{A} and \mathcal{B} are the sets of equivalence classes:

$$\mathcal{A} = \{[a] | a \in A\}$$
$$\mathcal{B} = \{[b] | b \in B\}$$

Suppose further that $f: A \to B$ is a function. Then $F: \mathcal{A} \to \mathcal{B}$ defined by

$$F([x]_{\equiv_A}) = [f(x)]_{\equiv_B}$$

is well-defined means that whenever $x \equiv_A y$ we have $f(x) \equiv_B f(y)$.

Exercise 6.7. Determine which of the following are well defined functions:

a. $F : \mathbb{Z}_5 \to \mathbb{Z}_5$ where $F([x]_5) = [2x+1]_5$. b. $F : \mathbb{Z}_5 \to \mathbb{Z}_5$ where $F([x]_5) = [x^2]_5$. c. $F : \mathbb{Z}_5 \to \mathbb{Z}_4$ where $F([x]_5) = [2x+1]_4$. d. $F : \mathbb{Z}_3 \to \mathbb{Z}_6$ where $F([x]_3) = [2x+1]_6$. e. $F : \mathbb{Z}_3 \to \mathbb{Z}_6$ where $F([x]_3) = [5x+3]_6$. f. $F : \mathbb{Z}_3 \to \mathbb{Z}_6$ where $F([x]_3) = [2x^2+7]_6$. g. $F : \mathbb{Z}_3 \to \mathbb{Z}_6$ where $F([x]_3) = [x^2]_6$.

Exercise 6.8. For each of a-g of exercise, for the ones that are well defined determine if the function is one-to-one or onto. Then for the following functions, determine if they are well defined, if so determine if they are one-to-one or onto.

h. $F : \mathbb{Z}_{31} \to \mathbb{Z}_{31}$ where $F([x]_{31}) = [x + 16]_{31}$.

i. $F : \mathbb{Z}_{31} \to \mathbb{Z}_{31}$ where $F([x]_{31}) = [7x + 16]_{31}$. [Hint: gcd(7, 31) = 1and values for x and y so that 31x + 7y = 1 can be easily obtained by observing that $7 \cdot 9 = 63 = 31 \cdot 2 + 1$.]

> j. $F : \mathbb{Z}_{30} \to \mathbb{Z}_{30}$ where $F([x]_{30}) = [x+16]_{30}$. k. $F : \mathbb{Z}_{30} \to \mathbb{Z}_{30}$ where $F([x]_{30}) = [5x+16]_{30}$. l. $F : \mathbb{Z}_{30} \to \mathbb{Z}_5$ where $F([x]_{30}) = [7x+16]_5$. m. $F : \mathbb{Z}_5 \to \mathbb{Z}_{30}$ where $F([x]_{30}) = [6x+16]_5$.