\documentclass[12pt]{article} \usepackage{amsmath,amsthm,amsfonts,amssymb,latexsym, hyperref} \newtheorem{problem} {Problem} \begin{document} \begin{center} \textbf{Homomorphisms}. \end{center} \ Definition. If $(G_1, *) $ and $(G_2, \diamond) $ are sets with operations $*$ and $\diamond$ respectively and $F:G_1 \rightarrow G_2$ is a function, then $F$ is called a \textit{homomorphism} if and only if \begin{eqnarray*} F(x * y) & = & F(x) \diamond F(y) . \end{eqnarray*} \ Definition. A homomorphism that is one-to-one is called an \textit{isomorphism}. Exercise 7.1. Prove that the following functions are homomorphisms (Caution: I think one of them is not!); which, if any, are isomorphisms: \qquad a. $f: (\mathbb{Z}, +) \rightarrow (\mathbb{Z}, +)$ where $f(x) = 5x$. \qquad b. $f: (\mathbb{R}, +) \rightarrow (\mathbb{R}, +)$ where $f(x) = 5x$. \qquad c. $f: (\mathbb{R}, \cdot) \rightarrow (\mathbb{R}, \cdot )$ where $f(x) = 5x$. \qquad d. $f: (\mathbb{R}, +) \rightarrow (\mathbb{R}, \cdot)$ where $f(x) = 2^x$. \qquad e. $f: (\mathbb{R}^+, \cdot) \rightarrow (\mathbb{R}, +)$ where $f(x) = \ln (x)$. \qquad f. $f: (\mathbb{C}, +) \rightarrow (\mathbb{R}, +)$ where $f(x+yi) = 3x + 5y$ ($\mathbb{C}$ denotes the complex numbers). \ Exercise 7.2. Determine if the following are homomorphisms (isomorphisms), in each case make sure to check to see if the function is well-defined: \qquad a. $F: (\mathbb{Z}_5, +_5) \rightarrow (\mathbb{Z}_5, +_5)$ where $F([x]_5) = [2x+1]_5$. \qquad b. $F: (\mathbb{Z}_5, +_5) \rightarrow (\mathbb{Z}_5, +_5)$ where $F([x]_5) = [2x]_5$. \qquad c. $F: (\mathbb{Z}_{10}, +_{10}) \rightarrow (\mathbb{Z}_5, +_5)$ where $F([x]_5) = [2x]_5$. \qquad d. $F: (\mathbb{Z}_5, +_{5}) \rightarrow (\mathbb{Z}_{10}, +_{10})$ where $F([x]_5) = [2x]_5$. \qquad e. $F: (\mathbb{Z}_{31}, +_{31}) \rightarrow (\mathbb{Z}_{31}, +_{31})$ where $F([x]_{31}) = [7x]_{31}$. \qquad f. $F: (\mathbb{Z}_5, \cdot_5) \rightarrow (\mathbb{Z}_5, \cdot_5)$ where $F([x]_5) = [2x+1]_5$. \qquad g. $F: (\mathbb{Z}_5, \cdot_5) \rightarrow (\mathbb{Z}_5, \cdot_5)$ where $F([x]_5) = [2x]_5$. \qquad h. $F: (\mathbb{Z}_4, +_4) \rightarrow (\mathbb{Z}_5, \cdot_5)$ where $F([x]_4) = [2]_5^x$. \ Exercise 7.3. Suppose $F: (\mathbb{Z}_5, +_5) \rightarrow (\mathbb{Z}_n, +_n)$ where $F([x]_5) = [ax+b]_n$ is a homomorphism. Then: 1.) Either $a$ or $n$ is divisible by $5$. 2.) $b \sim_n 0$. 3.) $F({[0]}_5) = {[0]}_n$. \ Theorem 7.1 Suppose $F: (\mathbb{Z}_m, +_m) \rightarrow (\mathbb{Z}_n, +_n)$ is a homomorphism. Then $F({[0]}_m) = {[0]}_n$. \ %Exercise 7.4. Let $S_n$ denote the permutation group on the elements $\{1, 2, 3, \ldots, n\}$. Determine if the following are homomorphisms: in each case make sure to check to see if the function is well-defined: %\qquad a. $F: (\mathbb{Z}_5, +_5) \rightarrow (S_5, \cdot)$ where $F([x]_5) = (12345)^x$, %\qquad b. $F: (\mathbb{Z}_6, +_6) \rightarrow (S_6, \cdot)$ where $F([x]_6) = (123456)^x$, %\qquad c. $F: (\mathbb{Z}_5, +_5) \rightarrow (S_6, \cdot)$ where $F([x]_5) = (123456)^x$, %\qquad d. $F: (\mathbb{Z}_6, +_6) \rightarrow (S_5, \cdot)$ where $F([x]_6) = ((12)(345))^x$, %\qquad e. $F: (\mathbb{Z}_5 -\{0\}, \cdot_5) \rightarrow (S_4, \cdot)$ where $F([x]_5) = (1234)^x$, %\qquad f. $F: (\mathbb{Z}_8, +_8) \rightarrow (S_4, \cdot)$ where $F([x]_8) = (1234)^x$. \end{document}