\documentclass[12pt]{amsart} \usepackage{amsmath,amsthm,amsfonts,amssymb,latexsym,hyperref} \usepackage{graphics,graphicx,color,array} \usepackage[all]{xy} \usepackage{afterpage} \usepackage{multirow} \newtheorem{theorem} {Theorem} \newtheorem{example} {Example} \newtheorem{step} {Step} \newtheorem{claim} {Claim} \newtheorem{definition} {Definition} \newtheorem{corollary} {Corollary} \begin{document} Equation Arrays: it's automatically in the mathematics environment; you don't need to use \$ signs \begin{eqnarray*} \sum_{i=1}^{k+1} i^2 & = & \sum_{i=1}^{k} i^2 + (k+1)^2 \\ & = & \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \\ & = & \mbox{etc. } \ldots. \end{eqnarray*} \ Following are examples of matrices; the \{cccc\}: is telling the computer to center the entry in the cells, there are four c's because there are (at least) four columns. The other possibilities are left \{llll\} and right \{rrrr\}. You can also mix them: \{clrc\}. Theorem. $$AB = \left [ \begin{array}{cccc} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots \\ a_{m,1} & a_{m,2} & ... & a_{m,n} \end{array} \right ] \left [ \begin{array}{cccc} b_{1,1} & b_{1,2} & ... & b_{1,k} \\ b_{2,1} & b_{2,2} & ... & b_{2,k} \\ \vdots \\ b_{n,1} & b_{n,2} & ... & a_{n,k} \end{array} \right ]= \left [ \begin{array}{cccc} c_{1,1} & c_{1,2} & ... & c_{1,k} \\ c_{2,1} & c_{2,2} & ... & c_{2,k} \\ \vdots \\ c_{n,1} & \ & ... & c_{m,k} \end{array} \right ]= C$$ \ $$f'(P)(\vec{v}) = \left [ \begin{array}{ccccc} D_1(f_1)(P) & D_2(f_1)(P) & ... & D_n(f_1)(P) \\ D_1(f_2)(P) & D_2(f_2)(P) & ... & D_n(f_2)(P) \\ \vdots \\ D_1(f_m)(P) & D_2(f_m)(P) & ... & D_n(f_m)(P) \end{array} \right ] \left [ \begin{array}{ccccc} v_1 \\ v_2 \\ \vdots \\ v_n \end{array} \right ]$$ \ $$ \begin{array}{cc} D_1(f_1)(P) & D_2(f_1)(P) \\ D_1(f_2)(P) & D_2(f_2)(P) \\ \vdots \\ D_1(f_m)(P) & D_2(f_m)(P) \end{array} \begin{array}{ccccc} v_1 & 2 \\ v_2 & 3 \\ \vdots \\ v_n & 4 \end{array}$$ \ $$ \begin{array}{cc} D_1(f_1)(P) \\ D_1(f_2)(P) \\ \vdots \\ D_1(f_m)(P) \end{array} \ \ \begin{array}{cc} v_1 \\ v_2 \\ \vdots \\ v_n \end{array}$$ \ Function definitions: \ $$h(x) = \left \{ \begin{array}{cllc} f(x) & \mbox{if } a\le x< b \\ d & \mbox{if } x=b \\ g(x) & \mbox{if } b < x \le c. \\ \end{array} \right . $$ \ $$f = \left \{ \begin{array}{cccc} y_1 + \sin x \\ y_2 + \cos x \\ y_3 + \tan x \\ y_4 \end{array} \right . $$ \ $f = \left \{ \begin{array}{cccc} y_1 + \sin x \\ y_2 + \cos x \\ y_3 + \tan x \\ y_4 \end{array} \right .$ \ \ Function definition: $f = \left \{ \begin{array}{cccc} y_1 + \sin x \\ y_2 + \cos x \\ y_3 + \tan x \\ y_4 \\ y_5 + e^x \end{array} \right .$ \ Commuting diagram: $$\begin{array}{ccc} x_{i-1} & \begin{array}{c} f_{i-1} \\ {\longleftarrow} \end{array} & x_i \\ \downarrow & \circlearrowleft & \downarrow \\ p_{i-1} & \begin{array}{c} g_{i-1} \\ {\longleftarrow} \end{array} & p_i \end{array}$$ \begin{center} \begin{displaymath} \xymatrix{ \hat M \ar@{->}[r]^{\hat h }\ar@{->}[d]^{\pi}& \hat M \ar@{->}[d]^{\pi}\\ \hat M / G \ar@{->}[r]^{h}& \hat M / G } \end{displaymath} \end{center} \ \begin{center} \begin{displaymath} \xymatrix{ \hat M \ar@{<-}[r]^{\hat h }\ar@{->}[d]^{\pi}& \hat M \ar@{->}[d]^{\pi}\\ \hat M / G \ar@{<-}[r]^{h}& \hat M / G } \end{displaymath} \end{center} \ \begin{center} \begin{displaymath} \xymatrix{ \hat M \ar@{<-}[r]^{\hat h }\ar@{->}[d]^{\pi}& \hat M \ar@{->}[d]^{\pi}\\ \hat M \ar@{<-}[r]^{\hat h }\ar@{->}[d]^{\pi}& \hat M \ar@{->}[d]^{\pi}\\ \hat M / G = M \ar@{<-}[r]^{h}& M = \hat M / G } \end{displaymath} \end{center} \ Following is the format for a table (e.g. , multiplication tables, logic tables). \ \begin{center} \begin{tabular}{|c||c|c|c|c|c|c|c|c||} \hline $D_2$ & $e$ & $\rho_1$ & $\rho_2$ & $\rho_3$ & $\mu_1$ & $\mu_2$ & $\delta_1$ & $\delta_2$ \\ \hline \hline $e$ & $e$ & $\rho_1$ & $\rho_2$ & $\rho_3$ & $\mu_1$ & $\mu_2$ & $\delta_1$ & $\delta_2$ \\ \hline $\rho_1$ & $\rho_1$& $\rho_2$ & $\rho_3$ & $e$ & $\delta_1$ & $\delta_2$ & $\mu_2$ & $\mu_1$ \\ \hline $\rho_2$ & $\rho_2$ & $\rho_3$ & $e$ & $\rho_1$ & $\mu_2$ & $\mu_1$ & $\delta_2$ & $\delta_1$ \\ \hline $\rho_3$ & $\rho_3$& $e$ & $\rho_1$ & $\rho_2$ & $\delta_2$ & $\delta_1$ & $\mu_1$ & $\mu_2$ \\ \hline $\mu_1$ & $\mu_1$ & $\delta_2$ & $\mu_2$ & $\delta_1$ & $e$ & $\rho_2$& $\rho_3$ & $\rho_1$ \\ \hline $\mu_2$ & $\mu_2$ & $\delta_1$ & $\mu_1$ & $\delta_2$ & $\rho_2$ & $e$& $\rho_1$ & $\rho_3$ \\ \hline $\delta_1$ & $\delta_1$ & $\mu_1$ & $\delta_2$ & $\mu_2$ & $\rho_1$ & $\rho_3$ & $e$ & $\rho_2$ \\ \hline $\delta_2$ & $\delta_2$ & $\mu_2$ & $\delta_1$ & $\mu_1$ & $\rho_3$ & $\rho_1$ & $\rho_2$ & $e$ \\ \hline \hline \end{tabular} \end{center} \ Commuting diagrams: \begin{center} \begin{displaymath} \xymatrix{ \hat M \ar@{<-}[r]^{\hat h }\ar@{->}[d]^{\pi}& \hat M \ar@{->}[d]^{\pi}\\ \hat M / G = M \ar@{<-}[r]^{h}& M = \hat M / G } \end{displaymath} \end{center} \ \end{document}