\documentclass[12pt,std]{article} \usepackage{amsmath,amsthm,amsfonts,amssymb,latexsym, hyperref} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{corollary}{Corollary} \newtheorem{claim}{Claim} \newtheorem{example}{Example} \newtheorem{property}{Property} \begin{document} \begin{center} \textbf{Axioms of the real numbers $\mathbb{R}$.} \end{center} \ \textbf{Axioms on addition:} \ Axiom A1 (closure property of addition). If each of $x$ and $y$ is a number then $x+y$ is a number. \ Axiom A2 (associative property of addition). If each of $x$, $y$ and $z$ is a number then $(x+y)+ z = x + (y+z)$. \ Axiom A3 (commutative property of addition). If each of $x$ and $y$ is a number then $x+y = y+ x$. \ Axiom A4 (identity for addition). There exists a number $0$ so that if $x$ is a number then $0+x = x$. \ Axiom A5 (inverses for addition). If $x$ is a number, there is a number denoted by $-x$ so that $x + (-x) = 0$. \ \textbf{Axioms on multiplication:} \ Axiom M1 (closure property of multiplication). If each of $x$ and $y$ is a number then $x \cdot y$ is a number. \ Axiom M2 (associative property of multiplication). If each of $x$, $y$ and $z$ is a number then $(x\cdot y)\cdot z = x \cdot (y \cdot z)$. \ Axiom M3 (commutative property of multiplication). If each of $x$ and $y$ is a number then $x \cdot y = y \cdot x$. \ Axiom M4 (identity for multiplication). There exists a number $1$ so that if $x$ is a number then $1 \cdot x = x$. \ Axiom M5. $0 \neq 1$. \ Axiom M6 (inverses for multiplication). If $x$ is a number and $x \neq 0$, there is a number denoted by $\frac 1x $ so that $x \cdot \frac 1x = 1$. \ \textbf{Relationship between addition and multiplication:} \ Axiom D (distributive axiom). If each of $x$, $y$ and $z$ is a number then $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$. \ \textbf{Order axioms.} \ There exists an order relation ``$<$'' so that: \ Axiom O1. If each of $x$ and $y$ is a number then exactly one of the following is true: \qquad $x