MATH 3100 Project on Constructing the Rationals. Part 2.

Due date:11:59 pm Monday April 8.

Exercise 2.
i.) [Regarding the addition.] Let the operation \oplus be defined on the equivalence classes by

$$
[(a, b)] \oplus[(c, d)]=[(a d+b c, b d)] .
$$

Show that \mathbb{Q} with the operation \oplus is an abelian group.
ii.) [Regarding the multiplication.] Define the operation \otimes on the equivalence classes by

$$
[(a, b)] \otimes[(c, d)]=[(a c, b d)] .
$$

Show that $\mathbb{Q}-\{$ the additive identity of $\oplus\}$ (i.e. the set \mathbb{Q} with the additive identity removed) is an abelian group with the operation \otimes.
iii.) [Identifying the integers inside the rationals.] Define $\varphi: \mathbb{Z} \rightarrow \mathbb{Q}$ by $\varphi(z)=[(z, 1)]$. Show that
a.) φ is 1 -to- 1 .
b.) φ is a homomorphism from $(\mathbb{Z},+)$ to (\mathbb{Q}, \oplus).
c.) φ is a homomorphism from (\mathbb{Z}, \cdot) to (\mathbb{Q}, \otimes).

