MATH 3100 Project on Constructing the Rationals. Part 2.

Due date:11:59 pm Monday April 8.

Exercise 2.

i.) [Regarding the addition.] Let the operation \oplus be defined on the equivalence classes by

$$[(a,b)] \oplus [(c,d)] = [(ad+bc,bd)].$$

Show that \mathbb{Q} with the operation \oplus is an abelian group.

ii.)[Regarding the multiplication.] Define the operation \otimes on the equivalence classes by

$$[(a,b)] \otimes [(c,d)] = [(ac,bd)].$$

Show that $\mathbb{Q} - \{$ the additive identity of $\oplus \}$ (i.e. the set \mathbb{Q} with the additive identity removed) is an abelian group with the operation \otimes .

iii.) [Identifying the integers inside the rationals.] Define $\varphi : \mathbb{Z} \to \mathbb{Q}$ by $\varphi(z) = [(z, 1)]$. Show that

- a.) φ is 1-to-1.
- b.) φ is a homomorphism from $(\mathbb{Z}, +)$ to (\mathbb{Q}, \oplus) .
- c.) φ is a homomorphism from (\mathbb{Z}, \cdot) to (\mathbb{Q}, \otimes) .